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Supersymmetry-generated one-way-invisible PT -symmetric optical crystals
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We use supersymmetry transformations to design transparent and one-way reflectionless (thus unidirectionally
invisible) complex optical crystals with balanced gain and loss profiles. The scattering coefficients are investigated
using a transfer matrix approach. It is shown that the amount of reflection from the left can be made arbitrarily
close to zero whereas the reflection from the right is enhanced arbitrarily (or vice versa).
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I. INTRODUCTION

We see an object because light bounces off it. If this
scattering of light could be cloaked and if the object does
not absorb any light, then it would become invisible. Although
invisibility has been a subject of science fiction for millennia,
the recent discovery of metamaterials is opening up the
possibility of practical demonstrations of cloaking devices
[1–4]. A properly designed metamaterial shell surrounding
around a given object can drastically conceal its scattering
for any angle of incidence, making it almost undetectable.
Different techniques, like the coordinate transformation tech-
nique [1] and the scattering cancellation technique [5], are
suggested to design cloaking from electromagnetic waves.
The realization of a coordinate transformation cloak, which
is able to hide a copper cylinder at microwave frequency, has
been recently reported [6]. The concept of cloaking has also
been extended to the quantum and acoustic domains, realizing
matter-wave [7,8] and acoustic cloaks [9,10]. Nevertheless,
cloaking in visible light, hiding more complex shapes and
materials, still remains distant.

Very recently, it has been discovered [11–20] that light prop-
agation can also be influenced substantially by controlling the
parity-time (PT ) symmetry in such a way that amplification
and loss balance each other. Most interestingly, as opposed
to wrapping a scatterer with a cloak, PT -symmetric material
can become one-way invisible as a result of spontaneous PT -
symmetry breaking. Such unidirectional invisibility has been
predicted [21] by Bragg scattering in a sinusoidal complex
crystal of finite length: �n(z) = b(cos 2πz/a + iσ sin 2πz/a)
near its symmetry breaking point σ = 1. A ray of light
when it hits one side of such a material is transmitted
completely without any reflection. In this same regime the
transmission phase also vanishes, which is compulsory for
avoiding detectability. When the transmittance and (left, right)
reflectance are analytically expressed [22,23] in terms of
the modified Bessel functions, it becomes clear on closer
inspection that there is, however, a very small deviation
of left reflectance from 0 (varies rapidly on the scale of
10−6 for b = 0.001). The transmission is also not perfect in
amplitude or phase. Moreover, the unidirectional invisibility
is ambiguous for a crystal with length L > 2π3/b2a3 [22].
Thus, at the PT -symmetry breaking point the sinusoidal
crystal appears to be one-way invisible solely for a shallow
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grating which indeed is realized by recent experiments on a
PT -synthetic photonic lattice [24,25].

On the other hand, nonrelativistic supersymmetry (SUSY)
transformations are shown [26–32] to be useful in the
framework of optics to synthesize new optical structures.
In particular, SUSY has provided a method to generate a
medium with defects that can not be detected by an outside
observer [30], to obtain a transparent interface separating two
isospectral but different crystals [29], and to create a family
of isospectral potentials to optimize quantum cascade lasers
[31]. In Ref. [28], SUSY has been used to generate a complex
optical potential with real spectra; even their shape violate
PT symmetry. Further, SUSY photonic lattices [27] are used
to design lossless integrated mode filtering arrangements.

Our purpose here is to use SUSY transformations of the
sinusoidal complex crystal at its symmetry breaking point
to design one-way invisible crystals with sophisticated shape
and structure. The scattering coefficients for these crystals
are investigated using a transfer matrix approach [33–35].
Precisely, we have derived the relationship between the transfer
matrices of the initial crystal V (0) and its nth order isospectral
crystals V (n). This reveals that the corresponding transmission
coefficients do not alter their values, whereas the values of left
and right reflection coefficients do. The left (right) reflectivity
can be diminished (enhanced) arbitrarily using higher order
SUSY transformations. For instance the magnitude of left
reflection (for b = 0.001) is reducible from 10−6 to 10−10

after two transformations.

