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We discuss the appearance of fractional topological phases on cyclic evolutions of entangled qudits. The
original result reported by Oxman and Khoury [Phys. Rev. Lett. 106, 240503 (2011)] is detailed and extended to
qudits of different dimensions. The topological nature of the phase evolution and its restriction to fractional values
are related to both the structure of the projective space of states and entanglement. For maximally entangled states
of qudits with the same Hilbert-space dimension, the fractional geometric phases are the only ones attainable
under local SU(d) operations, an effect that can be experimentally observed through conditional interference.
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I. INTRODUCTION

Geometrical phases are a remarkable property of quantum
phase evolutions, related to holonomies in the parameter space
characterizing the quantum state vectors. The standard exam-
ple is the phase acquired by a spin-1/2 particle undergoing
a cyclic evolution described by a closed path in the Bloch
sphere. The role of holonomies in the quantum phase evolution
was pointed out by Berry [1] in connection with adiabatic
transformations driven by a slowly varying time-dependent
Hamiltonian. An analogous effect was studied in a seminal
work by Pancharatnam [2] in a more elementary system, i.e.,
the polarization transformations in classical wave optics. A
beautiful generalization of the Pancharatnam results to paraxial
mode transformations was theoretically proposed in Refs. [3,4]
and experimentally demonstrated in Ref. [5] where a Poincaré
sphere representation was used for first-order paraxial modes.
This representation was also used to discuss the geometric
phase conjugation in an optical parametric oscillator [6]. More
recently, the geometric representation of higher-order paraxial
modes have been discussed in Refs. [7,8]. Another fundamen-
tal contribution to the theory of geometric phases was given
by Mukunda and Simon in Refs. [9,10], where the kinematic
aspects of the quantum state evolution were investigated and
the geometric phase generalized to nonadiabatic evolutions.
Since these seminal contributions, numerous works have been
devoted to both fundamental and applied aspects of geometric
phases.

In quantum information science, geometric phases were
conceived as a robust means for implementing unitary gates
that are useful for quantum computation [11,12]. The role
of entanglement in the phase evolution of two-qubit systems
was investigated in Refs. [13,14], and the topological nature
of the corresponding geometric phases was investigated both
theoretically [15–17] and experimentally in the context of
spin-orbit transformations on a paraxial laser beam [18] and
in nuclear magnetic resonance [19]. In a recent work, we
investigated the crucial role played by the dimension of the
Hilbert space on the topological phases acquired by entangled
qudits [20,21]. The appearance of fractional phases is a
remarkable property of two-qudit systems, also shared by
multiple qubits [22,23]. Multidimensional entangled states can
be realized on qudits encoded on the transverse position of
quantum correlated photon pairs generated by spontaneous
parametric down conversion [24–28]. Fractional phases were

originally investigated in quantum Hall systems in connection
with different homotopy classes in the configuration space of
anyons. This topological structure has been conjectured to be a
possible resource for fault-tolerant quantum computation [29].
These potential applications of geometric phases in quantum
information science motivated a number of articles devoted
to their implementation in quantum optical systems and their
behavior under the influence of different kinds of reservoir
[30–37]. Decoherence is recognized as the main difficulty for
quantum information protocols in realistic physical systems.
In this sense, quantum gates based on geometric phases are
supposed to be a powerful tool. The extension of geometric
phases to mixed quantum states in condensed-matter physics
has been considered in connection with topological insulators
and superconductors [38,39].

In the present work, we study the geometric phase acquired
by entangled qudits under local unitary evolutions. The
fractional phases predicted in Ref. [20] are developed in detail
and generalized to qudits of different dimensions. A general
expression is derived for the two-qudit geometric phase in
terms of entanglement and the dimensions of their Hilbert
spaces. We also discuss the holonomies of the phase evolution
in terms of the parameters used to define the local SU(d)
transformations applied to each qudit. The paper is organized
as follows: in Sec. II, we discuss the role played by the purity
of a single-qudit state in the geometric phase. Since, for pure
states, two-qudit entanglement can be quantified by the purity
of the partial density matrix of each qudit, the results of Sec. II
are used in Sec. III to establish the role of entanglement
in the geometric phase acquired by a two-qudit state under
local unitary transformations. In Sec. IV, we present some
numerical examples that illustrate the fractional phase values
expected and the role played by entanglement. Finally, in
Sec. V, we summarize our results and briefly discuss some
future perspectives.

