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One-component dynamical equation and noise-induced adiabaticity
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The adiabatic theorem addresses the dynamics of a target instantaneous eigenstate of a time-dependent
Hamiltonian. We use a Feshbach P-Q partitioning technique to derive a closed one-component integro-differential
equation. The resultant equation properly traces the footprint of the target eigenstate. The physical significance
of the derived dynamical equation is illustrated by both general analysis and concrete examples. We find an
interesting phenomenon showing that a dephasing white noise can enhance and even induce adiabaticity. This
phenomenon, distinguishing itself from any artificial control process, may occur in natural physical processes. We
also show that particular white noises can shorten the total duration of dynamic processing, such as in adiabatic
quantum computing.
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I. INTRODUCTION

The adiabatic principle is a fundamental concept in quan-
tum mechanics addressing quantum evolution governed by
a slowly varying Hamiltonian [1,2]. It states that at any
instant the system follows the original stationary and yet
time-dependent eigenstate of the instantaneous H (t). Because
of its simplicity, the adiabatic principle has a variety of
applications in quantum physics. The recent development in
quantum information processing has reinforced the importance
of the adiabatic principle by its wide-spread applications, such
as the quantum adiabatic algorithm [3], fault-tolerance against
quantum errors [4], and universal adiabatic and holonomic
quantum computation [5–7] based on the Berry’s phase [8–10].
The adiabatic principle also has great applications in quantum
dynamics control, such as adiabatic passage [11–14], adiabatic
gate teleportation [15], and many other protocols (e.g., see
[16–21]). In these quantum state engineerings, the choice
of initial and the target instantaneous eigenstates is varied
depending on the interest of the issues under consideration.

Adiabaticity for a closed system is an idealization. In
reality, all experimentally accessible systems are open because
of inevitable interactions between systems and their sur-
rounding environments [22,23]. While extensive works have
been done in using the closed system adiabaticity combined
with external control algorithms [11–14,20], adiabaticity
has been theoretically extended into the context of open
quantum systems [17,24], where the environmental noises
often modify or even ruin a designed adiabatic passage. In
special circumstances, noise can even be used to enhance
the coherence or entanglement of quantum systems [25]. One
example is the stochastic resonance [26,27] taking advantage
of optimized noise amplitude; another one is the correlated
noises [28] serving as a common bath. Nevertheless, contrary
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to intuition, we show that an external white noise can be
used to enhance adiabaticity and even induce adiabaticity in
a nonadiabatic regime. Our approach distinguishes itself from
any artificial dynamical decoupling method or the application
of the quantum Zeno effect [29]. To put our results into
perspective, we present the adiabatic theorem by noting that
the theorem essentially addresses the dynamics of one target
instantaneous eigenstate or one component of the eigenvectors.

By using the Feshbach P-Q partitioning technique [30],
we can derive a simple one-component integro-differential
equation governing the target instantaneous eigenstate. The
derived one-component dynamical equation can signal the
onset of the adiabaticity if the integrand appearing in the
integro-differential equation has a fast-varying factor, whether
natural or engineered, such that the integral in the equation is
small (or zero). Therefore the contribution of this term to the
dynamics becomes negligible, leading to a general condition
of adiabaticity for the system [25]. As to be shown below, a
particular type of white noise can effectively induce the desired
fast-varying factor so that adiabaticity can be established even
when the original Hamiltonian is in a nonadiabatic regime.

The rest of this paper is organized as follows. In Sec. II,
we use a Feshbach P-Q partitioning technique to derive a
closed one-component integro-differential equation. We apply
the equation to two models in the presence of external noisy
fields in Sec. III to illustrate the noise-induced adiabaticity.
Discussion and conclusion are given in Secs. IV and V,
respectively.

II. ONE-COMPONENT DYNAMICAL EQUATION

Given a time-independent Hamiltonian, the solution to the
corresponding Schrödinger equation:

i∂t |ψ(t)〉 = H (t)|ψ(t)〉, (1)
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may be obtained from the instantaneous eigenequation of H (t):

H (t)|En(t)〉 = En(t)|En(t)〉, (2)

where En(t)’s and |En〉’s are instantaneous eigenvalues and
nondegenerate eigenvectors, respectively. A state at time t can
then be expressed as

|ψ(t)〉 =
∑

n

ψn(t)eiθn(t)|En(t)〉, (3)

where θn(t) ≡ − ∫ t

0 En(s)ds is the dynamical phase. Substi-
tuting Eq. (3) into the Schrödinger equation (1), we obtain the
following differential equation,