II. CONSTRUCTION OF ISOSPECTRAL CRYSTALS

We consider a PT -symmetric relative dielectric constant
n(z) = n2

0[1 + �n(z)], where �n(z + a) = �n(z) is the com-
plex refractive index whose imaginary part represents either
gain or loss. The variation in n(z) is measured along the
longitudinal z direction in (0,L). In this setting, a time-
harmonic electric field of frequency ω obeys the scalar
Helmholtz equation [21,22], which is formally identical to
the time-independent Schrödinger equation for the wave
function ψ :

Hψ(z) = −d2ψ(z)

dz2
− V (z)ψ(z) = Eψ(z), (1)

provided the potential V ∝ �n and ω is very close to the Bragg
frequency ωB = cπ/(n0a). ThePT symmetry of the refractive
index translates into the potential such that V (L − z)∗ = V (z).
It is the following potential that we wish to consider here as a
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reference potential to construct isospectral crystals:

V (z) = be2iπz/a, 0 < z < L. (2)

In addition, later in the context of scattering we will consider
V (z) = constant for z < 0 and z > L. The spectral problem
for this potential is well studied in [36–39]. The spectrum
of H is the semi-infinite real axis and there is no band
gap. The equation (1) can readily be reduced to the Bessel
modified differential equation after changing of variable
y(z) = a

√
b/π exp(iπz/a):

y2 d2ψ

dy2
+ y

dψ

dy
− (y2 + q2)ψ = 0, (3)

where q = a
√

E/π . Hence for a noninteger q the most general
solutions can be written as

ψ(z,E) = α1I a
√

E
π

(y) + α2I− a
√

E
π

(y), (4)

where Iq(y) is the modified Bessel function of the first kind
and α1, α2 are two arbitrary constants. Moreover for the
crystal momentum k = √

E we have ψ(z + a) = eikaψ(z).
This implies that ψ(z) is a Bloch wave function. The potential
and corresponding reduced zone band structure are shown in
Figs. 1(a) and 1(d), respectively.

Now, we consider two periodic potentials V (0) (=V )
and V (1) describing two crystals with different unit cells
but with the same lattice period, i.e., V (0)(z) �= V (1)(z) but
V (0),(1)(z + a) = V (0),(1)(z). Then these two crystals are said to
be isospectral if they have an identical energy band structure.
Like the Hermitian case [40,41], SUSY transformations also
enable [30] one to easily construct a new complex periodic
potential V (1), which is isospectral1 to V (0). To this aim,
the Hamiltonian H (0) is written in factored form H (0) =
B1A1 + ξ0 with the help of following two first order linear
operators

A1 = − d

dz
+ w1(z), B1 = d

dz
+ w1(z), (5)

where ξ0 is the energy of factorization and the superpotential
w1(z) is defined in terms of Bloch solution:

w1(z) = u′
0(z)u−1

0 (z), H (0)u0(z) = ξ0u0(z). (6)

Consequently, V (0) can be expressed as V (0) = −(w2
1 + w′

1).
Note here that for a PT -symmetric complex V (0), w1 is
complex and B1 �= A

†
1. To H (0) there corresponds the partner

Hamiltonian H (1) = A1B1 + ξ0 with

V (1)(z) = −(
w2

1 − w′
1

) = V (0)(z) + 2w′
1(z). (7)

For a periodic and exact PT -symmetric potential V (0), the
Bloch wave function u0 implies that the superpotential w1 is
periodic and anti-PT -symmetric, i.e., w1(z + a) = w1(z) and
w1(L − z)∗ = −w1(z). Hence Eq. (7) clearly shows that V (1)

respects the condition of periodicity and PT symmetry. For

1Here we will not consider the self-isospectral crystals (which are
such that V (0) and V (1) are related by simple translation z → z + α,
or inversion z → −z).

