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Relativistic Einstein-Podolsky-Rosen correlations and localization
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We calculate correlation functions for a relativistic Einstein-Podolsky-Rosen–type experiment with massive
Dirac particles. We take into account the influence of the Newton-Wigner localization and perform the calculations
for a couple of physically interesting states. In particular, we show that localization inside detectors does not
significantly affect correlation functions in the case when localization regions are macroscopic or in the case when
Einstein-Podolsky-Rosen particles are in a definite momentum state (irrespectively of the size of localization
regions).
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I. INTRODUCTION

Relativistic Einstein-Podolsky-Rosen–type (EPR–type)
correlations have attracted a lot of attention in recent years (see,
e.g., Refs. [1–13] and references therein). However, previous
discussions did not take into account the localization of EPR
particles inside detectors, in spite of the fact that such a local-
ization usually accompanies the spin projection measurement.
In the following, we will distinguish the localization region
and detector region (compare, e.g., bubble chamber). The
importance of localization of relativistic qubits in the context of
curved space-time has been also stressed in a recent paper [14].

The main purpose of our paper is to include the localization
in the discussion of EPR–type spin correlations. However,
there are some issues we have to overcome. First of all,
various spin operators have been used in the discussion of
relativistic correlations (see, e.g., Refs. [15–19]). Second, the
notion of localization is not well defined in relativistic quantum
mechanics [20].

The definition of a proper position operator is a long-
standing problem of relativistic quantum mechanics. Such
a position operator is expected to fulfill natural demands:
it should have commuting, Hermitian components, it should
transform like a three-vector under rotations, its components
should fill canonical commutation rules with momentum
operators, and it should transform covariantly under Lorentz
boosts. Unfortunately, an operator satisfying all of the above
conditions does not exist; only some of these conditions can be
satisfied simultaneously. In our opinion, the simplest choice is
to give up Lorentz covariance. The operator satisfying all of
the conditions but covariance was introduced by Newton and
Wigner [21] and is called the Newton-Wigner (NW) position
operator. Of course, other position operators are also used, for
example, the center-of-mass position operator introduced by
Pryce [22,23] (this operator has noncommuting components).

Notice that the definition of a relativistic spin operator is
connected with the localization problem because spin can
be defined as a difference between total and orbital angular
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momentum [Eq. (10)], where the orbital angular momentum is
defined with the help of the position operator (see also [24]).
This relationship is especially important when we consider
localization and spin measurement simultaneously.

In our recent paper [25], we have shown that for Dirac
particles the most appropriate spin operator is an operator
related to the NW position operator [21]. Therefore, in this
paper, we use the NW localization and the corresponding
spin operator. Notice that the same spin operator is used in
the quantum field theory formalism. In relativistic quantum
information theory, other spin operators are also in use. For
instance, Czachor [15] uses the spin operator corresponding to
the Pryce localization.

We consider EPR correlations in a singlet state of two
spin- 1

2 particles assuming that spin projection measurements
take place in finite-volume regions (detectors). We derive a
general formula for the correlation function and then consider
some special cases. In particular, we show that localization
inside detectors does not significantly affect the correlation
function in the case when detectors are macroscopic and in
the case when EPR particles are in definite momentum state
(irrespectively of the size of detectors).

II. TWO-PARTICLE SINGLET IN
THE RELATIVISTIC SETTING

The carrier space H of the unitary representation of the
Poincaré group for spin 1

2 is spanned by the eigenvectors
of four-momentum P̂ μ. These states are denoted as |p,σ 〉,
σ = ± 1

2 , and are normalized as follows:

〈p,σ |k,λ〉 = 2p0δ3(p − k)δσλ. (1)

Under the action of the Lorentz group, the basis states
transform as

U (�)|p,σ 〉 = D1/2
λσ (R(�,p))|�p,λ〉, (2)

where D1/2 is the spin- 1
2 representation of the rotation group

and R(�,p) is a Wigner rotation. The explicit form of a Wigner
rotation is the following: R(�,p) = L−1

�p�Lp, where Lp is a
standard boost transforming the rest-frame four-momentum
(m,0) into four-momentum p:

Lp =
(

p0

m

pT

m
p
m

I + p⊗pT

m(m+p0)

)
. (3)
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The Lorentz-covariant singlet two-particle state has the
form (see, e.g., [1])

|ϕ〉 =
∫

d3k
2k0

d3p
2p0

ϕ(k,p)Mσλ(k,p)|k,σ 〉 ⊗ |p,λ〉, (4)

where ϕ(k,p) is a scalar function, and for the particles with
the same mass m the matrix M reads as

M(k,p)σλ = −i(2m
√

(m + p0)(m + k0))−1

× ([(m+k0)(m+p0)−k · p−iσ ·(k×p)]σ2)σλ.

