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Quantum probes for the spectral properties of a classical environment
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We address the use of simple quantum probes for the spectral characterization of classical noisy environments.
In our scheme a qubit interacts with a classical stochastic field describing environmental noise and is then measured
after a given interaction time in order to estimate the characteristic parameters of the noise. In particular, we
address estimation of the spectral parameters of two relevant kinds of non-Gaussian noise: random telegraph
noise with a Lorentzian spectrum and colored noise with a 1/f α spectrum. We analyze in detail the estimation
precision achievable by quantum probes and prove that population measurement on the qubit is optimal for
noise estimation in both cases. We also evaluate the optimal interaction times for the quantum probe, i.e., the
values maximizing the quantum Fisher information (QFI) and the quantum signal-to-noise ratio. For random
telegraph noise the QFI is inversely proportional to the square of the switching rate, meaning that the quantum
signal-to-noise ratio is constant and thus the switching rate may be uniformly estimated with the same precision
in its whole range of variation. For colored noise, the precision achievable in the estimation of “color,” i.e., of the
exponent α, strongly depends on the structure of the environment, i.e., on the number of fluctuators describing
the classical environment. For an environment modeled by a single random fluctuator estimation is more precise
for pink noise, i.e., for α = 1, whereas by increasing the number of fluctuators, the quantum signal-to-noise ratio
has two local maxima, with the largest one drifting towards α = 2, i.e., brown noise.
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I. INTRODUCTION

In any communication channel or measurement scheme,
the interaction of the information carriers with the external
environment introduces noise in the system, thus degrading the
overall performances. The precise characterization of the noise
is thus a crucial ingredient for the design of high-precision
measurements and reliable communication protocols. In many
physical situations, the main source of noise is associated with
the fluctuations of bistable quantities. In these cases, a suitable
description of the noise is given in terms of classical stochastic
processes [1–3]. In particular, in the case of phase damping,
i.e., pure dephasing, it has been shown that the interaction of a
quantum system with a quantum bath can be written in terms
of a random unitary evolution driven by a classical stochastic
process [4,5].

The characterization of classical noise is often performed
by collecting a series of measurements to estimate the
autocorrelation function and the spectral properties [6–11].
This procedure is generally time consuming and may require
the control of a complex system. A question thus arises
on whether more effective techniques may be developed.
To this purpose, we address the use of quantum probes to
estimate the parameters of classical noise. We assume to have
a quantum system interacting with the classical fluctuating
field generating the noise and explore the performances of

quantum measurements performed at a fixed interaction time
to extract information about the classical noise. The power
and implications of this idea are undeniable: the features
of a complex system may be determined by monitoring
a small probe, which is usually characterized by few and
easily controllable degrees of freedom. The simplest and
paradigmatic example of this situation is that of a qubit
interacting with a noisy environment. After a given interaction
time, which may be suitably optimized, quantum-limited
measurements on the qubit may be used to characterize the
environment, e.g., to estimate the parameters describing its
noise spectrum.

In this paper we focus on the characterization of two
classes of classical noise: random telegraph noise (RTN)
with a Lorentzian spectrum and the power-law 1/f α colored
spectra arising from the interaction with a collection of random
bistable fluctuators. Both RTN and colored noise are examples
of classical non-Gaussian noise occurring in several system
of interest. Indeed, the microscopic models underlying these
kinds of noise have been extensively analyzed in the literature
[12–18]. The relevant parameters characterizing these kinds
of noise are the switching rate of the RTN and the exponent
α in the case of power-law spectra. Both quantities do not
correspond to observables in a strict sense and therefore we
have to resort to indirect measurements performed on the
quantum probe to infer their value. In order to optimize this
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inference procedure we employ tools from local quantum
estimation theory [19–24], which have already proven useful in
the estimation of static noise parameters [25–29] and in several
other scenarios, as for example the estimation of quantum
correlations [30–33], Gaussian states [34–36], optical phase
[37–42], critical systems [43,44], and quantum thermometry
[45]. In particular, we will optimize the initial preparation of
the qubit and the interaction time in order to maximize the
quantum Fisher information and the quantum signal-to-noise
ratio. Furthermore, we show that population measurement
provides optimal inference for both the noise models.