FIG. 1. (Color online) Real (solid line) and imaginary (dashed
line) parts of (a) the crystal given in (2), (b) isospectral crystal V (1)

obtained using first-order SUSY transformation, and (c) isospectral
crystal V (2) obtained using second-order SUSY transformations.
(d) Reduced zone energy band structure. Here we have considered
b = 0.02,a = 3π/2,ξ0 = 0.44, and ξ1 = 0.9.

periodic systems, the two zero modes (which are the solutions
of A1ψ

(0)
0 = 0 and B1ψ

(1)
0 = 0, respectively)

ψ
(0),(1)
0 (z) = e± ∫ z

w1(t)dt (8)

will belong to the Hilbert space if they satisfy the Bloch con-
dition mentioned earlier. Now using the periodicity condition
w1(z + a) = w1(z) in Eq. (8) we have

ψ
(0),(1)
0 (z + a) = e±φaψ

(0),(1)
0 (z), φa =

∫ a

0
w1(t)dt. (9)

Clearly, ψ
(0),(1)
0 will be Bloch wave functions if ±φa = ika.

In other words for periodic case the SUSY is said to be
unbroken if Re(φa) = 0; otherwise it is broken. Consequently,
the two zero modes ψ

(0),(1)
0 either both are Bloch functions (in

which case SUSY is unbroken), or neither of them are Bloch
functions [when Re(φa) �= 0 and SUSY is broken]. Thus in
the periodic case, irrespective of whether SUSY is broken or
unbroken, the potentials V (0),(1) are always strictly isospectral.
For PT -symmetric complex potentials, the superpotential is
anti-PT -symmetric, i.e., the real part of w1(z) is an odd
function. This implies that the real part of the integral in
Eq. (9) is always equal to zero. Thus for PT -symmetric
periodic systems the SUSY is always unbroken and the energy
spectra are strictly identical. Supersymmetry also allows one to
connect the solutions of H (1) to those of H (0) via the relation
ψ (1)(z,E) = A1ψ

(0)(z,E). Consequently, if ψ (0) is a Bloch
wave function, then so is ψ (1).

The above technique can be applied to obtain another
new Hamiltonian H (2) = −d2/dz2 − V (2) isospectral to H (1)

such that H (1) = B2A2 + ξ1 and H (2) = A2B2 + ξ1. Here
the operators A2,B2 has the same form as in Eq. (5) but
with different superpotential w2(z) = v′

1(z)v−1
1 (z), where the

factorization function v1 and energy of factorization ξ1 ( �=ξ0)
satisfy H (1)v1(z) = ξ1v1(z). The solutions of H (2) with

V (2) = V (1) + 2w′
2 = V (0) + 2(w1 + w2)′ (10)
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are given by ψ (2)(z,E) = A2ψ
(1)(z,E) = A2A1ψ

(0)(z,E).
Repeating the procedure n times, one gets

V (n) = V (0) + 2W ′
n, where Wn =

n∑
k=1

wk, (11)

and wk = v′
k−1v

−1
k−1, vk−1 (with v0 = u0) being the solution of

H (k−1) at the factorization energy ξk−1. The chain of these n

SUSY transformations allows one to find the solution of the
new Hamiltonian H (n) = −d2/dz2 − V (n), in the following
form:

ψ (n)(z,E) = AnAn−1 · · ·A1ψ
(0)(z,E). (12)

Though the above mentioned formulas are very compact
and elegant, they are not very convenient for practical
applications because in order to obtain V (n) from V (0), one has
to consider all the (n − 1) intermediate steps. This difficulty
can be overcome by writing the expressions another way in
terms of the solutions of the initial reference Hamiltonian only.
Since all the solutions v(z,ξk) of H (k) are related to the solution
u(z,ξk) of H (0) by the relation (12), after a cumbersome but
straight forward calculations we can rewrite

Wn = W [u0, . . . ,un−1]′

W [u0, . . . ,un−1]
, n = 1,2, . . . (13a)

V (n) = V (0) + 2

(
W [u0, . . . ,un−1]′

W [u0, . . . ,un−1]

)′
, (13b)

ψ (n) = W [u0, . . . ,un−1,ψ
(0)] (W [u0, . . . ,un−1])−1 , (13c)

where W [] is the Wronskian determinant with W [u0] = u0

so that W1 = w1. Such expressions are known as Crum-Krein
formulas [42,43].