(5)

In the above equation, σ = (σ1,σ2,σ3) and σi are the standard
Pauli matrices.

Lorentz covariance of a state means that it has a well-defined
manifestly covariant transformation rule under Lorentz group
action. For the state defined in Eq. (4), with the help of Eqs. (2)
and (5), we get the following transformation rule:

U (�) ⊗ U (�)|φ〉

=
∫

d3k
2k0

d3p
2p0

ϕ(�−1k,�−1p)Mσλ(k,p)|k,σ 〉 ⊗ |p,λ〉,
(6)

where � is a Lorentz transformation. For further details on the
definition and properties of Lorentz-covariant states, we refer
the reader to [1].

III. SPIN AND LOCALIZATION

It is well known that the spin square operator can be
uniquely defined in terms of the generators of the Poincaré
group as

Ŝ
2 = − 1

m2
ŴμŴμ, (7)

where Ŵμ is the Pauli-Lubanski four-vector: Ŵμ =
1
2εναβμP̂ν Ĵαβ , and Ĵαβ are the generators of the Lorentz group.
In spite of that, the definition of the relativistic spin operator has
been widely discussed in the literature (see, e.g., [15,16,25–27]
and references therein). In the enveloping algebra of the
Poincaré algebra, we can define a relativistic spin operator

Ŝ = 1

m

(
Ŵ − Ŵ 0 P̂

P̂ 0 + m

)
. (8)

This operator is linear in the components of Ŵμ, transforms
like a vector under rotations and like a pseudovector under
reflections, commutes with space-time observables, and fulfills
the standard canonical commutation relations (for the details
see, e.g., [27]). Moreover, it has been shown [28] that the
spin operator (8) is equivalent to the action of the mean-spin
operator introduced by Foldy and Wouthuysen [26] in the Dirac
theory. An exhaustive discussion of this operator, including its
transformation properties, is given in [25,28].

The action of the operator (8) on the basis vectors is of the
form

Ŝ|p,σ 〉 = σ σ ′σ

2
|p,σ ′〉. (9)

On the other hand, spin operator (8) can be defined as a
difference between the total and orbital angular momentum

Ŝ = Ĵ − X̂ × P̂, (10)

where Ĵ i = εijkĴ jk and X̂ is the Newton-Wigner position
operator.

We now briefly remind some basic properties of the NW po-
sition operator. An arbitrary one-particle state can be written as

|ψ〉 =
∫

d3p
2p0

ψσ (p)|p,σ 〉. (11)

The action of the NW position operator on wave function in
the momentum representation has the well-known form

X̂ψσ (p) =
(

i∇p − 1

2

ip
p2 + m2

)
ψσ (p). (12)

The eigenstates of this operator are

|x,σ 〉 = (2π )−3/2
∫

d3p
2p0

√
2p0e−ip·x|p,σ 〉. (13)

Notice that the states (13) are not covariant, i.e., the
Lorentz-transformed state U (�)|x,σ 〉 is no longer an
eigenstate of the NW position operator. Now, we can
introduce a projector on a region �:

�̂� =
∑

σ

∫
�

d3x |x,σ 〉〈x,σ |. (14)

Using Eq. (13), we get

�̂� =
∫

d3p′√
2p′0

d3p√
2p0

��(p′ − p)
∑

σ

|p′,σ 〉〈p,σ |, (15)

where

��(p′ − p) = 1

(2π )3

∫
�

d3x e−i(p′−p)·x. (16)

Notice that

�R3 (p′ − p) = δ3(p′ − p). (17)

The spin projection measurement in the direction n in the
region � is described by the following observable:

n · Ŝ� = (n · Ŝ)�̂�, (18)

where �̂� and Ŝ are given by Eqs. (14) and (9), respectively.