This paper is organized as follows: In Sec. II we introduce
the physical dephasing model employed throughout the paper
and describe the main features of RTN and colored noise. In
Sec. III we briefly review the main tools of quantum estimation
theory, whereas in Sec. IV we present our results on the
precision achievable by quantum probes in the estimation of
the spectral properties of noisy random environments. Section
V closes the paper with concluding remarks.

II. THE PHYSICAL MODEL

In order to gain information about a complex environment,
we analyze its influence on the dynamics of a quantized
information carrier. In the simplest case this corresponds to a
qubit interacting with a classical stochastic field. Two different
field spectra will be considered: the Lorentzian spectrum
generated by a random telegraph noise and the 1/f α colored
spectrum stemming from a collection of random bistable
fluctuators. In both cases the noise induced by the classical
field is described by a non-Gaussian process, meaning that the
sole knowledge of the second-order statistics is not sufficient
to fully characterize the process.

We focus attention on situations where the dominant
process induced by the environmental noise is pure dephasing.
This corresponds to having the quantum probe, a qubit,
coupled to a classical field in a given direction, say x. The
Hamiltonian of the qubit thus reads

H(t) = ε I + ν c(t) σx, (1)

where ε is the energy of the qubit eigenstates assumed to be
degenerate, c(t) is the stochastic non-Gaussian process, σx is
the Pauli matrix, ν describes the coupling strength with the
environment, and � was set to 1. We also assume that the qubit
is initially prepared in a generic pure state:

|ψ0〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉. (2)

Upon studying the dynamics of the qubit subject to noise
we gain information about the spectral properties of the
environment.

A. Random telegraph noise

Random telegraph noise describes the fluctuations induced
by the interaction with a classical bistable fluctuator, i.e., a
physical system which flips between two given configurations
with a fixed switching rate. RTN is characterized by an
exponential autocorrelation function and a Lorentzian power
spectrum. In mathematical terms, RTN corresponds to an

interaction Hamiltonian as in Eq. (1) with c(t) flipping between
the values c(t) = ±1 at a switching rate ξ .

Hereafter we work with dimensionless quantities by scaling
the time and the switching rate in units of ν. In particular, we
substitute t → τ = νt and ξ → γ = ξ/ν.

The density matrix of a qubit interacting with a RTN clas-
sical environment is obtained averaging the unitary evolved
state over all possible temporal sequences of the stochastic
process c(t) [13,46,47]:

ρ(τ,γ,θ,φ) = 〈U (τ ) ρ0 U †(τ )〉c(t), (3)

where U (τ ) = e−i
∫ τ

0 H(s)ds is the evolution operator, ρ0 =
|ψ0〉〈ψ0| is the initial density matrix, and 〈. . . 〉c(t) denotes
average over the process. In order to evaluate explicitly Eq. (3)
we start from

U (τ ) ρ0 U †(τ ) = 1
2 [I + axσz + az(τ )σz + ay(τ )σy], (4)

where

ax = cos φ sin θ,

ay = − sin[2 ϕ(τ )] cos θ + cos[2 ϕ(τ )] sin θ sin φ, (5)

az = cos[2 ϕ(τ )] cos θ + sin[2 ϕ(τ )] sin θ sin φ,

and

ϕ(τ ) =
∫ τ

0
c(s) ds. (6)

The density matrix in the computational basis {|0〉,|1〉} is thus
given by

ρ(τ,γ,θ,φ) = 1
2 [I + D(τ,γ ) cos θ σz + sin θ cos φ σx

− sin θ sin φ D(τ,γ ) σy], (7)

where the real coefficient D(τ,γ ) is given by

D(τ,γ ) ≡ 〈e±2 iϕ(s)〉c(τ )