∂tψm = −〈Em|Ėm〉ψm −
∑
n�=m

〈Em|Ėn〉ei(θn−θm)ψn, (4)

where 〈Em|Ėn〉 = 〈Em|Ḣ |En〉
En−Em

(n �= m) according to Eq. (2).
Without loss of generality, the target component can be denoted
as ψ0 corresponding to the target eigenstate |E0(t)〉 of H (t).
In absence of any control approach, the adiabatic theorem is
valid when |〈Em|Ėn〉| � |En − Em|. The coefficient of the
adiabatic wave function is then ψ0(t) = eiβ0(t), where β0(t) ≡
i
∫ t

0 〈E0(s)|Ė0(s)〉ds is the geometric phase. Physically, the
adiabatic theorem asserts that an initial eigenstate |E0(0)〉
roughly remains the target instantaneous eigenstate |E0(t)〉 at
a later time. Equation (4) is also the Schrödinger equation
for the vector |ψ(t)〉 = [ψ0,ψ1,ψ2, . . .]′ with the effective
“rotating representation” Hamiltonian. More explicitly, Hmn =
−i〈Em|Ėn〉ei(θn−θm), which contains multiple variables ψm’s
[31].

The adiabatic theorem addresses the dynamics of one target
component ψ0. Multiple variables are involved when the
adiabatic conditions are not satisfied. Thus, it is often desirable
to find an exact one-component dynamical equation that can
be used to concisely trace the footprint of ψ0(t). It is shown in
this paper that Feshbach P-Q partitioning may provide a very
useful approach to realizing our goal.

In general, the state and the effective Hamiltonian in the
Schödinger equation (1) can be always partitioned into the
following form,

|ψ(t)〉 =
[

P

Q

]
, H =

(
h R

W D

)
, (5)

where h and D correspond to the self-Hamiltonians living in
the P subspace and the Q subspace, respectively; and R and
W are their mutual correlation terms. Consequently, we have

i∂tP = hP + RQ, (6)

i∂tQ = WP + DQ. (7)

The formal solution to Eq. (7) can be written as

Q(t) = −i

∫ t

0
dsG(t,s)W (s)P (s) + G(t,0)Q(0), (8)

where G(t,s) = T←{exp[−i
∫ t

s
D(s ′)ds ′]} is a time-ordered

evolution operator. Then we have

i∂tP (t) = h(t)P (t) − iR(t)
∫ t

0
dsG(t,s)W (s)P (s)

+R(t)G(t,0)Q(0). (9)

Assuming that initially P (0) = 1 and Q(0) = 0, then we have
an exact dynamical equation for the P part (any subspace we
interested, here P = ψ0):

∂tP (t) = −ih(t)P (t) − R(t)
∫ t

0
dsG(t,s)W (s)P (s). (10)

In the case when P = ψ0 is one-dimensional, ψ0(t) satisfies
the following one-dimensional integro-differential equation,

∂tψ0(t) = −〈E0|Ė0〉ψ0(t) −
∫ t

0
ds g(t,s)ψ0(s), (11)

where g(t,s) = R(t)G(t,s)W (s) is an effective propa-
gator playing a very important role in the analysis
of adiabaticity. Here the vector R ≡ [R1,R2, . . .] with
Rm = −i〈E0|Ėm〉ei(θm−θ0), and W = R†. The matrix D ≡∑

mn Dmn|m〉〈n|, where Dmn = −i〈Em|Ėn〉ei(θn−θm) (m,n �
1). The first term on the right-hand side of Eq. (11) is the
same as that in Eq. (4), which corresponds to the Berry’s
phase that may be switched off in a rotating frame. |ψ0(t)|2,
the probability of finding the eigenstate |E0(t)〉 at time t , is
determined by the accumulation history of the product of the
propagator g(t,s) and ψ0(s).

With the exact dynamical equation (11), a crucial and
general adiabatic condition can be cast into the following
compact form, ∫ t

0
ds g(t,s)ψ0(s) = 0. (12)

The condition is satisfied when g(t,s) = 0 or g(t,s) is factored
by a rapid oscillating function [10]. Mathematically, it is
easy to understand that the integral of the product of the
fast-varying g(t,s) and the slow-varying ψ0(s) gives rise to a
vanishing result. Clearly, the well-known adiabatic condition
corresponds to the first-order approximation of this exact
result.

