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Optimized entropic uncertainty for successive projective measurements
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We focus here on the uncertainty of an observable Y caused by a precise measurement of X. We illustrate
the effect by analyzing the general scenario of two successive measurements of spin components X and Y . We
derive an optimized entropic uncertainty limit that quantifies the necessary amount of uncertainty observed in a
subsequent measurement of Y . We compare this bound to recently derived error-disturbance relations and discuss
how the bound quantifies the information of successive quantum measurements.
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I. INTRODUCTION

It is well known that the Heisenberg uncertainty princi-
ple [1] is at the very heart of quantum mechanics. Through
extensive investigations, it has been known that various distinc-
tive properties of quantum mechanics can be derived from the
principle [2]. However, its precise underlying meaning has so
far eluded many attempts to explain its diverse features [3–7].

Heisenberg proposed the uncertainty relation after pos-
tulating the kinematics of quantum canonical variables that
do not commute [1]. It says that as one tries to specify the
position of an electron precisely, its conjugate variable, e.g.,
its momentum, is dispersed within a given precision. The
mathematical formulation of the uncertainty was made by
Kennard [8] as

ε(Q)η(P ) � �

2
, (1)

where ε(Q) is the mean error that occurs when an observer
measures the position of an electron, η(P ) is the disturbance
of the electron’s momentum P caused by the position
measurement Q, and � is the Planck constant. Relation (1)
uses the statistical variances between the two measurements
and was later extended to arbitrary pairs of observables by
Robertson [9]. By considering generalized observables X

and Y , the lower bound is given by the commutator of the
observables

δ(X)δ(Y ) � 1
2 |〈ψ |[X,Y ]|ψ〉|, (2)

where δ(X) is the standard deviation defined as δ(X) =√
|〈ψ |(X̂ − 〈X̂〉)2|ψ〉| and [X̂,Ŷ ] represents the commutator

[X,Y ] = XY − YX. The above relation (2) claims that in an
arbitrary state |ψ〉, a pair of noncommuting observables cannot
be well localized simultaneously.

In fact, the underlying meaning of two closely related uncer-
tainty relations is not equivalent. Their subtle differences will
become clearer when we consider the following three state-
ments of uncertainty relations presented by Busch et al. [10].
Possible interpretations of the uncertainty relation can be that
(i) it is impossible to prepare states in which position and
momentum are simultaneously arbitrarily well localized, (ii) it
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is impossible to measure a system’s position and momentum
simultaneously, and (iii) it is impossible to measure position
without disturbing momentum. In these statements, position
and momentum represent two conjugate variables in a quan-
tum measurement. We can classify the above relations into
three categories of physical situations. First, the Robertson
relation (2) is equivalent to statement (i), which identifies a
fundamental limitation on preparing states whose noncommut-
ing parameters cannot be well localized simultaneously with
arbitrary precision. This is a statement about the property of
a given ensemble, not about the statistics of measured data.
Second, it follows from statement (ii) that the uncertainty
relations apply to the simultaneous measurement of two differ-
ent variables whose measurement is impossible to implement
with arbitrary precision in principle. This means that the
uncertainty is the property of the statistical distributions from
the measurement setup rather than the state itself [3]. Third,
Heisenberg’s relation (1) is equivalent to statement (iii) since
it describes the situation where a measurement of a variable,
e.g., position Q, cannot avoid the disturbance on its conjugate
variable P , where Q and P are noncommuting observables.

Recent efforts to generalize Heisenberg’s relation (1) take
into account various operational circumstances by uniting
statements (i)–(iii). A universally valid error-disturbance
uncertainty relation was derived in [4] as

ε(X)η(Y ) + ε(X)δ(Y ) + δ(X) η(Y ) � 1
2 |〈ψ |[X̂,Ŷ ]|ψ〉|, (3)

where the mean error and the disturbance are de-
fined by ε(X)2 = ∑

m ‖Mm(m − X)|ψ〉‖2 and η(Y )2 =∑
m ‖[Mm,Y ]|ψ〉‖2, respectively, if the apparatus M has a