II. TOPOLOGICAL PHASES ON SINGLE QUDITS

Initially, we shall examine the properties of the geometric
phases on unitary evolutions of single qudits and the role of the
quantum state purity in the geometric phase. Our conclusions
will be useful since two-qudit entanglement is frequently
quantified through the purity of the partial density matrix
describing one of the qudits. Therefore, we start by considering
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a single qudit initially prepared in a quantum state described by
a general density matrix ρ0. As this matrix must be Hermitian,
it can be written in terms of the identity matrix and a basis
{Tα} (α = 1, . . . ,d2 − 1) for the Hermitian traceless d × d

matrices, that is,

ρ0 = 1

d
+ q

√
d − 1

d
q̂ · T. (1)

The basis {Tα} is normalized according to Tr[Tα Tβ] = δα β

and can serve as a set of generators of SU(d). We shall term
q = q q̂ ∈ Rd2−1 as the purity vector (for qubits, it is the well-
known Bloch vector), since its absolute value is related to
the purity of the qudit state: Tr[ρ2

0 ] = q2 + (1 − q2)/d , with
0 � q � 1 . From the kinematic approach by Mukunda and
Simon [9,10], the geometric phase acquired by a time-evolving
pure state |ψ(t)〉 is given by

φg = arg〈ψ(0)|ψ(t)〉 + i

∫
dt〈ψ(t)|ψ̇(t)〉

= arg{Tr[ρ0 U (t)]} + i

∫
dtTr[ρ0 U †U̇ ], (2)

where ρ0 = |ψ(0)〉〈ψ(0)| is the density matrix of the initial
state evolving under the action of the unitary operator U (t) .
The second equality allows for a natural extension of the
geometric phase for mixed states by taking the general density
matrix (1). Also, it is important to rule out from the geometric
phase any explicit phase evolution contained in U (t). Let
U (t) = eiφ(t)Ū (t), where Ū (t) ∈ SU(d) for all t , with initial
conditions φ(0) = 0 and Ū (0) = 1. It is straightforward to
show that the explicit phase φ(t) does not contribute to the
geometric phase, which is then given in terms of the SU(d)
sector only:

φg = φ̄tot + i

∫
dtTr[ρ0Ū

† ˙̄U ], (3)

where we defined

φ̄tot ≡ arg{Tr[ρ0Ū (t)]}. (4)

Now it is useful to recall that for a general invertible matrix
A , we have [41]

d(detA)

dt
= (detA)Tr

[
A−1 dA

dt

]
. (5)

Since the evolution Ū (t) is closed in SU(d), we readily deduce
that Tr[Ū † ˙̄U ] = 0. In addition, d(Ū † Ū )/dt = 0 implies that
Ū † ˙̄U is anti-Hermitian so that it can be written as a combination
of the Tα’s with purely imaginary coefficients. Thus, we can
introduce a useful velocity vector u ∈ Rd2−1 such that Ū † ˙̄U =
iu · T. The geometric phase can be expressed in terms of the
purity and velocity vectors as

φg = φ̄tot − q

√
d − 1

d

∫
q̂ · dx, (6)

where dx ≡ udt is a connection.
For a pure state, an evolution over a time interval T

is considered to be cyclic when it takes the system from
a given initial state to a physically equivalent final state,
i.e., when 〈ψ(0)|ψ(T )〉 = eiφtot (T ). This condition can be

generalized for mixed states as Tr[ ρ0U (T )] = eiφtot (T ). Now,
let us inspect carefully this condition over totally mixed states:
q = 0. In this case, it reduces to Tr[U (T )] = deiφtot (T ), which
implies U (T ) = eiφtot (T )1, and hence Ū (T ) = eiφ̄tot (T )1. Since
Ū ∈ SU(d), det Ū = eidφ̄tot (T ) = 1, so that φ̄tot (T ) = 2nπ/d

(n ∈ Z). For qubits, this corresponds to the two possible values
0 or π .

Therefore, expression (6) for a completely mixed state
reduces to

φg = φ̄tot = 2nπ

d
(n ∈ Z). (7)

In principle, this result is of little physical relevance, since no
interference can be measured on completely incoherent states.
However, we can anticipate its important role on entangled
states. Indeed, the partial trace of a maximally entangled pure
state of a bipartite system produces completely mixed density
matrices. In this case, we shall see that for cyclic evolutions,
driven by local unitary operations, only the fractional phases in
Eq. (7) can arise. However, they can now be measured through
conditional interference, as long as the overall bipartite state
is coherent. We shall put these arguments on a more formal
ground in Sec. III.