Consider an effective two-level system (TLS) or qubit
model in the rotating representation,

H (t) =
(

−i〈E0|Ė0〉 −i〈E0|Ė1〉ei
∫ t

0 E(s)ds

−i〈E1|Ė0〉e−i
∫ t

0 E(s)ds −i〈E1|Ė1〉

)
,

(13)

where E ≡ E0 − E1. When the TLS is initially in the
eigenstate |E0〉, the propagator g(t,s) is given by

g(t,s) = −〈E0(t)|Ė1(t)〉〈E1(s)|Ė0(s)〉e
∫ t

s
(iE−〈E1|Ė1〉)ds ′

. (14)

Equations (11), (12), and (14) are the primary results to be
used in analyzing adiabatic dynamics and passages.

III. NOISE-INDUCED ADIABATICITY

An interesting phenomenon can be observed when a
dephasing white noise is added to our one-component equation
(11). As a randomly and quickly altered function of time, noise
is typically a source of destruction leading to decoherence, but
in some cases it may stabilize the quantum features rather
than destroy them. We show that a type of noise can indeed
induce required adiabaticity. Technically, we will show that
noise can render the general adiabaticity condition (12) valid in
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the same way as the fast-varying function in g(t,s). Crucial to
our investigation of this issue is to find an appropriate physical
model that can incorporate the required white noise.

One of the simplest physical models is a two-state dephas-
ing model containing a white noise modifying the strength
of a Hamiltonian in a random manner. Such a model can
be easily obtained if we replace the characteristic energy
J0 in a Hamiltonian with J0 + c(J,W,t). Here c(J,W,t) ≡∑

j cj δ(t − tj ) is a white noise (cj is the noise height); more
specifically, it is a biased Poissonian white shot noise [32,33]
satisfying M[c(J,W,t)] = JW , J = M[cj ]. Note that J is
the noise strength and W measures the average frequency of
noise shots (if not specifically mentioned, the “noise” always
refers to the white noise throughout this paper). When W goes
to infinity, c(J,W,t) becomes a continuous-time white noise
denoted as c(J,t). Note that the noise term only rescales the
eigenvalues Em’s to [1 + c(J,t)/J0]Em but does not change
the instantaneous eigenstates. Physically, the noise model
considered here naturally arises in many physically interesting
settings, such as a rotating spin that is subjected to a random
magnetic field. By following the standard steps, we first solve
the one-component equation (11) with random noises and do
the ensemble average.

The most general time-dependent Hamiltonian of a TSL or
qubit may be written as

H (t) = J0

(
aσ x + bσy + ω

2
σ z

)
, (15)

where a and b describe the transverse fields and ω is the
longitudinal fields. The instantaneous eigenstates of H (t) can
be expressed by

|E0〉 = e−iβ cos α|↑〉 + sin α|↓〉,
(16)

|E1〉 = −e−iβ sin α|↑〉 + cos α|↓〉,
where β = tan−1(b/a) and α = cos−1 k+ω√

2k2+2kω
with k ≡

±√
ω2 + 4a2 + 4b2.

We now consider a simple case with external driving, in
which ω is time independent, a = cos(
t), and b = sin(
t)
with 
 is a constant frequency. The propagator for Model A
(15) is

g(t,s) = 
2

k2
exp

{
i

∫ t

s

[E(s ′) + 
 sin2 α(s ′)]ds ′
}

, (17)

where E(s ′) = [J0 + c(J,s ′)]k. The model physically de-
scribes a spin-1/2 particle driven by a periodic magnetic
field. If 
 = ω and in the rotating framework, the original
Hamiltonian (15) is J0σx ; and it becomes [J0 + c(J,t)]σx in the
presence of “noise control”, which is a typical dephasing model
and may be accessible experimentally. When 
 approaches
zero, the standard adiabaticity can be reached, which is shown
by the blue dot-dashed curve (J = 0) in Fig. 1. Impressively,
even when there exists a noise, adiabaticity is improved rather
than destructed as shown by the other curves (J �= 0). Thus
in the adiabatic regime, it is shown that the stronger the noise
is, the better adiabaticity is achieved. It is in stark contrast to
our common understanding on how noise affects adiabaticity
where noise is a source of disorder or a nuisance. A more
important result is follows, that in the nonadiabatic regime,
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FIG. 1. (Color online) Model A: |ψ0(t)| for different noise
strengths. 
 = 0.4J0 and ω = J0 are chosen in the adiabatic regime.

noise can even induce adiabaticity. Strong noise can push a
system from a nonadiabatic regime into an adiabatic regime.