Now using the Eq. (13b) and taking uk = u(z,ξk) as the
(Bloch) factorization solutions given in Eq. (4), it is not difficult
to construct the crystals isospectral to the one given in (2).
Specifically, for α1 = 0 and α2 = 1, the first order isospectral
crystal reduces to the following simple functional form

V (1) = be2iπz/a + 2∂zz ln I −a
√

ξ0
π

(
a
√

b

π
eiπz/a

)
. (14)

For illustration, we have plotted the real and imaginary parts
of the two isospectral crystals V (1),(2) in Figs. 1(b), and 1(c),
respectively. These two crystals have the same energy band
structure as shown in Fig. 1(d). Here we have considered the
two factorization functions as u0 = I−q0 (y) and u1 = Iq1 (y) at
the energies ξ0 = 0.44 and ξ1 = 0.9, respectively.

III. TRANSFER MATRIX AND UNIDIRECTIONAL
INVISIBILITY

In general, for a localized potential V (z), restricted to the
interval 0 < z < L, the scattering solution can be written as

�(z) =

⎧⎪⎨
⎪⎩

βl→eipz + βl←e−ipz, z < 0

ψ(z), 0 < z < L

βr→eip(z−L) + βr←e−ip(z−L), L < z

(15)

where “→” and “←” denote the forward and backward
direction of the wave propagation, respectively; l,r denote the
left-hand (z < 0) and right-hand (z > L) side of the crystal,

respectively. To find the scattering amplitudes, one has to first
solve Eq. (1) for ψ(z) in (0,L). Then, invoking the appropriate
boundary conditions at 0 and L [typically, continuity of ψ(z)
and it’s derivative], one obtains two linear equations among
the coefficients. These can be solved for the two right-side
amplitudes in terms of the other two, and the result can be
expressed as a matrix equation:

(
βr→
βr←

)
= M(p)

[
βl→
βl←

]
, M =

[
M11 M12

M21 M22

]
.

This 2 × 2 transfer matrix M is unimodular (det M = 1), and
the elements are related to the transmission t and reflection
r coefficients for left-side l and right-side r incidence by
tl = tr = t = M−1

22 ,rl = −M21M
−1
22 , and rr = M12M

−1
22 . Some

distinctive features of the PT -symmetric scattering (as dis-
cussed in [35,44]) are as follows: the transmission coefficient
does not depend on the incidence side like in a Hermitian
optical crystal. The left and right reflection coefficients are
in general unequal, |rl| �= |rr |. Moreover the two reflectances
Rl,r = |rl,r |2 and the transmittance T = |t |2 do not add up to
unity (i.e., Rl,r + T �= 1); instead they satisfy the generalized
unitarity relation

|T − 1| =
√
RlRr . (16)

Thus in the PT -symmetric non-Hermitian case, the geometric
mean of the two reflectances,

√
RlRr , replaces the single

reflectance R in the conventional flux conserving relation for
the Hermitian system. A PT -symmetric potential is said to be
invisible from the left (right) if Rl = 0 (Rr = 0) together with
T = 1.