family {M̂m} of measurement operators and ‖ · · · ‖ denotes the
norm of the state vector [11]. This means that the measuring
apparatus M has possible outcomes m with probability
Prob(m) = ‖M̂m|ψ〉‖2 and the state of the object S after the
measurement with the outcome m becomes M̂m|ψ〉/‖M̂m|ψ〉‖.
It was also proved experimentally that the Heisenberg rela-
tion (1) is violated in spin measurements, while the improved
relationship (3) remains valid [12]. Later, the error-disturbance
relation was improved in a stronger form [6,13]. The error-
disturbance uncertainty relation reduces to the Robertson
uncertainty relations (2) when there is no error in the first
measurement ε(X) = 0 and the disturbance is replaced by the
statistical deviation of the measurement Y as η(Y ) = δ(Y ).
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Inspired by an information-theoretic interpretation of
quantum uncertainty, the trade-off relation for position and
momentum observables has been obtained in terms of the
Shannon entropy [14,15]. The relationship was later general-
ized for measurements on arbitrary continuous variables [16].
This is called the entropic uncertainty relationship (EUR).
A generalization of the EUR to the discrete observables
was proposed by Deutsch [17] and the bound of EUR was
improved by Uffink in the following form [18]. Considering
observables X and Y with nondegenerate spectra given by
X = ∑

i xi |xi〉〈xi | and Ŷ = ∑
j yj |yj 〉〈yj | with the natural

logarithm, the Shannon entropies H (X) and H (Y ) are defined
asHρ(X) = −∑

i Tr[ρ|xi〉〈xi |] ln Tr[ρ|xi〉〈xi |] and Hρ(Y ) =
−∑

j Tr[ρ|yj 〉〈yj |] ln Tr[ρ|yj 〉〈yj |] for a state expressed by a
density matrix ρ. Then the EUR becomes

Hρ(X) + Hρ(Y ) � −2 ln c, (4)

where the lower bound constant c = | maxi,j 〈xi |yj 〉| is in-
dependent of the initial state. Here {|xi〉} and {|yj 〉} are the
corresponding complete sets of normalized eigenvectors with
respect to operators X and Y . In general, it can be said
that the EUR has a more fundamental lower bound than the
variance-based uncertainty relation in the sense that the bound
is independent of the prepared initial state, unlike in (2) and
(3). On the other hand, the EUR in (4) is only limited by the
prepared state ρ, like the Robertson inequality in (2). This
means that the EUR provides a fundamental constraint on the
state preparation as in the case of the operational uncertainty
interpretation (iii) in [10].

In this paper we derive the uncertainty relationship charac-
terized by the entropy under the circumstance of simultaneous
measurements. We consider the case when two different
measurements are performed successively on a single quantum
system and find a fundamental entropic constraint that consti-
tutes an entropic uncertainty relationship. The relationship has
a different operational meaning from the original EUR in (4)
and is comparable to the error-disturbance versions of the
uncertainty relations in (1) and (3). We organize our discussion
as follows. In Sec. II we compare the quantitative difference
between the EUR and the variance-based uncertainty relation.
We find that they are optimized in different regimes. In
Sec. III the entropic uncertainty relationship for subsequent
measurements is derived and generalized. We compare each
term in the relationship and discuss their optimal physical
meanings. In Sec. IV the optimized entropic uncertainty and
the error disturbance relationship are compared and analyzed
in detail. Our results are summarized in Sec. V.

II. COMPARISON BETWEEN ROBERTSON’S
UNCERTAINTY RELATION AND THE EUR

In this section we compare the Robertson uncertainty
relation (2) and the EUR (4) quantitatively to identify which is
the more informative condition for a given quantum state. The
former is a relationship based upon the variance of a statistical
distribution and the latter is a characterization of uncertainty
using Shannon’s entropy.

A distinction between the relations is that their lower
bounds behave differently: The bound for Robertson’s uncer-
tainty relation depends upon the prepared state, whereas the

EUR does not. It is notable that the necessity of an independent
lower bound of a state has been addressed in [17] and it
is argued that such a bound is important when there is a
dynamical evolution that transforms quantum states at each
instance. Due to the difference, a direct comparison of the
relationship is not straightforward in general.

Let us consider two general spin observables that are the
simplest nontrivial example of incompatible measurements.
Without loss of generality, they can be

X̂(φ) = cos(φ)σx + sin(φ)σy, (5)

Ŷ (φ) = sin(φ)σx + cos(φ)σy, (6)

where σx and σy denote the Pauli matrices and φ characterizes
the measurement angle between X̂ and Ŷ . Their commutator is
expressed as [X̂,Ŷ ] = 2i cos 2φσz. In their two extrema, when
φ = 0, the measurements are orthogonal and when φ = π/4
they become identical.