Consider the nonadiabatic regime where 
 = 5J0 and ω =
5J0. In Fig. 2, the blue dot-dashed curve depicts the noise free
term |ψ0| which strongly oscillates from 1.0 to a minimum
value 0.36. The system undergoes transitions between |E0〉
and |E1〉 constantly. The other curves show that |ψ0| can be
decreased by increasing the noise strength J . For a weak noise
with J = 0.01J0 shown in the gray dotted curve, the minimum
value of |ψ0| is increased to 0.46. When the noise is moderate
(J = 0.1J0), the green dashed curve shows the minimum value
attains 0.85. When noise has J = J0, it induces the nearly
perfect adiabaticity as shown in the red solid curve.

It is worth emphasizing that the above phenomenon on the
noise-induced adiabaticity is a remarkable instance showing
that noise without any optimization or autocorrelation can play
a positive role in inducing adiabaticity in a very simple system
that may arise spontaneously in many contexts in physics. It
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FIG. 2. (Color online) Model A: |ψ0(t)| for different noise
strengths. 
 = 5J0 and ω = 5J0 are chosen far from the adi-
abatic regime. Inset plots the real part of fast-varying factor
e−i

∫ s
0 c(J,s′)kds′

in gray solid curves and the slowly varying factor
e−i

∫ s
0 [J0k+
 sin2 α(s′)]ds′

ψ0(s) in red dashed curves. g(t,s)ψ0(s) is pro-
portional to the product of these two factors.
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reveals an interesting observation that the adiabatic process
can be realized in quantum open systems in a way that is not
seen in a closed quantum system.

Now we turn to Model B with two coupled two-level
systems embedded in their individual baths,

H = J0
(
a σ+

1 σ−
2 + a∗σ−

1 σ+
2 + B1σ

z
1 + B2σ

z
2

)
. (18)

Here c is noise-free parameter. B1 = B + ω/4 and B2 = B −
ω/4, where B is a noise but ω as a difference between B1

and B2 is noise free. Physically, the two TLSs are subject
to a collective noise but to different external fields. When
the system state is initially at a single-exciton state: |ψ(0)〉 =
μ|↑↓〉 + ν|↓↑〉, |μ|2 + |ν|2 = 1, the effective Hamiltonian for
this model could be written as Heff = J0[(a σ+

1 σ−
2 + H.c.) +

ω(σ z
1 − σ z

2 )/4]. The corresponding eigenstates of Heff could be
also expressed by Eq. (16) if |↑↓〉 and |↓↑〉 are mapped into
the two states for a TLS, |↑↓〉 ⇒ |↑〉 and |↓↑〉 ⇒ |↓〉. The
mappings of operators are σ+

1 σ−
2 ⇒ σ+ and (σ z

1 − σ z
2 )/2 ⇒

σz. We use a different group of time-dependent functions:
a = t

T
, and ω

2 = 1 − t
T

. So the propagator for Model B (18) is

g(t,s) = 4

T 2k2(t)k2(s)
exp

[
i

∫ t

s

E(s ′)ds ′
]

, (19)

where k(t) = 2
√

T 2 − 2tT + 2t2/T . This model describes a
finite time evolution defined by a period T . When T → ∞, the
system could follow an adiabatic passage from an eigenstate
|↑↓〉 of H (0) = J0(σ z

1 − σ z
2 )/2 to |↑↓〉 + |↓↑〉 of H (T ) =

J0(σ+
1 σ−

2 + H.c.). Of course, one can design different H (0)
and H (T ) representing different physics at will, yet the passage
remains intact in the adiabatic regime.

We here consider nonadiabatic regime where T = 1/J0. In
Fig. 3, the blue dot-dashed curve depicts the noise-free |ψ0|;
it decays monotonically with time. Again, the other curves
show the gradual onset of the adiabaticity induced by noise.
The population for the system staying at |E0(T )〉 is enhanced
by increasing the noise strength. Physically, it means that the
while noise sticks the system onto the eigenstate of H (T ),
hence it induces adiabaticity in the nonadiabatic regime, with
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FIG. 3. (Color online) Model B: |ψ0(t)| for different noise
strengths. T = 1/J0 far from the adiabatic regime. Inset plots the
real part of fast-varying factor e−i

∫ s
0 c(J,s′)kds′

in gray solid curves
and the slowly varying factor e−i

∫ s
0 J0k(s′)ds′

ψ0(s)/k(s)2 in red dashed
curves. g(t,s)ψ0(s) is proportional to the product of these two factors.

a much accelerated evolution time T . Figure 3 also shows
that creation of adiabaticity does not even require strong noise
strength. For instance, for J = J0, |ψ0| is already maintained
as high as above 0.99.