A. The Cartan sector

An interesting refinement of the geometric phase structure
is obtained by separating the basis {Tα} into diagonal and
nondiagonal elements. The diagonal elements form the so-
called Cartan subalgebra of SU(d). This separation in the
density matrix and the evolution operator will make it possible
to isolate the nonholonomic contribution to the geometric
phase.

The first d − 1 generators T1, . . . ,Td−1 can be taken as the
diagonal elements [the only element for SU(2) is σz], and
they will also be named as {Hβ}, β = 1, . . . ,d − 1. Then, we
write {Tα} = {Hβ} ∪ {Pγ } , where {Pγ }, γ = 1, . . . ,d2 − d,
represents the remaining d2 − d nondiagonal generators. As
a convention, dot products involving H (P) will be used to
represent Lie algebra elements restricted to the diagonal (off-
diagonal) sector; that is, dot products between the full set of
generators T and vectors having the last d2 − d (the first d − 1)
components vanishing.

Choosing a Hilbert-space basis that renders the initial
density matrix diagonal, we may write

ρ0 = 1

d
+ q

√
d − 1

d
q̂ · H

= 1

d
+ q

√
d − 1

d
diag[x0 . . . xd−1], (8)

where we defined xn ≡ 〈n| q̂ · H |n〉 , with the properties∑
n xn = 0 and

∑
n x2

n = 1 . In addition, we can use the
factorization

Ū = V̄ exp(ih · H), (9)

where the parameters h map an R d−1 subspace and the SU(d)
matrix V̄ is such that [V̄ ,Hβ ] �= 0 for at least one value of β,
unless V̄ = 1.

In more formal terms, this corresponds to a coset factoriza-
tion of the SU(d) group [42], so that V̄ ∈ SU(d)/U(1)d−1. The
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latter manifold can in turn be written as a tensor product of
different coset spaces. For SU(2), there is only one factor,
SU(2)/U(1), which is topologically equivalent to the two-
sphere S2. Equivalently, the V̄ factor can be defined by the
following requirement: If

V̄ HβV̄ −1 = Hβ, (10)

for every diagonal generator Hβ , then necessarily V̄ = 1.
Using Eq. (9), we have

Ū † ˙̄U = e−ih·H V̄ † ˙̄V eih·H + iḣ · H, (11)

where the velocity vector associated with the V̄ sector can
be separated into two orthogonal terms v‖ and v⊥, related
to the Cartan subalgebra and the nondiagonal generators,
respectively. They are defined according to

V̄ † ˙̄V = iv⊥ · P + iv‖ · H. (12)

Now, using the Baker-Campbell-Hausdorff formula and the
fact that [Hα,Pβ ] ∝ Pγ , it is easy to show that the trans-
formation e−ih·HV̄ † ˙̄V eih·H leaves v‖ unchanged and makes
v⊥ → v′

⊥, so that

e−ih·HV̄ † ˙̄V eih·H = iv′
⊥ · P + iv‖ · H. (13)

Moreover, the orthonormality condition for the generators
leads to Tr[(V̄ † ˙̄V )2] = |v⊥|2 + |v‖|2 and |v′

⊥|2 = |v⊥|2. There-
fore, v′

⊥ corresponds to a rotation of v⊥ in a subspace
orthogonal to the Cartan subspace where both q̂ and v‖ lie
(v′

⊥ · v‖ = v ′
⊥ · q̂ = 0). Finally, from Eq. (13), we get

Ū † ˙̄U = iv′
⊥ · P + i(v‖ + ḣ) · H, (14)

which corresponds to the following decomposition of the
velocity vector:

u = v′
⊥ + v‖ + ḣ. (15)

Since a diagonal representation has been assumed for ρ0,
only v‖ and ḣ will contribute to the integral term in the
geometric phase. Noting that

Tr[ρ0Ū
† ˙̄U ] = iq

√
d − 1

d
q̂ · (v‖ + ḣ), (16)

and replacing in Eq. (6), we get

φg = φ̄tot − q

√
d − 1

d

[
q̂ · h(t) +

∫
q̂ · dx‖

]
, (17)

where dx‖ ≡ v‖dt and h(0) = 0 . The integral term represents
a path-dependent (nonholonomic) contribution, built along the
path followed on SU(d)/U(1)d−1. When cyclic evolutions are
considered, this term generalizes to SU(d) the usual solid
angle contribution for paths on the Bloch sphere SU(2)/U(1),
obtained for SU(2). Then, we shall define

� =
∮

q̂ · dx‖. (18)