= e−γ τ

(
cosh δτ + γ sinh δτ

δ

)
(8)

and where δ ≡ δ(γ ) =
√

γ 2 − 4. For γ < 2, D(τ,γ ) is a
damped oscillating function of time, while for γ � 2 D(τ,γ )
decays monotonically in time. The first case is often referred
to as slow RTN and corresponds to a non-Markovian map [48],
while the second is called fast RTN and leads to a Markovian
dynamics. Notice that averages over the stochastic process are
evaluated as

〈f (ϕ)〉c(τ ) ≡
∫

dϕ p(ϕ,τ ) f (ϕ),

where the RTN phase distribution has the well-known form
[12]

p(ϕ,t) = 1

2
e−γ t

{
[δ(ϕ + νt) + δ(ϕ − νt)]

+ γ

ν
[�(ϕ + νt) + �(ϕ − νt)]

}

×
[
I1(γ t

√
1 − (ϕ/νt)2)√

1 − (ϕ/νt)2
+ I0(γ t

√
1 − (ϕ/νt)2)

]
,

(9)
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where Iv(x) is the modified Bessel function and �(x) is the
Heaviside step function.

B. Colored noise

A complex environment characterized by a noise spectrum
of the form 1/f α in a given frequency range [γ1,γ2] corre-
sponds to a collection of one or more bistable fluctuators whose
switching rates assume random values f ∈ [γ1,γ2] according
to the probability distribution

pα(γ ) =
⎧⎨
⎩

1
γ ln(γ2/γ1) , α = 1,

α−1
γ α

[ (γ1γ2)α−1

γ α−1
2 −γ α−1

1

]
, α �= 1.

(10)

We assume colored noise with α < 2 and, in particular, focus
attention on classical noise with exponent in the range α ∈
[1/2,2]. The case α = 1 is usually referred to as pink noise
and the case α = 2 as Brown(ian) noise.

For colored noise the field c(t) in Eq. (1) is a superposition
of N random bistable fluctuators c(t) = ∑N

j=1 cj (t), where
the cj (t) are classical stochastic fields describing independent
RTN sources with random switching rates extracted from the
distribution (10). The density matrix of a qubit interacting
with colored noise is obtained as the average over all the
environmental degrees of freedom [17]:

ρ(τ,α,θ,φ) =
∫ γ2

γ1

ρ(τ,γ,θ,φ) pα(γ ) dγ, (11)

where ρ(τ,γ,θ,φ) is the expression of Eq. (3) with the average
taken over the global field c(t). Following the same procedure
of the previous paragraph Eq. (11) may be rewritten as

ρ(τ,α,θ,φ) = 1
2 [I + �(τ,α,N ) cos θ σz + sin θ cos φ σx

− sin θ sin φ �(τ,α,N ) σy], (12)

where N is the number of fluctuators and the real coefficient
�(τ,α,N ) = [�(τ,α)]N is given by

�(τ,α) =
∫ γ2

γ1

pα(γ )D(τ,γ )dγ. (13)

The dynamics of the qubit is governed by the function
�, which can be easily evaluated numerically, either by
numerical integration of Eq. (13) or by the equivalent series
representation reported in the Appendix.

III. LOCAL QUANTUM ESTIMATION THEORY

In this section we review the main tools of local QET. Let
us consider a family of quantum states ρλ depending on a
parameter λ. We are interested in inferring the value of the
parameter and to this aim we perform repeated measurements
on the system and then process the overall sample of outcomes.
An estimator λ̄ = λ̄(x1,x2 . . . xM ) is a function of the outcomes
{xi} and we denote by V (λ̄) the corresponding mean square
error. The smaller is V (λ̄), the more precise the estimator is. In
fact, there is a bound to the precision of any unbiased estimator,
given by the Cramér-Rao (CR) inequality:

V (λ̄) � 1

M F (λ)
, (14)

where M is the number of measurements and F (λ) is the Fisher
information (FI),

F (λ) =
∫

dx p(x|λ) [∂λ ln p(x|λ)]2, (15)

where p(x|λ) is the conditional probability of obtaining the
outcome x when the true value of the parameter is λ. In the
case of a qubit, we may for instance consider the population
measurement. The FI is given by