IV. RELATIVISTIC EPR CORRELATIONS

Now, let us consider an EPR–type experiment. That is,
we assume that two particles in the state (4) are sent to two
distant observers, Alice and Bob. Alice (Bob) measures the
spin projection in the direction a (b) provided that her (his)
particle is localized inside the region A (B). It means that Alice
measures the observable (a · Ŝ)�̂A while Bob (b · Ŝ)�̂B. The
normalized correlation function reads as

CAB
ϕ (a,b) = 4

〈ϕ|�̂A(a · Ŝ) ⊗ (b · Ŝ)�̂B|ϕ〉
〈ϕ|�̂A ⊗ �̂B|ϕ〉 . (19)

The form of the denominator in Eq. (19) corresponds to the fact
that we take into account only the pairs that are actually found
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inside the regions A and B and the function has to be appro-
priately normalized. Using Eqs. (4), (9), (15), and (18), we get

〈ϕ|�̂A(a · Ŝ) ⊗ (b · Ŝ)�̂B|ϕ〉

= 1

4

∫
d3k′ d3k d3p′ d3p√

2k′02k02p′02p0
ϕ∗(k′,p′)ϕ(k,p)

× Tr{(a · σ )M(k,p)(b · σ T )M†(k′,p′)}
×�A(k′ − k)�B(p′ − p), (20)

where Eq. (5) implies

Tr{(a · σ )M(k,p)(b · σ T )M†(k′,p′)}
= −(2m2

√
(m + p0)(m + k0)(m + p′0)(m + k′0))−1

×{[a · (k × p)][b · (k′ × p′)] + [a · (k′ × p′)]

× [b · (k × p)] − (a · b)[(k × p) · (k′ × p′)]

+ (a · b)[(m + k0)(m + p0) − k · p]

× [(m + k′0)(m + p′0) − k′ · p′]

− (a × b) · [(k′ × p′)[(m + k0)(m + p0) − k · p]

+ (k × p)[(m + k′0)(m + p′0) − k′ · p′]]}. (21)

The denominator of the right-hand side of Eq. (19) takes the
form

〈ϕ|�̂A ⊗ �̂B|ϕ〉 =
∫

d3k′ d3k d3p′ d3p√
2k′02k02p′02p0

ϕ∗(k′,p′)ϕ(k,p)

×Tr{M(k,p)M(k′,p′)†}
×�A(k′ − k)�B(p′ − p), (22)

where

Tr{M(k,p)M†(k′,p′)}
= (2m2

√
(m + p0)(m + k0)(m + p′0)(m + k′0))−1

×{[(m + k0)(m + p0) − k · p]

× [(m + k′0)(m + p′0) − k′ · p′]

+ (k × p) · (k′ × p′)}. (23)

As a reference point, let us recall here the correlation
function in the scalar state without localization [1]:

Cϕ(a,b)

=
{

4
∫

d3k d3p
2k02p0

|ϕ(k,p)|2Tr{M(k,p)M†(k,p)}
}−1

×
∫

d3k d3p
2k02p0

|ϕ(k,p)|2Tr{(a · σ )M(k,p)(b · σ T )

×M†(k,p)}, (24)

where

Tr{(a · σ )M(k,p)(b · σ T )M†(k,p)}

= − 1

m2

{
(a · b)(m2 + kp) − (k × p)

[
(a × b)

+ (a · k)(b × p) − (b · p)(a × k)

(m + k0)(m + p0)

]}
(25)

and

Tr{M(k,p)M†(k,p)} = 1 + kp

m2
. (26)

In this paper, we use natural units. However, for a moment
let us consider a particle with mass m and write Eq. (16)
including explicitly all constants:

��(p′ − p) = 1

(2π�)3

∫
�

d3x e−i
(p′−p)

mc
· x
λ , (27)

where λ = �

mc
is a Compton wavelength of a particle. As an

example, let us assume that the region � is a cube with the
center located at R. One can easily show that in this case

��(p′ − p) = 1

(mc)3
e
−i

p′−p
mc

· R
λ

3∏
j=1

l

2πλ

sin
( [R(p′−p)]j

mc
l

2λ

)
[R(p′−p)]j

mc
l

2λ

,

(28)

where R is a rotation transforming the cube to the position
with edges parallel to coordinate system axes. The derivation
of Eq. (28) we give in Appendix A. Now, for elementary
particles, the Compton wavelength is very small, for example,
for electron [29]

λe = 3.86 × 10−13 m. (29)

For macroscopic regions, l
2λ

is very big and taking into account
the formula [30]

α

π

sin(αx)

αx

α→∞−→ δ(x), (30)

we see that in this case

��(p′ − p) → δ3(p′ − p). (31)

Generalizing this example, we see that for macroscopic regions
the function ��(p′ − p) is practically equal to δ3(p′ − p).
Now, let us return to natural units.