Let us denote as partially cyclic those evolutions that, at a
given time t̄ , close a path in the SU(d)/U(1)d−1 sector. With
regard to the total phase, as V̄ (t̄) ∈ SU(d) and V̄ (0) = 1, this
would mean that V̄ (t̄) must be the identity matrix times the
exponential of a fractional phase. However, such V̄ (t̄) would

satisfy the condition (10) and, as a consequence, it must
necessarily be the identity matrix. Therefore, for a partially
cyclic evolution,

Ū (t̄) = exp[ih(t̄) · H], (19)

and the geometric phase is given by

φg = φ̄tot − q

√
d − 1

d
[q̂ · h(t̄) + �], (20)

φ̄tot ≡ arg

{
Tr

[(
1

d
+ q

√
d − 1

d
q̂ · H

)
ei h(t̄)·H

]}
. (21)

For qubits, the Cartan sector reduces to a single parameter.
The identification of the Cartan sector will be particularly
useful to demonstrate the fractional phases for dimensions
d > 2, since the number of parameters in the nondiagonal
sector scales as d2, while in the Cartan sector it scales as d. We
will next build a useful representation for the Cartan sector that
simplifies its parametrization and will be particularly useful for
experimental proposals.

Let us now study how the fractional phases, generated
in cyclic evolutions, are built. To simplify the discussion,
consider evolutions restricted to the Cartan sector,

Ū (t) = eih(t)·H = diag[eiχ0 , . . . ,eiχd−1 ], (22)

with χn(t) ≡ 〈n|h · H|n〉 and
∑

n χn = 0. For the initial
density matrix given by Eq. (8), the geometric phase can be
easily computed,

φg = φ̄tot − q

√
d − 1

d

d−1∑
n=0

xnχn, (23)

where the nontrivial total phase is

φ̄tot = arg

{
d−1∑
n=0

(
1

d
+ q

√
d − 1

d
xn

)
eiχn

}
. (24)

Now, for completely mixed states (q = 0), a quite subtle
feature of the Cartan sector comes into play. The diagonal
elements in Ū (t) are phasors in the complex plane. The state
evolution will be cyclic when these phasors line up, making
Ū proportional to the identity matrix. This will happen when
χn ≡ χ0 − χn = 2lnπ , with ln ∈ Z. However, this alignment
can only occur at fractional phase values. In order to see this,
let us sum up all phase differences and make

∑
n χn = 2πL,

with L ≡ ∑
n ln. On the other hand,

d−1∑
n=0

χn =
d−1∑
n=0

χ0 −
d−1∑
n=0

χn = dχ0, (25)

which brings us to the fractional solutions χ0 = 2π L/d and
χn = 2π L/d − 2π ln, as expected. Then, the nontrivial total
phase is

φ̄tot = 2πL

d
, (26)

and this is the only contribution to the geometric phase
acquired by completely mixed states.
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B. Qubits

As an example, let us apply the ideas above to the simplest
case of a single qubit. The normalized SU(2) generators can be
written in terms of the Pauli matrices; the nondiagonal sector is
composed of P1 = σx/

√
2 and P2 = σy/

√
2, while the Cartan

sector corresponds to H1 = σz/
√

2. Let us use a basis such
that the initial density matrix is diagonal,

ρ0 =
[

1+q

2 0

0 1−q

2

]
= 1 + q σz

2
, (27)

where {|0〉,|1〉} are the eigenvectors of σz with eigenvalues
{+1, − 1}, respectively, and 0 � q � 1. This initial state
corresponds to the purity vector

q = (q,0,0). (28)

Then, suppose this qubit evolves under the action of a general
SU(2) matrix,

Ū (θ,ϕ,χ ) = V̄ (θ,ϕ)eiχσz ,

V̄ (θ,ϕ) = exp(iθ p̂ · P) =
[

cos θ
2 i sin θ

2 e−iϕ

i sin θ
2 eiϕ cos θ

2

]
,

(29)

where p̂ = (0, cos ϕ, sin ϕ), h = √
2(χ,0,0), and ϕ(t), θ (t),

and χ (t) are time-dependent real parameters with initial
conditions ϕ(0) = θ (0) = χ (0) = 0. Here, ϕ(t) and θ (t) can
be identified with the angular coordinates on the Bloch sphere
representation of a pure state. In fact, they are precisely the
coordinates of the evolving state when it is initially prepared
in |0〉 (q = 1). Therefore, we identify the state evolution as
an explicit phase evolution χ (t) [not to be confused with the
explicit phase φ(t) discarded above, since Ū is already an
SU(2) matrix] and a path [θ (t),ϕ(t)] on the Bloch sphere.