It is interesting to note that this specific system suffers from
two types of noises. The first type of noise, characterized by
B, acts on a time-dependent decoherence-free subspace (DFS)
[34,35], hence gives rise to no effect on the dynamics. The
second noise, embedded in the strength of the Hamiltonian,
induces adiabaticity.

IV. DISCUSSION

Adiabaticity has been shown to be achievable via an
external white noise that can significantly modify the integral
term contained in Eq. (11). Specifically, suppose that the
evolution of ψ0 is considered in a sequence of small intervals,
0 ∼ t1 ∼ t2 ∼ t3 · · · . If in each time interval the function
g(t1,s)ψ0(s) can be decomposed into a fast-varying time-
dependent noise function and a slowly varying factor, then
the resulting integral will be vanishingly small, which almost
fixes ψ0(t1) in both module and phase. Figure 4 clearly shows
there is no significant deviation of the trajectories of ψ0(t)
from the point of [1,0] on the complex plane in both noise-
induced adiabaticity and adiabatic regime compared to that in
nonadiabatic regime. Then the value of ψ0(t1) will be fed back
in the evaluation of ψ0(t2), which also ends up with negligible
changes. The rest can be done in a similar manner. Our
noise model shifts the strength J0k(s ′) to [J0 + c(J,s ′)]k(s ′) in
the oscillation function e−i

∫ s

0 E(s ′)ds ′
in Eqs. (14), (17), and

(19). Insets in Figs. (2) and (3) display the noise-induced
fast-varying factor and the rest part in the integrand and show
how the fast function washes out the accumulation effect of
the slow one.

It should be emphasized that the adiabaticity can also
be induced by an external control field that gives rise to
a fast-varying factor in g(t,s), such as the artificial phase
randomization [36] and weak measurement [37]. Notably, the
natural noise requires ensemble average whereas the artificial
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Re[ψ
0
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FIG. 4. (Color online) Model B: ψ0(t) in complex space. Green
dot-dashed line for free evolution when T = 1/J0 (nonadiabatic
regime); red dashed line for free evolution when T = 7/J0 (adiabatic
regime); black solid line for J = J0 under noise control.
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control processes have no such a requirement. As such, if an
artificial control makes the integral in Eq. (12) vanish, it will
ensure the same effect. While on the contrary, even if a natural
noise gives rise to a vanishing integral, it does not necessarily
lead to an induced adiabaticity since the ensemble average
often results in a mixed state rather than a pure instantaneous
adiabatic eigenstate.

When the dynamics approaches an adiabatic regime
|ψ0(t)| ≈ 1, the quantum state evolves on the eigen-
state of H (t), |ψ(t)〉 ≈ |E0(t)〉. More precisely, the stan-
dard stochastic dynamics gives the system density matrix
via ρ(t) = M[|ψ(t)〉〈ψ(t)|]. ρ(t) ≈ |ψ0(t)|2|E0(t)〉〈E0(t)| ≈
|E0(t)〉〈E0(t)| holds only if |ψ0(t)| ≈ 1. Generally, the de-
phasing white noise will drive the system to a mixed state
where the off-diagonal matrix elements will vanish (whereas
adiabaticity induced by control fields time-evolves unitarily).

V. CONCLUSION

In conclusion, we employ the Feshbach P-Q partitioning
technique to derive a one-component integro-differential

equation, which naturally gives rise to a general adiabatic con-
dition. Moreover, such a one-component dynamical equation
can be used to demonstrate the onset of adiabaticity induced
by the white dephasing noise. We work out two examples by
analyzing the adiabatic conditions and numerically exhibiting
the noise effect on adiabaticity. In addition, we show the
significant reduction on the passage time to adiabaticity.

Our results can be applied to many ongoing physical imple-
mentations of quantum information and quantum computing
protocols such as holonomic and adiabatic quantum computing
and the fast energy transfer, where the induced adiabaticity
may be embedded in uncontrollable natural noise.
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