Taking into account the above discussion, we get the
following relations in the case of macroscopic regions of
localization:

4〈ϕ|�̂A(a · Ŝ) ⊗ (b · Ŝ)�̂B|ϕ〉

→
∫

d3k d3p
2k02p0

|ϕ(k,p)|2

× Tr{(a · σ )M(k,p)(b · σ T )M†(k,p)} (32)

and

〈ϕ|�̂A ⊗ �̂B|ϕ〉

→
∫

d3k d3p
2k02p0

|ϕ(k,p)|2Tr{M(k,p)M†(k,p)}. (33)

Consequently, the correlation function has the same form as in
the case when we do not take into account the localization
[compare Eq. (24)]. Therefore, any nontrivial effects of
localization on EPR correlation function can be expected only
when volumes of localization regions are of order λ3, where λ

is a Compton wavelength of EPR particles.
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V. SPECIAL CASES

In this section, we consider some special cases of the
correlation function (19). We will try to find situations when
the localization significantly affects the correlation function.
From now on, we take the wave function ϕ(k,p) to be of the
following form:

ϕ(k,p) = ϕ(k)ϕ(p), (34)

i.e., momentum profiles of the wave packets for both particles
are chosen to be the same. Adopting (34) does not imply that
our state is separable: entanglement is present in the structure
of M(k,p), as given by Eq. (5). With this assumption, it is
easily checked that (20) and (22) may be reduced to products
of integrals of three types:

IA
1 [ϕ] = 1

m

∫
d3k′ d3k (m + k′0)(m + k0)√

k′0(m + k′0)
√

k0(m + k0)

×�A(k′ − k)ϕ∗(k′)ϕ(k), (35a)

IA i
2 [ϕ] = 1

m

∫
d3k′ d3k (m + k′0)ki√

k′0(m + k′0)
√

k0(m + k0)

×�A(k′ − k)ϕ∗(k′)ϕ(k), (35b)

I
A ij

3 [ϕ] = 1

m

∫
d3k′ d3k kik′j �A(k′ − k)ϕ∗(k′)ϕ(k)√

k′0(m + k′0)
√

k0(m + k0)
(35c)

taken with appropriate coefficients. For Eq. (20), we have

〈ϕ|�̂A(a · Ŝ) ⊗ (b · Ŝ)�̂B|ϕ〉
= −1

25

{
(a · b)

[
IA

1 IB
1 − (

IA
2 · IB

2

) − (
IA

2 · IB
2

)∗

+Tr
[
IA

3 IB∗
3

] + Tr
[
IA

3 IB
3

] − Tr
[
IA

3

]
Tr

[
IB

3

]]
− (a × b) · [(IA

2 × IB
2

) + (
IA

2 × IB
2

)∗]
+ aT

[
IA

3

(
IB

3

)∗ − IB
3

(
IA

3

)∗ + (
IA

3

)∗
IB

3 − (
IB

3

)∗
IA

3

]
b

+ εijkεqrsaibq
[
I

A jr

3 IB ks
3 + (

I
A jr

3 IB ks
3

)∗]}
, (36)

while for Eq. (22) we have

〈ϕ|�̂A ⊗ �̂B|ϕ〉
= 1

23

{
IA

1 IB
1 − (

IA
2 · IB

2

) − (
IA

2 · IB
2

)∗ + Tr
[
IA

3 IB∗
3

]
− Tr

[
IA

3 IB
3

] + Tr
[
IA

3

]
Tr

[
IB

3

]}
. (37)

A. Definite momentum state

Now, let us consider the simplest case of two particles with
definite momenta. Therefore, we assume that

ϕ(k,p) → 2q0
a δ

3(k − qa) 2q0
b δ

3(p − qb)m2, (38)

where qa and qb designate the fixed four-momenta of particles
a and b, respectively. Our state takes the form

|ϕ〉 → |ϕqaqb
〉 = M(qa,qb)σλ|qa,σ 〉 ⊗ |qb,λ〉. (39)

Using explicit formulas given in Appendix B [Eqs. (B1),
(B2), and (B3)] and inserting the explicit form of the matrix

M(qa,qb) [Eq. (5)], we finally get in this case

CAB
ϕqaqb

(a,b) = −a · b + (qa × qb)

m2 + qaqb

·
[

(a × b)

+ (a · qa)(b × qb) − (b · qb)(a × qa)(
q0

a + m
)(

q0
b + m

) ]
. (40)

Comparing the correlation function (40) with the previous
results for the correlation function without localization [1,17],
we see that for definite momentum states localization does not
affect the correlation function. This result is independent of
the size of localization regions.

For further use, let us notice that Eq. (40) can be written in
the following form:

CAB
ϕqaqb

(a,b) = −a · b + {
(n × m) · (a × b)|qa||qb|

× (
m + q0

a

)(
m + q0

b

) + [(a · n)(b · n)

+ (a · m)(b · m) − 2(n · m)(a · n)(b · m)]q2
aq2

b

}
× {

1
2

(
m + q0

a

)2(
m + q0

b

)2 + 1
2 q2

aq2
b

− (n · m)|qa||qb|
(
m + q0

a

)(
m + q0

b

)}−1
, (41)

where n = qa/|qa| and m = qb/|qb|.