The velocity vector u ∈ R3 can be computed from the
decomposition of Ū † ˙̄U in terms of the SU(2) generators (Pauli
matrices). It is more elegant to do it in two steps. Initially, we
note that

Ū † ˙̄U = e−iχσz V̄ † ˙̄V eiχσz + iχσz, (30)

and write V̄ † ˙̄V = iv · T, where v is the velocity vector along
the path followed on the Bloch sphere. From Eq. (29), we
obtain v = (vh,vp1,vp 2), where

vh =
√

2ϕ̇ sin2

(
θ

2

)
,

vp1 = 1√
2

(θ̇ cos ϕ − ϕ̇ sin θ sin ϕ), (31)

vp 2 = 1√
2

(θ̇ sin ϕ + ϕ̇ sin θ cos ϕ).

The first term in Eq. (30) amounts to a rotation of v by an angle
2χ , generated by σz, so that

u = v′ +
√

2(χ̇ ,0,0), (32)

where v′ = Rz(2χ )v. This rotation leaves the Cartan compo-
nent of v unchanged so that, in this SU(2) parametrization, the

connection becomes

q̂ · dx =
√

2[dχ + sin2(θ/2)dϕ]. (33)

The first term is the holonomic contribution, while the second
one (nonholonomic) is built along the path followed on the
Bloch sphere. For a closed path, it gives

� =
√

2
∮

sin2 θ

2
dϕ = 1√

2

∫ ∫
sin θdθdϕ = �√

2
, (34)

where the second equality results from Green’s theorem, giving
the usual solid angle contribution �, enclosed on the Bloch
sphere.

Now, let us inspect these contributions for partially cyclic
evolutions, that is, when [θ (t),ϕ(t)] follows a closed path on
the Bloch sphere over a time interval t̄ , but χ (t) does not
complete a full cycle. In this case, Ū (t̄) = eiχ(t̄)σz and

φ̄tot = arg{cos χ + iq sin χ}, (35)

which gives

φg = arctan(q tan χ ) − q

(
χ + �

2

)
. (36)

For an initial pure state |0〉 (q = 1), one obtains the usual
solid angle expression φg = −�/2. For completely mixed
states (q = 0), the integral terms vanish and the only possible
geometric phases are 0 or π .

C. Qutrits

There are eight generators of SU(3), usually represented in
the form of Gell-Mann matrices. The Cartan sector is restricted
to two diagonal matrices and the other six elements of the
algebra are nondiagonal. Therefore, the SU(3) transformations
are determined by six parameters in the nondiagonal sector
and two in the Cartan sector. In order to focus on the fractional
phases and the role played by the state purity, we shall restrict
our study to transformations restricted to the Cartan sector.
The nondiagonal parameters only bring geometric complexity,
without much additional insight into the fractional phase
structure.

First, we assume the qutrit basis is set to render di-
agonal the initial density matrix ρ0. In terms of the two
diagonal Gell-Mann matrices (apart from a slightly different
normalization), we can parametrize the unit purity vector as
q̂ = (cos θ, sin θ,0, . . . ,0). In this parametrization, the density
matrix for the initial state becomes

ρ 0 = 1

3
+ q

√
2

3
(cos θ H1 + sin θ H2),

= 1

3
+ 2 q

3

⎡
⎢⎣

cos
(
θ + 2π

3

)
0 0

0 cos
(
θ + 4π

3

)
0

0 0 cos θ

⎤
⎥⎦ ,

(37)

where

H1 = − 1√
6

⎡
⎣1 0 0

0 1 0
0 0 −2

⎤
⎦ , H2 = − 1√

2

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦ .

(38)
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Then, the diagonal parameters are

x0 =
√

2

3
cos

(
θ + 2π

3

)
,

x1 =
√

2

3
cos

(
θ + 4π

3

)
, (39)

x2 =
√

2

3
cos θ.