F (λ) = (∂λρ00)2

ρ00
+ (∂λρ11)2

ρ11
, (16)

where ρii are the two diagonal elements of the density matrix
in the population basis. In order to compute the ultimate bound
to precision as posed by quantum mechanics, the FI must be
maximized over all possible measurements. Upon introducing
the symmetric logarithmic derivative Lλ as the operator which
satisfies the relation

Lλρλ + ρλLλ

2
= ∂λρλ, (17)

the quantum CR bound is found:

V (λ) � 1

M H (λ)
. (18)

Here H (λ) = Tr[ρλL
2
λ] is the so-called quantum Fisher in-

formation (QFI). In the case of a qubit, the expression of
the (QFI) can be found after diagonalizing the density matrix
ρλ = ∑2

n=1 ρn|φn〉〈φn|:

H (λ) =
2∑

n=1

(∂λρn)2

ρn

+ 2
∑
n�=m

(ρn − ρm)2

ρn + ρm

|〈φm|∂λφn〉|2. (19)

The first term in Eq. (19) is the classical FI of the distribution
{ρn}, while the second term has a quantum nature and
vanishes when the eigenvectors of ρλ do not depend upon
the parameter λ. When the condition F (λ) = H (λ) is fulfilled,
the measurement is said to be optimal. If equality in Eq. (14)
is satisfied the corresponding estimator is said to be efficient.

A global measure of the estimability of a parameter is
given by the single-measurement signal-to-noise ratio SNR =
λ2/V (λ). Using the Cramér-Rao bound we have that the SNR
is bounded by the so-called quantum signal-to-noise ratio
QSNR R = λ2H (λ), which represents the ultimate quantum
bound to the estimability of a parameter.

IV. PARAMETER ESTIMATION BY QUANTUM PROBES

The goal of an estimation procedure is not only to determine
the value of an unknown parameter, but also to infer this value
with the largest possible precision. The quantum CR inequality
sets a bound to the ultimate precision that can be achieved
in estimating a parameter and, in turn, on the corresponding
signal-to-noise ratio.

In this section we discuss optimization of parameter
estimation by quantum probes. In other words, we determine
the initial qubit preparation and the interaction time that
maximize the QFI, and show that the corresponding ultimate
precision may be achieved by population measurement on the
qubit. We then discuss in detail under which conditions it is
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possible to estimate efficiently the spectral properties of the
environmental noise.

Let us start by considering a generic pure dephasing model

ρ = 1 + �(λ)

2
ρ0 + 1 − �(λ)

2
σxρ0σx, (20)

where �(λ) is a real coefficient taking both negative and
positive values between ±1. If we set φ = 0 in Eq. (2), the
QFI can be analytically computed and it takes the expression

H (λ) = cos2(θ )
[∂λ�(λ)]2

1 − �2(λ)
. (21)

As is apparent from Eq. (21) the QFI is maximized for θ = 0.
In this case the optimal initial state preparation is the state
|ψ〉 = |0〉. If we consider the most general initial state (2)
with φ �= 0, we have numerical evidence that the QFI is still
maximized by the state |0〉 for any choice of �(λ).

A. Random telegraph noise

In the case of a RTN the parameter to be estimated is the
switching rate γ . Starting from the qubit prepared in the state
|0〉 and using Eq. (7), the family of possible evolved states may
be written as

ρ(τ,γ ) = 1

2

(
1 + D(τ,γ ) 0

0 1 − D(τ,γ )

)
. (22)

We know that the optimal measurement is a projective one
[49,50]. Besides, the eigenvectors of the matrix (22) do not
depend on the parameter γ and the second term in Eq. (19)
vanishes. Looking at the very form of the matrices in Eq. (22)
one immediately recognizes that the QFI coincides with the FI
of population measurement and can be written as