Once the measurement operators are specified, an analytic
description of the uncertainty relations (2) and (4) becomes
possible in general. A pure state is defined in a Bloch vector
sphere as |ψ〉 = cos(θ/2)|0〉 + sin(θ/2)eiϕ |1〉 and is depicted
in Fig 1. In that case, the probability of outcomes for the
measurements X and Y become

pX
± = 1

2 [1 ± sin θ cos(φ + ϕ)], (7)

pY
± = 1

2 [1 ± sin θ sin(φ − ϕ)], (8)

which can be used for the evaluation of the spin variances and
entropies. For the X measurement, they are

δ(X) =
√

1 − 〈X̂〉 =
√

1 − (
pX+ − pX−

)
, (9)

H|ψ〉(X) = −pX
+ ln pX

+ − pX
− ln pX

− (10)

and similar relations can be found for the Y measurement. The
entropy H|ψ〉(X) is Hρ(X) when a state ρ is a pure state given
by ρ = |ψ〉〈ψ |. With these formulas, a direct comparison of
the uncertainty relationship (2) and (4) can be made as follows.

θ

ϕ

ψ

0

1

x
y

z

FIG. 1. (Color online) Pure state representation in a Bloch
sphere. A prepared state is denoted by |ψ〉 = cos θ |0〉 + sin θeiϕ |1〉,
with polar angle 0 � θ � π and azimuthal angle 0 � ϕ � 2π . The
north and south poles are chosen to correspond to eigenvectors of σz.
Varying ϕ from 0 to π/2 with a fixed θ , we can consider state vectors
on a circle (dashed blue). When θ = π/2, it becomes a circle on the
x-y plane (dashed red).
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The uncertainty relations can be reformulated by the
normalization, meaning that both sides of the relations are
divided by their own lower bound. The normalized relations
have the same bound 1 such that

H|ψ〉(X) + H|ψ〉(Y )

−2 ln c
� 1,

δ(X)δ(Y )

|〈[X,Y ]〉|/2
� 1, (11)

where c = √
(1 + sin 2φ)/2 for 0 < φ < π/2 and

|〈[X,Y ]〉|/2 = | cos 2φ cos θ |. The inequalities can be
compared directly as they saturate to the same constant value.

Let us consider when the angle φ = 0, when two observ-
ables are orthogonal. In this case, the lower bound of (4) is
given by a constant 1, whereas that of (2) is determined as
a function of θ , | cos θ |. Then the left-hand sides (LHSs) of
relations (11) are determined as functions of polar angle θ and
azimuthal angle ϕ. In Fig. 2 these functions are plotted versus
ϕ for fixed angles θ = 0, 3π/8, 4π/9, and θ ∼ π/2. This
means that we take into account state vectors in a circle located
halfway between the north pole and the equator, depicted by
the dashed blue line in Fig. 1, and determined by θ .

This result is noteworthy. Figure 2 shows that the EUR
(blue) tends to move into an optimized regime as the
polar angle θ approaches π/2 from 0 [Figs. 2(a)–2(d)]. In
contrast, Robertson’s uncertainty relation (orange) diverges.
Geometrically, it can be argued that when the state vector |ψ〉 is
placed in the plane of two observables (the red plane in Fig. 1),
the EUR in the first inequality (11) is optimized, whereas the
Robertson uncertainty relation in the second inequality of (11)
is optimized when |ψ〉 is aligned along the z axis. In particular,
the state aligned along the z axis becomes a spin coherent
state whose variances of the two measurements σx and σy are
equivalent, as a constant equal to 1.

Similar behavior can be found in the case of two nonorthog-
onal observables too. For nonorthogonal observables, i.e., φ �=
nπ/2, where n is an integer, it can be found that the EUR has a
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FIG. 2. (Color online) Graphs illustrating how EUR and Robert-
son’s uncertainty relations behave with the probabilities of outcomes
of observables X(0) and Y (0). To compare two relations, we plot
the LHSs of the inequalities (11) against the azimuthal angle ϕ

for chosen values of polar angle θ : (a) 0, (b) 3π/8, (c) 4π/9, and
(d) π/2. The EUR is optimized as θ goes to π/2, whereas the
Roberson uncertainty relation diverges. Relations (2) and (4) have
a minimum value when θ = 0 and π/2 for fixed φ, respectively.

minimal value for a state vector lying in the x-y plane, meaning
θ = π/2. At the same time, the uncertainty relation based on
the standard deviation diverges at π/2 since its lower bound
vanishes when |ψ〉 is given by an eigenvector of observables.