B. State with fixed particle momenta directions

Now, let us consider the more general situation when only
the directions of particle momenta are fixed. Thus, let us denote
directions of the momenta of the first and second particles by
n and m, respectively. We assume that the wave function has
the following form:

ϕ(k,p) →
√

k0(m + k0)

k2 f (|k|)δ
(

k
|k| − n

)

×
√

p0(m + p0)

p2
f (|p|)δ

(
p
|p| − m

)
, (42)

where δ( k
|k| − n) is a Dirac delta projecting on a fixed direction,

i.e., ∫
d�(α,β)δ(n(α,β) − n)g(n(α,β)) = g(n), (43)

where d�(α,β) is a differential solid angle.
In this case for the correlation function we find, with the

help of Eqs. (36), (37), and (19), that

CAB
n,m(a,b)

= −a · b + {
(n × m) · (a × b)

[
I

A,n
2 I

B,m
2

+ (
I

A,n
2 I

B,m
2

)∗] + 2
[
(a · n)(b · n) + (a · m)(b · m)

− 2(n · m)(a · n)(b · m)
]
I

A,n
3 I

B,m
3

}{
I

A,n
1 I

B,m
1

+ I
A,n
3 I

B,m
3 − (n · m)

[
I

A,n
2 I

B,m
2 + (

I
A,n
2 I

B,m
2

)∗]}−1
,

(44)
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nm

R2 R1

AliceBob

ll

FIG. 1. The configuration of localization regions considered in
Sec. V B. Both particles are localized inside cubes with sides l and
with one face orthogonal to n (Alice) or m (Bob). The origin of
the coordinate system we choose in such a way that n · R1 = 0 and
m · R2 = 0.

where

I
A,n
1 =

∫ ∞

0
dt du (m +

√
m2 + t2)(m +

√
m2 + u2)

×�A((t − u)n)f ∗(t)f (u), (45a)

I
A,n
2 =

∫ ∞

0
dt du u(m +

√
m2 + t2)�A((t − u)n)f ∗(t)f (u),

(45b)

I
A,n
3 =

∫ ∞

0
dt du tu�A((t − u)n)f ∗(t)f (u). (45c)

The relation of the above integrals with integrals (35) is
given in Eq. (C1). It is worth to stress that for m = −n, the
correlation function (44) is equal to

CAB
n,−n(a,b) = −a · b. (46)

Thus, for particles propagating in opposite directions, local-
ization does not change the correlation function.

Notice that Eq. (41) can be obtained from Eq. (44) under
the following conditions:

I
A,n
1 I

B,m
1

I
A,n
2 I

B,m
2 + (

I
A,n
2 I

B,m
2

)∗ →
(
m + q0

a

)(
m + q0

b

)
2|qa||qb|

, (47)

I
A,n
3 I

B,m
3

I
A,n
2 I

B,m
2 + (

I
A,n
2 I

B,m
2

)∗ → |qa||qb|
2
(
m + q0

a

)(
m + q0

b

) . (48)

Now, as an illustrative example, let us consider the configu-
ration shown in Fig. 1. Thus, we assume that both particles are
localized inside cubes with sides l and with one face orthogonal
to the momentum of the corresponding particle. Without loss
of generality, we can choose the coordinate system in such a
way that n · R1 = 0 and m · R2 = 0. Therefore, in this case the
correlation function does not depend on the distance between
localization regions.

For such regions, the functions �A((t−u)n) and �B((t−u)
m) [compare Eq. (16)] can be calculated explicitly. We get

�A((t − u)n) = 2l2

(2π )3

sin
[

1
2 l(t − u)

]
t − u

(49)

and

�B((t − u)m) = �A((t − u)n). (50)

To proceed further, let us assume also that the function
f describing the profile of a wave packet [Eq. (42)] has the
following Gauss-type form:

f (t) = 1

2πσ
(
√

t2 + m2 − m)1/2e
− (t−q)2

2σ2 . (51)

The factor
√√

t2 + m2 − m has been added to guarantee
normalizability of the state |ϕ〉.