If we indicate by Z as the fundamental matrix [22] of
Eq. (1), which relates the values of ψ(z) and ψ ′(z) at z = 0
and z = L, then

Z =
[
ψ1(L) ψ2(L)

ψ ′
1(L) ψ ′

2(L)

]
×

[
ψ1(0) ψ2(0)

ψ ′
1(0) ψ ′

2(0)

]−1

, (17)

where ψ1,2(z) are the two linearly independent solutions of
Eq. (1). The transfer matrix is related to the fundamental matrix
by the following relation

M = T −1Z(p)T , T =
[

1 1
ip −ip

]
. (18)

In the following we derive the relationship between the
transfer matrices associated with a given initial crystal and its
nth order isospectral partner. It is important to mention here
that in order to guarantee that the scattering to take place in both
the SUSY periodic potentials, it is necessary that the potentials
V (0),(n) are asymptotically constant in the region z ∈ (−∞,0] ∪
[L,∞). Without loss of generality we assume the constant to be
w2

1(0) [where we have set W ′
n(z) → 0 in the same region and

assumed w1(0) = w1(L)]. Hence the momentum appearing in

Eq. (15) is given by p = |
√

E − w2
1(0)|.
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FIG. 2. (Color online) (a) Transmittance |t (0)|2 and left, right reflectances |r (0)
l,r |2 for the crystal V (0) of length L = 30π ; comparison

among (b) the left reflectances |r (0),(1),(2)
l |2 and (c) the right reflectances |r (0),(1),(2)

r |2 for the three crystals V (0),(1),(2) shown earlier in Fig. 1. We
considered the same parameter values of Fig. 1 to draw these three figures. (d) Solid curve is the magnified plot of the left reflectance for
the isospectral crystal V (2) for b = 0.001,ξ0 = 0.01,ξ1 = 0.95,L = 20a, and a = π . The dotted curve represents the plot of the numerically
computed left reflectance for the perturbed potential V (2) + ε�V with ε = 0.02.

Theorem. If Mn and M0 are the corresponding transfer
matrices of V (n) and V (0), respectively, then for n = 1,2,3, . . .

Mn = D−1
n M0Dn,

Dn =
[∏n

k=1
i

p+iwk (0) 0

0
∏n

k=1
(−i)

p−iwk (0)

]
. (19)

Proof. Let us first consider the case with n = 1. In this case
recalling the relationship ψ (1) = A1ψ

(0) we have[
ψ

(1)
1 (z) ψ

(1)
2 (z)

ψ
(1)
1

′
(z) ψ

(1)
2

′
(z)

]
=

[
w1 −1

E − w2
1 w1

] [
ψ

(0)
1 (z) ψ

(0)
2 (z)

ψ
(0)′
1 (z) ψ

(0)′
2 (z)

]
.

If Z0 is the fundamental matrix for V (0), then the above
relation suggests that the fundamental matrix Z1 for the
potential V (1) can be expressed as

Z1 = B1Z0B−1
1 , where B1 =

[
w1(0) −1
p2 w1(0)

]
. (20)

Here we have used w1(0) = w1(L). Hence the corresponding
transfer matrix M1 for V (1) is reduced to

M1 = T −1Z1T = D−1
1 M0D1, (21)

where D1 = T −1B−1
1 T is a diagonal matrix with nonvanishing

entries i/[p + iw1(0)] and −i/[p − iw1(0)]. Iterating the
above procedure n times and using Eq. (12) we have in general

Zn = (BnBn−1 · · ·B1)Z0 (BnBn−1 · · ·B1)−1 , (22)

and hence Mn = D−1
n M0Dn, where

Bk =
[
wk(0) −1
p2 wk(0)

]
and Dn = T −1

n∏
k=1

B−1
k T .

Explicit calculation reveals that Dn is a diagonal matrix with
diagonal entries

∏n
k=1

i
p+iwk (0) and

∏n
k=1

(−i)
p−iwk (0) .