H (τ,γ ) = [∂γ D(τ,γ )]2

1 − D(τ,γ )2
, (23)

which is the analog of Eq. (21) with the coefficient �(λ)
replaced by coefficient D(τ,γ ). The two different regimes of
slow and fast RTN give rise to different behaviors for the QFI,
which are illustrated in Fig. 1. For slow RTN H is shown in the
upper panel of Fig. 1: the QFI is characterized by an oscillating
behavior and, in particular, for γ � 2 the peaks are located
at multiples of τ = π

2 . In the fast RTN case (see the lower
panel of Fig. 1), H has only one peak and its maximum value
decreases with γ .

In order to optimize the inference procedure we look for
the interaction time that maximizes the QFI H (τ,γ ) (and, in
turn, the QSNR R) at each fixed value of the switching rate γ .
The maximization of the QFI has been performed numerically,
leading to the following approximation:

τopt(γ ) 	
{

nint
[

1
2γ

]
π
2 , γ < 2,

2
5γ, γ > 2.

(24)

The approximation is very good for γ in range [10−3,103]
except for γ 	 2 where the peaks are not exactly located
at multiples of τ = π

2 and Eq. (24) is valid only to a first
approximation. In order to further illustrate the behavior of the
QFI in the slow RTN regime, in Fig. 2 we show the optimal
interaction time τopt as a function of the switching rate. The

FIG. 1. (Color online) The upper panel shows the QFI H (τ,γ ) as
a function of the interaction time τ and the switching rate γ for slow
RTN. The lower panel shows a contour plot of of H (τ,γ ) for fast
RTN.

steplike behavior of τopt is due to the oscillating behavior of the
QFI. On the other hand, in the fast RTN regime, the maximum
moves continuously as a function of γ .

As seen from Eq. (24), optimal times increase with decreas-
ing γ in the slow RTN regime and with increasing γ in the fast
RTN regime. When small switching rates are considered, long
times are necessary to see the effect of the environment on the
probe, in agreement with the non-Markovian character of the
corresponding evolution map [48,51]. In the case γ 
 2,
the qubit and the external fluctuators act as if they were
decoupled, so long observation times are required to see the
influence of the external noise on the dynamics of the qubit.
In both cases, the maximum values H (τopt,γ ) of the QFI are

0.1 0.2 0.3 0.4 0.5 γ

5
10
20
50
100
τopt

FIG. 2. (Color online) The optimal interaction time τopt, maxi-
mizing the quantum Fisher information H (τ,γ ) for slow RTN, as a
function of the switching rate γ (black line). The dashed red curve
denotes the function π/4γ .
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FIG. 3. (Color online) Spectral characterization of colored noise: The left panel shows the QSNR R(τ,α,N ) as a function of the interaction
time and the exponent α for a single fluctuator N = 1. The right panel shows the same quantity for N = 10.

inversely proportional to γ 2. In particular, a numerical fit in
the range [10−3,103] leads to

H (γ ) ≈ a

γ 2
, (25)

where a is of the order of 0.1. The quantum signal-to-
noise ratio QSNR = γ 2H (γ ) 	 a is thus constant, meaning
that quantum probes allow for a uniform estimation of the
switching rate in the whole range of values we have considered.

B. Colored noise

In the case of a collection of random bistable fluctuators,
the relevant parameter to be estimated is the “color” of the
noise, i.e., the exponent α. Following the general arguments
mentioned at the beginning of this section we assume that
the probe qubit is initially prepared in the state |0〉. Its time
evolution is thus described by the density matrix:

ρ(τ,α,N ) = 1

2

(
1 + �(τ,α,N ) 0

0 1 − �(τ,α,N )

)
. (26)

Also for colored noise the eigenvectors do not depend on
the parameter α and thus the FI for population measurement
coincides with the QFI, which is given by

H (τ,α,N ) = N2 �(τ,α)2N−2

1 − �(τ,α)2N
[∂α�(t,α)]2. (27)

For the colored environment realized by a single random
fluctuator the above formula reduces to