As we have noted before, nontrivial effects of localization
should be looked for small values of l. In Fig. 2, we have
depicted the correlation function in the considered state versus
the average momentum of the particle divided by its mass
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p m
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(a)

0 1 2 3 4 5 6
0.5
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p m
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(b)

FIG. 2. Correlation function versus mean normalized particle momentum for fixed directions of particle momenta (Fig. 1) and for EPR
particles with Gaussian-type momentum distribution profile [Eq. (51)]. Correlation function with localization inside detectors (solid line,
l = 0.25) and without localization (dashed line) is compared to the case of particles with definite momenta (dotted line). Figures (a) and (b)
correspond to narrower (σ = 1) and wider (σ = 2) profile of the wave packet, respectively. Momenta directions are n = 1

2 (1, −√
3,0) and

m = 1
2 (−1, −√

3,0), while directions of spin projections are a = (0,1,0), b = 1
2 (

√
3, −1,0).
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FIG. 3. Correlation function versus angle θ between directions of spin projections a and b for fixed directions of particle momenta (Fig. 1)
and for EPR particles with Gaussian-type momentum distribution profile [Eq. (51)]. Correlation function with localization inside detectors
(solid line) is compared to the case of particles with definite momenta (dotted line). Figure (a) corresponds to the mean value of momentum
〈|p|〉/m = 2.71659 [maximum in Fig. (2a)], while (b) corresponds to the smallest possible values of mean value of momentum in Fig. (2a):
pmin/m = 0.594733 (solid line) and 0 (dotted line). We take momenta directions n = 1

2 (1, −√
3,0) and m = 1

2 (−1, −√
3,0), spin projection

directions as a = (0,1,0), b = (− sin θ, cos θ,0), momentum profile with σ = 1, and detector size l = 0.25. Notice that the entire curve is
shifted toward right with increasing momentum.

for σ = 1 and 2. For the comparison, we have also added
the curves corresponding to the correlation function without
localization (but in the same state) and to the correlation
function in the state with definite momenta [Eq. (41)]. Notice
that particles in the state (51) can not have arbitrary mean
momentum. That is why pmin appears in Fig. 2.

As expected, when σ → 0, the correlation function tends
to the correlation function without localization. The same
conclusion holds for increasing size of localization regions
l. In Fig. 3, we have plotted the dependence of the correlation
function given in Eq. (44) in the configuration shown in Fig. 1
and for the state defined by the function (51) on an angle
between vectors a and b.

C. Arbitrary momenta

Now, let us illustrate the behavior of the correlation function
in the general case when particles momenta can take arbitrary
values. We consider a simple example of wave function for
which integrals (35) can be calculated explicitly. In this section,
we again include explicitly all constants to controlling better
upcoming approximations. We assume [compare Eq. (34)]

ϕ(k) =
√

k0(k0 + mc)

(mc)2
e−κ k0

mc . (52)

The advantage of this choice is that we can calculate explicitly

the Fourier transform of the function e−κ k0

mc (see Appendix D).
In this case, the integrals (35) can be expressed as follows:

I�
1 =

∫
�

d3x

λ3 [�0(|x|,m,κ) + �(|x|,m,κ)]2, (53a)

I� i
2 =

∫
�

d3x

λ3 [�0(|x|,m,κ) + �(|x|,m,κ)]�i(x,m,κ),

(53b)

I
� ij

3 = −
∫

�

d3x

λ3 �i(x,m,κ)�j (x,m,κ), (53c)

where the functions used in the above equations are defined in
Eq. (D4). Their explicit form reads as

�(x,m,κ) = 4πκ

(2π )3/2

K2
(√

κ2 + x2

λ2

)
(√

κ2 + x2

λ2

)2
, (54)

�0(x,m,κ)

= 4π

(2π )3/2

⎡
⎣κ2

K3
(√

κ2 + x2

λ2

)
(√

κ2 + x2

λ2

)3
−

K2
(√

κ2 + x2

λ2

)
(√

κ2 + x2

λ2

)2

⎤
⎦ , (55)

and

�j (x,m,κ) = 4πκi

(2π )3/2

xj

λ

K3
(√

κ2 + x2

λ2

)
(√

κ2 + x2

λ2

)3
, (56)

where Kn are modified Bessel functions of the second kind.
Now, as an example we consider the case κ = 1. We

also assume for simplicity that both particles are localized
inside the regions of the shape shown in Fig. 4. In this case,
we have

IA
1 = 2π (1 − cos α)C1(r1,r2), (57a)

I
A j

2 = iπ sin2 α n
j

A C2(r1,r2), (57b)

I
A ij

3 = −
[
π

3
(1 − cos α)2(2 + cos α)δij

+π cos α sin2 α ni
An

j

A

]
C3(r1,r2), (57c)

where

Ck(r1,r2) = 2

π

∫ r2

r1

d|x|
λ

|x|k+1

λk+1

[
K3

(√
1 + x2

λ2

)]2

(
1 + x2

λ2

)3 , (58)
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α

n

FIG. 4. Localization regions assumed to derive Eqs. (57). We
assume that Alice and Bob localize particles inside regions of the
same shape. Positions of localization regions are determined by the
vectors nA and nB, respectively. Both regions have the same angular
width 2α.