The density matrix eigenvalues belong to the interval [0,1],
which limits the possible values of θ . For pure states (q = 1),
only the discrete values 0, 2π/3, and 4π/3 are allowed. For
q < 1/2 , any value of θ gives a meaningful density matrix.
Moreover, cyclic permutations of the basis vectors amount to
transformations θ → θ + 2nπ/3 (n ∈ Z), and the noncyclic
permutations can be achieved by the same transformations
followed by θ → −θ . Therefore, without loss of generality,
we can restrict our analysis to the domain −π/3 � θ � π/3.
Other θ values simply amount to a permutation of the diagonal
elements in ρ0. Nevertheless, in order to ensure that all
diagonal elements belong to the allowed interval [0,1], we
need to impose the restriction cos (θ + 2nπ/3) � −1/2q.
Therefore, we arrive at −θ0 � θ � θ0, where

θ0(q) =
{

cos−1 (−1/2q) − 2π/3, q � 1/2

π/3, q � 1/2.
(40)

For pure states (q = 1), we are left with θ = 0.
We now assume a diagonal SU(3) transformation,

Ū (t) =

⎡
⎢⎣

eiχ0(t) 0 0

0 eiχ1(t) 0

0 0 eiχ2(t)

⎤
⎥⎦ , (41)

where χ2 = −(χ0 + χ1). In terms of the parameters character-
izing Ū and ρ0, the geometric phase becomes

φg = φ̄tot − 2q

3

[
χ0 cos

(
θ + 2π

3

)
+ χ1 cos

(
θ + 4π

3

)

+ χ2 cos θ
]
, (42)

where

φ̄tot = arg

{
eiχ0

[
1

3
+ 2q

3
cos

(
θ + 2π

3

)]

+ eiχ1

[
1

3
+ 2q

3
cos

(
θ + 4π

3

)]

+ eiχ2

[
1

3
+ 2q

3
cos θ

]}
. (43)

We save this expression for our numerical investigation of the
fractional phases acquired by entangled qutrits.

III. FRACTIONAL TOPOLOGICAL PHASES ON
ENTANGLED QUDITS

We now turn to the main subject of this article: the fractional
phases acquired by entangled qudits when subjected to local
unitary operations. We shall restrict our analysis to overall
pure states. However, the results of the previous section will

naturally extend to combined quantum systems, with the
special role of entanglement, as measured by the purity of
the partial density matrices.

A. Singular value decomposition

We consider a two-qudit system with dimensions dA and
dB (dA � dB). Let

|ψ〉 =
dA∑
i=1

dB∑
j=1

αij |ij 〉 (44)

be the most general two-qudit pure state. We shall represent it
by the dA × dB rectangular matrix α whose elements are the
coefficients αij . With this notation, the associated norm be-
comes 〈ψ |ψ〉 = Tr(α†α) = 1, and the scalar product between
two states is 〈φ|ψ〉 = Tr(β†α), where β is the dA × dB matrix
representing |φ〉 in the chosen basis. In order to characterize a
general vector in the Hilbert space, we note that any invertible
matrix admits a singular value decomposition α = eiφSAKST

B ,
where Sj ∈ SU(dj ) (j = A,B), K is a diagonal dA × dB

rectangular matrix with real positive entries,

K = [Q 0AB], (45)

and Q is a dA × dA Hermitian diagonal square matrix (Kαα =
Qαα ∈ R, with 0 � α � dA − 1). Here, 0AB is a matrix of
order dA × (dB − dA) , with all entries equal to zero. The
normalization condition implies Tr[Q2] = 1.

Under local unitary operations UA(t) and UB(t), the
coefficient matrix is transformed according to α(t) =
UA(t)α(0)UT

B (t). It can be readily seen that this kind of
transformation preserves the singular decomposition and can
be represented separately in each sector of the coefficient
matrix:

α(t) = eiφ(t)SA(t)KST
B (t), (46)

where Sj (t) = Ūj (t)Sj (0), Ūj is the SU(dj ) part of the
corresponding local unitary operation, Uj (t) = eiφj (t)Ūj (t),
and φ(t) = φ0 + φA(t) + φB(t). Therefore, we identify the
transformation in three sectors of the matrix structure: an
explicit phase transformation φ0 �→ φ(t) and two local evo-
lutions Sj (0) �→ Sj (t) (j = A,B) in SU(dj ). The K sector
remains invariant under local unitary operations. At this point,
we would like to note that the singular value decomposition is
not unique, since different choices of Sj may result in the same
α . However, this is not a problem, as long as one picks up any
choice compatible with the initial coefficient matrix α(t = 0) .
Then, the time evolution will be uniquely determined by the
local unitary operations applied to the qudits.