H (τ,α) = [∂α�(τ,α)]2

1 − �(τ,α)2
. (28)

The QFI depends on the interaction time τ , the exponent α,
and the number of fluctuators N . Different values for α and N

may lead to considerably different temporal behaviors for the
QFI. This is illustrated in Fig. 3, where we show the QSNR
R(τ,α,N ) = α2H (τ,α,N ) as a function of α and τ for two
different numbers of fluctuators. When a single fluctuator is
considered, the QSNR has a maximum located at α = 1, which

corresponds to the best estimable value for the parameter. The
situation is totally reversed in the case of N = 10 fluctuators,
where values of α close to one correspond to a very low QSNR.

In order to further illustrate this behavior, in Fig. 4 we
show the QSNR, already maximized over the interaction time,
as a function of α for (three) fixed numbers of fluctuators.
For a single fluctuator the QSNR exhibits a single maximum
located at α = 1; i.e., pink noise is more precisely estimable
than other kind of noise. On the other hand, when the number
of fluctuators increases, two maxima appear and their location
move away from α = 1 for increasing N , with the largest
maximum drifting towards α = 2.

To complete our analysis we also investigate with some
more details the dependence of the QFI on the structure of the
environment, i.e., on the number of fluctuators describing the
environment. In Fig. 5 we show the number of fluctuators Nmax

maximizing the QFI as a function of α. We first notice that there
is indeed a dependence, and that Nmax may be considerably
different for, say, pink or brown noise. As is apparent from
Fig. 5, Nmax decreases with increasing α until it reaches the
value Nmax = 1 for values of α close to 1. Then it increases
with α, up to Nmax = 540 for α = 2.

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 α

5

10

15

20
R

FIG. 4. (Color online) Spectral characterization of colored noise:
The plot shows the QSNR R(τopt,α,N ) as a function of α for different
numbers of fluctuators: N = 1 (black circles), N = 10 (red squares),
and N = 50 (green rhombuses). Lines are guides for the eyes.
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0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0α

5
10

50
100

500
Nmax

FIG. 5. (Color online) Spectral characterization of colored noise:
The plots shows the number of fluctuators Nmax that maximizes the
QFI as a function of the exponent α. The line is a guide for the eyes.

As a final remark, we also notice that when the number of
fluctuators is taken equal to Nmax, the optimal interaction time
maximizing the QFI is τ 	 π/2 independently of α.

V. CONCLUSIONS

In this paper we have addressed the estimation of the
spectral properties of classical environments using a qubit as
a quantum probe. In particular, we have focused attention on
the estimation of the switching rate γ of random telegraph
noise and of the exponent of colored noise with the 1/f α

spectrum. In both cases we have evaluated the quantum Fisher
information and found the optimal initial preparation and the
optimal interaction time that maximize its value. We have also
shown that population measurement on the qubit is optimal;
that is, the Fisher information coincides with the quantum
Fisher information.

For random telegraph noise the (maximized) QFI is
inversely proportional to the square of the switching rate,
meaning that the quantum signal-to-noise ratio is constant
and thus the switching rate may be estimated with uniform
precision in its whole range of variation. The corresponding
value of the optimal interaction time decreases with increasing
γ and is located at multiples of π/2 in the slow RTN regimes,
whereas it grows linearly with γ in the fast RTN regime.

For colored noise, we studied the estimability of the
color of the spectrum, i.e., of the exponent α. Our results
show that two different cases emerge: if the environment is
modeled by a single random fluctuator, then estimation is
more precise for pink noise, i.e., for α = 1. On the other
hand, when the environment is instead described as a collection
of several fluctuators, the QFI has two local maxima, whose
positions drift towards the boundaries of the interval [0.5,2]
as N is increased. The largest quantum signal-to-noise ratio
is obtained for brown noise, i.e., for α 	 2. We also find
that for any fixed value of α there is a specific number
of fluctuators maximizing the QFI for the interaction time
τ 	 π/2, independently of the value of α.