for k = 1,2,3, and unit vector nA = (cos ϕA sin θA,

sin ϕA sin θA, cos θA)T determines the center of the region A.
Inserting integrals (57) into Eqs. (36) and (37) we get

〈ϕ|�̂A(a · Ŝ) ⊗ (b · Ŝ)�̂B|ϕ〉

= −π2(1 − cos α)2

16

{
(a · b)

[
2C2

1 + (1 + cos α)2

× (nA · nB)C2
2 + 2

9
(1 + cos α + cos2 α)2C2

3

]
+ (1 + cos α)2(a · nA)(b · nB)

× [
C2

2 + 2 cos2 α (nA · nB)C2
3

]
− (1 + cos α)2(a · nB)(b · nA)C2

2

− 2

3
cos α(1 + cos α)(1 + cos α + cos2 α)

× [(a · nA)(b · nA) + (a · nB)(b · nB)]C2
3

}
, (59)

0 π
4

π
2

3π
4

π
1.0

0.5

0.0

0.5

1.0

θ rad

C

FIG. 5. Correlation function for arbitrary particle momenta
[Eq. (62)] versus the angle θ between spin projection axes for
different angular span of the detectors: α = π/60 rad (solid line),
α = π/12 rad (dashed line), and α = π/6 rad (dotted line). We
take nA = [sin(φ/2), cos(φ/2),0], nB = [sin(φ/2), − cos(φ/2),0],
a = (0,0,1), b = [cos(φ/2) sin θ, sin(φ/2) sin θ, cos θ ], φ = 3π/4.

2α2α

φ

2

φ

2 nAnB

r

AliceBob

FIG. 6. Assumed configuration of EPR experiment. Vectors nA

and nB lay in the xy plane.

and

〈ϕ|�̂A ⊗ �̂B|ϕ〉

= π2(1−cos α)2

4

{
2C2

1 + (1+cos α)2(nA · nB)C2
2 + 2C2

3

}
.

(60)

Now, in a realistic EPR–type experiment, observers should
be separated by a macroscopic distance. Therefore, assuming
that λ � r2 − r1 � r1, we get

C2
1 (r1,r2) � C2

3 (r1,r2), C2
2 (r1,r2) � C2

3 (r1,r2). (61)

Therefore, in this asymptotics the correlation function takes
the following form:

CAB
ϕ (a,b) = − 1

9 (1+ cos α + cos2 α)2(a · b)

− (1 + cos α)2 cos2 α (nA · nB)(a · nA)(b · nB)

+ 1
3 cos α(1 + cos α)(1 + cos α + cos2 α)

× [(a · nA)(b · nA) + (a · nB)(b · nB)]. (62)

In Fig. 5 we have depicted the correlation function (62) in
the configuration shown in Fig. 6 for a ⊥ nA, b ⊥ nB. For
comparison, we have also shown the correlation function
calculated in the same state [defined in Eq. (52)] but without
localization.

VI. CONCLUSIONS

In conclusion, we have derived the correlation function in
an arbitrary scalar state of two fermions assuming that spin
projection measurement is associated with the localization of
the particles [Eqs. (19)–(23)]. The most significant finding of
our paper is that in a wide range of physically interesting
situations, the influence of localization on the correlation
function can be neglected. In particular, when EPR particles
are in a definite momentum state, the correlation function with
localization is exactly the same as the correlation function
without localization. Moreover, the influence of localization
can be neglected in the case when localization regions are
macroscopic. As far as we know, such a situation took
place in all correlation experiments with relativistic massive
particles we are aware of. Up to date, there have been
performed only three correlation experiments with massive
relativistic protons: the Lamehi-Rachti–Mittig experiment [31]
(CEN-Saclay), the Hamieh et al. experiment [32] (Kernfysisch
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Versneller Instituut, Holland), and the Sakai et al. experiment
[33] (RIKEN Accelerator Research Facility, Japan). There
is also under preparation the experiment with relativistic
Møller electrons (QUEST collaboration [34,35]). The present
detectors (pixel arrays) used in such experiments are able
to localize particles in regions of linear size ∼107λe (the
electron Compton wavelength). We have also considered
examples when the localization modifies the correlation
function.
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APPENDIX A: DERIVATION OF EQ. (28)

We are to calculate the following integral:

��(q) = 1

(2π�)3

∫
�

d3x exp

(
−i

q · x
mcλ

)
, (A1)

where � is a cube with the center located at R and we
have denoted q = p′ − p. We make the following change of
variables:

x = y + R, (A2)

and we get

��(q) = exp
(−i

q·R
mcλ

)
(2π�)3

∫
�0

d3y exp

(
−i

q · y
mcλ

)
, (A3)

where the integration region �0 is a cube with the center
at (0,0,0) (�0 is the cube � translated by the vector −R).
Now, let us denote by R the rotation around the origin and
transforming �0 into the cube with edges parallel to the
coordinate system axes �̄0:

R(�0) = �̄0. (A4)

Thus, changing the variables

z = Ry, (A5)

we have

q · y = (Rq) · z. (A6)

Therefore,

��(q) = exp
(−i

q·R
mcλ

)
(2π�)3

∫
�̄0

d3z exp

[
−i

(Rq) · z
mcλ

]
, (A7)

and, since �̄0 has edges parallel to coordinate axes and the
center at (0,0,0),

��(q) = exp
(−i

q·R
mcλ

)
(2π�)3

3∏
j=1

∫ l/2

−l/2
dzj exp

[
−i

(Rq)j zj

mcλ

]
.

(A8)

Now, performing simple integration, we arrive at Eq. (28)

APPENDIX B: DEFINITE MOMENTUM STATE

For the state with definite momenta [Eq. (39)], the numer-
ator of the correlation function (19) is given by

〈ϕqaqb
|(a · ŜA)(b · ŜB)|ϕqaqb

〉

= m2q0
aq

0
b

(2π )6
Tr{(a · σ )M(qa,qb)(b · σ T )M†(qa,qb)}

× Vol(A)Vol(B), (B1)

while the denominator has the form

〈ϕqaqb
|�̂A ⊗ �̂B|ϕqaqb

〉

= 4m2q0
aq

0
b

(2π )6
Tr{M(qa,qb)M†(qa,qb)}Vol(A)Vol(B).

(B2)

By dividing the above formulas, we obtain

CAB
ϕqaqb

(a,b)=Tr{(a · σ )M(qa,qb)(b · σ T )M†(qa,qb)}
Tr{M(qa,qb)M†(qa,qb)} .

(B3)

APPENDIX C: STATE WITH FIXED PARTICLE
MOMENTA DIRECTIONS

In this case, integrals (35) are equal to

IA
1 = I

A,n
1 , IB

1 = I
B,m
1 , (C1a)

IA i
2 = niI

A,n
2 , IB i

2 = miI
B,m
2 , (C1b)

I
A,ij

3 = ninj I
A,n
3 , I

B ij

3 = mimjI
B,m
3 (C1c)

[compare Eq. (45)].

APPENDIX D: ARBITRARY MOMENTA

Using the following relations [36]∫ ∞

0
dt e−α

√
t2+β2

cos(γ t)= αβ√
α2+γ 2

K1(β
√

α2+γ 2) (D1)

(Reα > 0, Reβ > 0) and

xKn+1(x) = nKn(x) − xK ′
n(x), (D2)

where Kn is a modified Bessel function of the second kind, we
obtain

∫
d3k

(mc)3
ei k

mc
· x
λ e−κ k0

mc = 4πκ
K2

(√
κ2 + x2

λ2

)
(√

κ2 + x2

λ2

)2
. (D3)

For further convenience, let us define the following
functions:

�(x,m,κ) = 1

(2π )3/2

∫
d3k

(mc)3
ei k

mc
· x
λ e−κ k0

mc , (D4a)

�0(x,m,κ) = − ∂

∂κ
�(x,m,κ), (D4b)

�j (x,m,κ) = −iλ
∂

∂xj
�(x,m,κ). (D4c)
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Notice that

�(x,m,κ) = �(|x|,m,κ), (D5)

�0(x,m,κ) = �0(|x|,m,κ), (D6)

and

�(x,m,κ) = ix
λκ

[
�0(|x|,m,κ) + 1

κ
�(|x|,m,κ)

]
. (D7)
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[28] P. Caban, J. Rembieliński, and M. Włodarczyk, Ann. Phys. (NY)
330, 263 (2013).

[29] J. Beringeret al. (Particle Data Group), Phys. Rev. D 86, 010001
(2012).

[30] G. A. Korn and T. M. Korn, Mathematical Handbook for
Scientists and Engineers (McGraw-Hill, New York, 1961).

[31] M. Lamehi-Rachti and W. Mittig, Phys. Rev. D 14, 2543 (1976).
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