In order to make a connection with the results of the previ-
ous section, it is important to unveil the physical meaning of the
elements that participate in the singular value decomposition.
It is easy to show that the reduced density matrices for qudits
A and B are, respectively,

ρA = α α† = SAKK†S†
A (47)

and

ρB = (α†α)T = SBK†KS
†
B. (48)
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Since K is a dA × dB rectangular matrix with dA � dB , one
immediately sees that

K K† = Q2, (49)

and

K† K =
[

Q2 0AB

0BA 0BB

]
, (50)

where 0BA and 0BB are matrices of order (dB − dA) × dA and
(dB − dA) × (dB − dA), respectively, with all entries equal to
zero. When dA = dB , we obtain K†K = KK† = Q2. It will be
useful to parametrize our matrices in terms of the generators
{T j

α } of SU(dj ), normalized as Tr [T j
α T

j

β ] = δαβ . They can

be separated into the Cartan subalgebra generators H
j
α with

[Hj
α ,H

j

β ] = 0, and the nondiagonal generators P
j
α . Since Q is

a diagonal matrix, we can write

KK† = Q2 = 1

dA

+ qA

√
dA − 1

dA

q̂A · HA, (51)

and

K†K = 1

dB

+ qB

√
dB − 1

dB

q̂B · HB. (52)

Here, qj = qj q̂j ∈ R d2
j −1 is the purity vector associated

with the reduced density matrix of qudit j (j = A,B). As
before, its absolute value is related to the state purity of qudit j
through Tr[ρ2

j (0)] = q2
j + (1 − q2

j )/dj . From Tr[(K K†)2] =
Tr[(K†K)2] = Tr[Q4], one easily shows that the norms of the
two purity vectors are related by

q2
B

dB − 1

dB

= q2
A

dA − 1

dA

+ dB − dA

dAdB

. (53)

Moreover, the components of q̂B are not all independent
because of the zeros on the diagonal of K†K as given by
Eq. (50). In fact, there will be only dA independent elements
in q̂B . Of course, if dA = dB , then KK† = K†K = Q2 and
the same generators as well as the same purity vector can be
used for both qudits.

It is now important to identify the following invariants
under local unitary evolutions: Tr[ρp

j ], p = 1, . . . ,d, where ρj

is the reduced density matrix with respect to qudit j . In fact,
the invariants are j independent since one easily shows that
Tr[ρp

A] = Tr[ρp

B] = Tr[Q2p]. The first one (p = 1) is simply
the norm of the state vector, as already stated. The second
invariant is related to the I concurrence of a two-qudit pure
quantum state [40],

C =
√

2(1 − Trρ2
j ) =

√
1 − q2

ACm, (54)

where

Cm ≡
√

2

(
dA − 1

dA

)
(55)

is the I concurrence for maximally entangled states. The invari-
ance of C expresses the well-known fact that entanglement is
not affected by local unitary operations. The p = dA invariant
can be rewritten in terms of the former and D = | det Q|. In

particular, for qubits, we have C = 2D. In order to exploit the
role played by these invariants in the geometric phase, we shall
make them explicit in the expression of Q2 by expressing the
norm of the purity vector in terms of the I concurrence, giving

Q2 = 1

dA

+
√

C2
m − C2

2
q̂A · HA

= 1

dA

+
√

C2
m − C2

2
diag [x0 . . . xd−1] , (56)

with xn = 〈n|q̂A · HA|n〉, ∑n xn = 0, and
∑

n x2
n = 1.

B. Fractional phases

Following [9,10], we shall define as cyclic those evolutions
for which the initial and final state vectors are related by a
global phase factor, α′ = eiθα, thus defining a closed path in
the projective space of states P . In other words, the final state
of a cyclic evolution is physically equivalent to the initial one.
The geometric phase acquired by a time-evolving pure state
α(t) is given by

φg = arg 〈ψ(0)|ψ(t)〉 + i

∫
dt〈ψ(t)|ψ̇(t)〉

= arg{Tr[α†(0)α(t)]} + i

∫
dtTr[α†(t)α̇(t)], (57)

which corresponds to the total phase

φtot ≡ arg{Tr[α†(0)α(t)]}, (58)

minus the dynamical phase. We now use the singular value
decomposition to investigate the contribution originated from
each sector of the coefficient matrix. First, we can write the
total phase as

φtot = φ(t) − φ(0) + φ̄tot , (59)

where

φ̄tot ≡ arg
{
Tr

[
α†(0)ŪA(t) α(0)Ū T

B (t)
]}

(60)

is the contribution brought by the SU(dj ) sectors. We can
investigate the dynamical phase using the singular value
decomposition; using Eq. (46), we obtain

Tr[α†α̇] = iφ̇ + Tr[S†
AṠAKK† + K†KS

†
BṠB]

= iφ̇ + Tr[ρA(0)Ū †
A

˙̄UA + ρB(0)Ū †
B

˙̄UB]. (61)

Note that the trivial phase evolution φ(t) cancels out when
Eqs. (59) and (61) are used in the geometric phase expression,
so that we are left with