An immediate consequence of the above theorem is that the
transmittance and reflectance of the two isospectral crystals
V (0) and V (n) are related by

t (n) = t (0), r
(n)
l,r = (−1)n

n∏
k=1

p ∓ iwk(0)

p ± iwk(0)
r

(0)
l,r . (23)

For a given complex crystal (whose reflection and transmission
coefficients are known in advance), the reflection and transmis-
sion amplitudes for its isospectral crystals can be evaluated by
using the relationship (23). However, for practical computation
it is better to express r

(n)
l,r in terms of the quantities associated

with the initial crystal only. To do so, we use Eqs. (11) and
(13a) in Eq. (23) to obtain

r
(n)
l,r = (−1)n

n∏
k=1

p ∓ i[Wk(0) − Wk−1(0)]

p ± i[Wk(0) − Wk−1(0)]
r

(0)
l,r , (24)

where W0(0) = 0. A few remarks at this point are
very important. For a PT -symmetric complex potential,
W(k)(0) −W(k−1)(0) is complex valued. Therefore in con-
trast to the scattering by two real SUSY partners, com-
plex PT -symmetric isospectral potentials have |r (n)

l,r | �= |r (0)
l,r |.
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Depending on the nature of the factorization functions at x =
0, one has either |r (n)

l | < |r (0)
l | and |r (n)

r | > |r (0)
r | or vice versa.

The equality of the transmission coefficients is accounted for
by the equal asymptotic behavior of the potentials. The results
obtained in Eqs. (23) and (24) are consistent with the fact
that the reflectances R(n)

l,r and transmittance T(n) of the nth
order isospectral crystal V (n) satisfy the generalized unitarity
relation (16) (provided that the same quantities of the initial
crystal V (0) do so).

It is worth mentioning here that the reflection and transmis-
sion coefficients for the crystal (2) are calculated analytically
in Refs. [22,23]. In the present notations they are quoted in
the footnote below.2 Using these exact expressions in Eq. (24),
one can easily finds the explicit expressions for the scattering
coefficients for the isospectral crystals. In Fig. 2, we have
shown the differences among the scattering coefficients for
the three crystals V (0),(1),(2) which are plotted earlier in Fig. 1.
Note here that the usual Bragg scattering condition occurs at
the Bragg point δ = p − π/a. Hence in the Fig. 2, we have
plotted (left, right) reflectance and transmittance with respect
to the detuning parameter δ. From the Fig. 2(b) it is clear that
the left reflectivity can be reduced drastically close to zero
using higher order SUSY transformations. At the same time,
Fig. 2(c) shows that the corresponding right reflectivity can be
enhanced. In Fig. 2(d) we have shown the magnified picture of
left reflectance obtained after two SUSY transformations for

2The exact reflection and transmission coefficients for the crys-
tal V (0)(z) = b exp 2iπz/a, as obtained in Ref. [22], are given
by t (0) = 2p sin(πq)

2p sin(πq) cos(pL)−ai sin(pL)(p2Iq I−q−bI ′
q I ′−q )

and r
(0)
l,r = − ai sin(pL)

2p sin(πq)

[bI ′
qI

′
−q + p2IqI−q ∓ p

√
b(I ′

qI−q + I ′
−qIq )]t (0), where Iq = Iq (�),

I ′
q = Iq−1(�) − (q/�)Iq (�), and � = a

√
b/π , q = ap/π .

b = 0.001. Clearly the left reflectance is much more close to
zero compared to the one reported in [21].

From the experimental point of view, it is important to
check the robustness of the predicted scattering behavior of
V (2). To do so, we have numerically computed the scattering
coefficients for the perturbed potential V (2) + ε�V , where
�V = eiz, ε  1 so that |ε�V | � ε. To obtain the scattering
coefficients associated to this perturbed potential, we have first
evaluated the solution of the Schrödinger equation (1) in the
interval (0,L) using the 4th order Runge-Kutta method. The
obtained solution and its first-order derivative have been then
matched with those of the left and right propagating waves at
the boundary z = 0 and z = L, respectively. The reflectances
and transmittance, so obtained, are found to be very close to
the analytical results of the unperturbed potential. In particular,
we have shown the left reflectance for ε = 0.02 in Fig. 2(d)
[dotted curve].

IV. CONCLUSION

In conclusion, we have shown that by a suitable extension
of the SUSY method it is possible to construct transparent
and one-way reflectionless optical crystals with sophisticated
shape and structure. We hope that the present theoretical study
would be a promising step towards the designing of a scatterer
having a more pronounced invisibility effect.
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