Overall, our results show that the features of a complex
environment may be reliably determined by monitoring a
small quantum probe with more easily controllable degrees of
freedom. In particular, our results show that quantum probes
permit one to reliably estimate the characteristic parameters of
classical noise using measurements performed after a fixed
optimal interaction time, rather than collecting a series of

measurements to estimate the autocorrelation function of the
underlying stochastic process.
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APPENDIX A: SERIES REPRESENTATION FOR �(τ,α)

Using the expression (10) of the distribution pα(γ ), Eq. (13)
may be rewritten as

�(τ,α) = Nα(γ1,γ2)
∫ γ2

γ1

dγ e−γ τ γ −α

×
[

cosh δτ + γ τ
sinh δτ

δτ

]
, (A1)

where δ =
√

γ 2 − 4 and the normalization reads as follows:

Nα(γ1,γ2) =
{ 1

ln γ2−ln γ1
, α = 1,

(α − 1)
[ (γ1γ2)α−1

γ α−1
2 −γ α−1

1

]
, α �= 1.

(A2)

Using the new variable y = γ τ we may write

�(τ,α) = Nα(γ1,γ2)[F (γ2τ,α,τ ) − F (γ1τ,α,τ )], (A3)

where

F (y,α,τ ) = τα−1[F1(y,α,τ ) + F2(y,α,τ )],

and

F1(y,α,τ ) =
∫

dy e−y y−α cosh
√

y2 − 4τ 2, (A4)

F2(y,α,τ ) =
∫

dy e−y y−α+1 sinh
√

y2 − 4τ 2√
y2 − 4τ 2

. (A5)

Upon expanding the hyperbolic functions and using the
relation∫

dy e−y y−α (y2 − 4τ 2)k

=
k∑

p=0

(−)1+k+p (2τ )2(k−p)

(
k

p

)
�(2p + 1 − α,y), (A6)

where �(a,x) is the (incomplete) Euler Gamma function, the
two functions Fk may be rewritten as

F1(y,α,τ ) =
∞∑

k=0

k∑
p=0

(−)1+k+p τ 2(k−p)

(2k)!

×
(

k

p

)
�(2p + 1 − α,y), (A7)

F2(y,α,τ ) =
∞∑

k=0

k∑
p=0

(−)1+k+p τ 2(k−p)

(2k + 1)!

×
(

k

p

)
�(2p + 2 − α,y). (A8)
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We now introduce the new index s = k − p and rearrange
series as

∞∑
k=0

k∑
p=0

· · · =
∞∑

p=0

∞∑
k=p

· · · =
∞∑

p=0

∞∑
s=0

. . . ,

thus arriving at

F1(y,α,τ ) =
∞∑

p=0

∞∑
s=0

(−)1+s

[2(p + s)]!

(
p + s

s

)
(2τ )s

× �(2p + 1 − α,y)

= −
∞∑

p=0

1

(2p)!
�p+ 1

2
(−τ 2) �(2p + 1 − α,y),

(A9)

where �n(x) denotes the confluent hypergeometric function
0F1(n,x). Analogously, we arrive at

F2(y,α,τ ) = −
∞∑

p=0

1

(2p + 1)!
�p+ 3

2
(−τ 2) �(2p + 2 − α,y).

(A10)

Upon substituting Eqs. (A9) and (A10) in Eq. (A3) we
obtain a series representation for the quantity �(τ,α). As
a matter of fact, truncating the series at the first term, i.e.,
p = 0 in Eqs. (A9) and (A10), already provides an excellent
approximation for α � 3/2 and any value of τ . In formula,

�(τ,α) 	 1
2Nα(γ1,γ2)τα−2[2τ cos 2τ �(1 − α,γ1τ,γ2τ )

+ sin 2τ �(2 − α,γ1τ,γ2τ )], (A11)

where �(a,x,y) = �(a,x) − �(a,y). On the other hand, for
α � 3/2 the number of terms needed for a reliable approxi-
mation rapidly grows.
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