Consequently, it can be said that neither of the two relations
is stronger in the case of discrete observables in general.
Depending upon the state provided, the EUR and the Robertson
uncertainty relation characterize the trade-off relationship
differently. The EUR is the optimal relation when the state
is located in the same plane as the two measurements, while
the Robertson uncertainty relations is optimized when the
state is in the plane orthogonal to both observables. For the
case of continuous variable measurements, the situation is
changed slightly in that the EUR for position and momentum
observables is stronger than the relation based on standard
deviation [16].

III. ENTROPIC UNCERTAINTY RELATION FOR
SUCCESSIVE MEASUREMENTS

In this section we will show that it is possible to derive
the entropic uncertainty relation for successive measurements
and we consider the limit of our ability to measure two
nondegenerate observables X and Y with arbitrary precision.

Following from Heisenberg’s original insight, Srinivas
derived the EUR for successive measurements as follows [19].
Consider observables X and Y with nondegenerate spectra

Hρ(X) + HE(ρ)(Y ) � −2 ln c, (12)

where E(ρ) = ∑
i P̂

X
i ρP̂ X

i and P̂ X
i ≡ |xi〉〈xi |. The sec-

ond term HE(ρ)(Y ) is the Shannon entropy associated
with the marginal of the joint probability p(xi,yj ) =
Tr[|yj 〉〈yj |P̂ X

i ρP̂ X
i ], defined as

HE(ρ)(Y ) = −
∑

j

Tr[E(ρ)|yj 〉〈yj |] ln{Tr[E(ρ)|yj 〉〈yj |]}

= −
∑

j

p(yj ) ln p(yj ),

where p(yj ) = ∑
i p(xi,yj ). With the result he argued that this

relation reflects statement (iii), which is the error disturbance
of the uncertainty relation. However, it is not equivalent to
Ozawa’s universally valid error-disturbance relation because
it does not include the effect of the measuring process. Here
we propose an improved form of the EUR for successive
measurements and highlight its differences from the error-
disturbance uncertainty relation.

Assume that we perform a projective measurement de-
scribed by nondegenerate projection operators {P̂ X

i }. In the
projection postulate, an input density matrix is changed to
output states determined by corresponding outcomes. The
probability of obtaining an outcome i is given by p(xi) =
Tr[P̂ X

i ρ], where the input density matrix is ρ. In the case
where we obtain the outcome i after the measurement, the
output state ρX

i is given by [20]

ρX
i = P̂ X

i ρP̂ X
i

Tr
[
P̂ X

i ρ
] , (13)

according to the projection postulate. In successive mea-
surements, the probability of obtaining an eigenvalue ai
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of eigenstate |xi〉 after the measurement of X is given by
p(xi) = Tr[ρ|xi〉〈xi |]. If we perform the measurement of Y

on an output state obtained just after the first measurement of
X, we obtain an eigenvalue bj with a probability p(yj |xi) =
Tr[ρX

i (|yj 〉〈yj |)]. Then the joint probability p(xi,yj ) of
outcomes xi and yj in successive measurements is given
by p(xi)p(yj |xi). From the projection postulate the joint
entropy of the probability distribution for the subsequent
measurements is given by

Hρ(X,Y ) = −
∑
i,j

p(xi)p(yj |xi) ln p(xi)p(yj |xi).

The entropy H (X,Y ), defined in terms of the joint probability,
means that an amount of uncertainty is present when a
state is measured by successive measurements of X and Y .
According to the subadditivity inequality, the joint entropy
has a relation with the entropy of marginal distributions of
the joint probability, i.e., the LHS of the entropic uncertainty
relation (12), as

Hρ(X) + HE(ρ)(Y ) � Hρ(X,Y ). (14)

Furthermore, the joint entropy satisfies the relation [19]

Hρ(X,Y ) � −2 ln c. (15)

This relation implies a limitation of measuring observables X

and Y that are not compatible with each other in successive
measurements. The joint entropy H (X,Y ) can be decomposed
into the entropy of X and the conditional entropy of Y given
X such that

Hρ(X,Y ) = Hρ(X) + Hρ(Y |X) � −2 ln c, (16)

where the conditional entropy of the observable Y given X for
a density matrix ρ is defined as

Hρ(Y |X) =
∑

i

p(xi)Hρ(Y |X = xi),

where Hρ(Y |xi) = −∑
j p(yj |xi) ln p(yj |xi). It can be seen

from relation (16) that the total uncertainty in successive
measurements characterized by Hρ(X,Y ) consists of the
uncertainty of X and the averaged uncertainty of Y over
outcomes xi .

The bound of the relation (15) comes from the conditional
entropy since the conditional entropy Hρ(Y |X) satisfies the
relation

Hρ(Y |X) � −2 ln c (17)

for nondegenerate observables X and Y . It also follows that
it is impossible to measure incompatible observables X and
Y with certainty using successive projective measurements.
Moreover, the joint entropy is composed of the entropy of
X and the conditional entropy of Y given X. For entropy
Hρ(X) it follows that the uncertainty characterizing a density
matrix ρ and the conditional entropy Hρ(Y |X) leads to an
averaged uncertainty in observable Y caused by the projective
measurement of X. We will apply the above inequalities (12),
(16), and (17) to make clear the relations among them.

Let us consider successive spin measurements assumed
to satisfy the projection postulate. Measurements of X̂(φ)
and Ŷ (φ) in the relations (12)–(17) are designed to carry

σ φ σ y

x+

y+

X Y
φ+

φ−

y+

y+

y−

y−

FIG. 3. Schematic of a successive measurement scheme for
observables X and Y , used to clarify and compare EURs (12), (16),
and (17). After preparing the input states |x+〉 and |y+〉, which are
eigenstates of σx and σy , respectively, the successive measurement
is assumed to measure observables X = σφ and Y = σy . It results in
four possible outcomes.

out the projective measurements of the Pauli matrices σ̂φ =
σ̂x cos φ + σ̂y sin φ and σ̂y , respectively, as depicted in Fig. 3.
The measurements are effectively the same to measure X̂(φ)
and Ŷ (φ) consecutively since they are just two observables
that are separated by the angle φ.

Since each measurement has its own eigenvectors, it
projects the input state onto a spin-up state |+〉 or a spin-down
state |−〉 after the measurements as σx |±〉 = ±|±〉. In this
way, its final result (ai,bj ) emerges among four possible
outcomes {(±,±),(±,∓)} as depicted in Fig. 3. Figure 4
shows the left-hand side of the EURs (12), (16), and (17)
and the calculated lower bound as a function of φ. When we
compare the graphs of three EURs in Fig. 4 our relation of the
conditional entropy (17) is closest to the lower bound since
the relation among them is such that

Hρ(X) + HE(ρ)(Y ) � Hρ(X,Y ).

= Hρ(X) + Hρ(Y |X)

� Hρ(Y |X) � −2 ln c,

where c = maxi,j |〈xi |yj 〉|. Three EURs have the same value
when the input state is prepared in an eigenstate of the
first measurement since an outcome is determined by the
corresponding eigenvalue of the input state and the first
measurement does not change the input state, i.e., Hρ(X) = 0
and Hε(ρ)(Y ) = Hρ(Y |X).

IV. COMPARISON BETWEEN THE EUR FOR
SUCCESSIVE MEASUREMENTS AND THE

ERROR-DISTURBANCE UNCERTAINTY RELATION

In his proposal for the EUR for successive measure-
ments [19], Srinivas said that “to explore the influence of
the measurement of one observable on the uncertainties in the
outcomes of another, we have to formulate an uncertainty
relation for successive measurements”. However, the EUR
for successive measurements does not reflect Heisenberg’s
microscope experiment, a thought experiment proposed in [1],
since it does not consider the effect of the measuring process.
On the other hand, in the error-disturbance relation (3)
by Ozawa, the error is defined by the distance between a
positive-operator-valued measure of an apparatus and an
observable X and the disturbance due to information loss in
the input state caused by the measuring process [4]. Thus,
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FIG. 4. (Color online) Graphs showing the LHSs of relations (12)
(blue), (16) (purple), and (17) (orange) and the lower bound (dashed
red) with respect to the detuning angle φ. Two input states |x+〉
and |y+〉 are considered. By inspection, we find that the LHS of the
EUR for successive measurement (12) always has a larger value than
the LHS of (16) due to subadditivity (14). The conditional entropy
has a smaller value. Three relations have zero value only when two
measurements are the same at φ = π/2, but only the conditional
entropy is saturated when two observables are mutually unbiased at
φ = 0. This means that the inner product of all pairs of each eigenstate
is given by 1/

√
d , where d is a dimension of the Hilbert space [21].

the error-disturbance relation is equivalent to statement (iii)
and reflects Heisenberg’s microscope experiment. This is in
the sense that an effort to measure an observable X exactly
increases the disturbance of another observable Y that is
incompatible with X.

To formalize Heisenberg’s intuition, the mean error and
the disturbance are mathematically well defined using an
indirect measurement with apparatus in [4]. This is because
all quantum measurements can be described by the outcome
from an indirect measurement. Under the assumption that the
measuring apparatus M has a family of {Mm} measurement
operators, the error and disturbance are defined as [11]

ε(X)2 =
∑
m

‖Mm(m − X)|ψ〉‖2, (18)

η(Y )2 =
∑
m

‖[Mm,Y ]|ψ〉‖2, (19)

respectively, where |ψ〉 denotes an input state and ‖ · · · ‖
denotes the norm of the state vector. Theses quantities are
characterized by a measuring process realized in apparatus M .

However, from the perspective of the error-disturbance rela-
tion, the EUR for successive measurements (16) is constructed
under the assumption that a measuring apparatus designed for
measuring an observable X precisely measures X, namely,

there is no error in performing successive measurements.
In this case, the error-disturbance uncertainty relation (3)
reduces to

δ(X)η(Y ) � 1
2 |〈[X,Y ]〉| (20)

since the error ε(X) vanishes from (3). Under the assumption
of precise successive measurements, the error-disturbance
uncertainty relation (3) and the EURs (16) and (17) restrict
probabilities for the possible outcomes of measurements X

and Y .
A natural question at this stage is which of these relations

places more restrictions on the probabilities. We compare them
by dividing them by their own lower bounds such that

H|ψ〉(X) + H|ψ〉(Y |X)

−2 ln c
� 1, (21)

H|ψ〉(Y |X)

−2 ln c
� 1, (22)

δ(X) η(Y )

|〈[X̂,Ŷ ]〉|/2
� 1 (23)

for strictly positive bounds. Using relations (21)–(23), we
consider a successive measurement of observables X(0) = σx

and Y (0) = σy with an input state vector |ψ〉. Then the
probabilities of outcomes that are obtained by successive
measurement of X(0) and Y (0) are restricted by the uncertainty
relations. In Fig. 5 the LHSs of relations (23) and (21) are
plotted together against the azimuthal angle ϕ for fixed polar
angle θ . As a result, we can see in Fig. 5 that for all θ and
φ, the LHS of (22) has the same value with the bound.
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FIG. 5. (Color online) Graphs illustrating how the different
EURs for successive measurements (16), (17), and the Ozawa’s
relation (3) impose restrictions on the probabilities of outcomes of
observables X(0) and Y (0). The LHSs of relations (21) [joint entropy
(JE) (blue)], (22) [conditional entropy (CE) (purple)], and (23)
[Ozawa’s relation (orange)] are plotted against the azimuthal angle
ϕ for fixed values of the polar angle θ (0, π/4, 3π/8, and π/2).
By inspection, we find that the JE (21) decreases with respect to
increasing θ , whereas the Ozawa relation (23) diverges. However, the
conditional entropy of CE (22) is given by a constant 1 for all values
of θ and φ.
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This means that it imposes the highest restriction among
the relations for successive measurements. In the case of
nonorthogonal observables, the error-disturbance relationship
divided by its lower bound has a minimum value 1 at ϕ = φ

and maximum value
√

1 + tan2 θ at ϕ = (π/2 + φ). However,
the EUR for successive measurements divided by its lower
bound is independent of the input state |ψ〉, namely, it is only
determined as function of φ and its value increases as φ goes
to (π/4 + nπ/2).

V. CONCLUSION

In this work we derived the entropic uncertainty relation
for subsequent measurements and compared it with the
uncertainty relations based on the standard deviation using
spin measurements. An alternative form of EUR for suc-
cessive measurements was proposed in view of Heisenberg’s
statement [1] that “it is impossible to measure position without
disturbing momentum”.

Since Heisenberg, much debate and effort have been
expended on formalizing its underlying meaning, while

it is more recent that experiments have found different
ways of demonstrating them [22–25]. A state-independent
information-theoretic error-disturbance relation has also been
proposed [26], which shows a trade-off relation between error
and disturbance. However, the EUR for successive measure-
ments does not coincide with the error-disturbance uncertainty
relation. In our work we made clear the difference between
them by plotting restrictions imposed on possible probabilities
of outcomes of observables in successive projective measure-
ments without error. From the results we can conclude that
under the assumption of precise successive measurements, it
is limited to obtaining outcomes with certainty. This limitation
is clarified by the relation for conditional entropy.
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