φg = φ̄tot −
∫

Tr[ρA(0)Ū †
A

˙̄UA + ρB(0)Ū †
B

˙̄UB]dt. (62)

The reduced density matrices at t = 0 can also be expanded
in terms of the identity matrix and the generators of SU(dj ) as

ρj (0) = 1

dj

+ qj

√
dj − 1

dj

q̂′
j · Tj . (63)

Note that q̂j and q̂′
j are connected by an initial rota-

tion in R d2
j −1, which is contained in the adjoint repre-

sentation of SU(d). This is determined by Sj (0) through
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Sj (0)(q̂j · Hj )S†
j (0) = q̂′

j · Tj . In particular, if the local bases
are chosen in order to diagonalize the initial two-qudit density
matrix, then we can make Sj (0) = 1 and q̂′

j = q̂j .
Let us consider a cyclic evolution over the time interval

T , α(T ) = eiθα(0). By defining the local velocity vectors
uj according to Ū

†
j

˙̄Uj = iuj · Tj and using the orthogonality
condition for the generators, we arrive at

φg = φ̄tot −
√

C2
m − C2

2

∮
q̂′

A · dxA

−
√

C2
m − C2

2
+ dB − dA

dAdB

∮
q̂′

B · dxB, (64)

where dxj = uj dt .
Now, let us analyze the total phase. Since α(T ) =

eiφ(T )SA(T )KST
B (T ), and the K sector is time independent, the

global phase θ acquired by the two-qudit system is composed
of a trivial phase evolution plus the contributions from the
SU(dj ) sectors,

θ = φ(T ) − φ(0) + θA + θB, (65)

where Sj (T ) = eiθj Sj (0) (j = A,B). However, det Sj (T ) =
eidj θj det Sj (0), and since these evolutions are closed in the
space of SU(dj ) matrices, we arrive at

θj = 2π
nj

dj

, (66)

where nj ∈ Z. Therefore, the trivial phase is canceled by the
integral term and only fractional phase values can arise from
the SU(dj ) sectors,

φ̄tot = 2π

(
nA

dA

+ nB

dB

)
. (67)

Then, the geometric phase acquired in the cyclic evolution
becomes

φg = 2π

(
nA

dA

+ nB

dB

)
−

√
C2

m − C2

2

∮
q̂′

A · dxA

−
√

C2
m − C2

2
+ dB − dA

dAdB

∮
q̂′

B · dxB. (68)

Equation (68) evidences the roles played by entanglement and
the dimensions of the qudit Hilbert spaces. When dA = dB , it
reduces to the result reported in Ref. [20] with n = nA + nB .
In this case, as anticipated in Sec. II, for maximally entangled
states, the partial traces give a completely mixed density matrix
for each qudit, so that only fractional geometric phases are
allowed. Here, since the complete two-qudit state considered
is pure, these fractional phases can be evidenced through
conditional interference [21] when the qudits are locally
operated with SU(d) transformations.

C. The two-qudit Cartan sector

Similarly to Sec. II A, the local unitary evolutions can be
decomposed into the Cartan U(1)dj −1 sector and the coset
manifold SU(dj )/U(1)dj −1. This decomposition gives rise to
two separate integral terms, as in Eq. (17). Let us assume
that the local basis is chosen so as to make the matrix α(0)

diagonal. In this representation, Sj (0) = 1 and the reduced
density matrices at t = 0 are simply

ρA(0) = 1

dA

+
√

C2
m − C2

2
q̂A · HA,

(69)

ρB(0) = 1

dB

+
√

C2
m − C2

2
+ dB − dA

dAdB

q̂B · HB.

Now, we can employ the decomposition in Eq. (9),

Ūj = V̄j exp(ihj · Hj ) (70)

(j = A,B) and separate the Cartan sectors for each qudit
evolution. The velocity vectors uA and uB can be decomposed
as in Eq. (15), uj = v′

j⊥ + vj‖ + ḣj . Since the reduced density
matrices are written in a diagonal representation, q̂j · v′

j⊥ = 0
so that only vj ‖ and ḣj will contribute to the integral term
in the geometric phase. The contribution from ḣj is path in-
dependent (holonomic). The path-dependent (nonholonomic)
contribution from vj ‖ captures the geometric nature of the
evolution in SU(dj )/U(1)dj −1.

Suppose that, at time t̄ , a partially cyclic evolution occurs.
Then, we have

φg = φ̄tot −
√

C2
m − C2

2
[q̂A · hA(t̄) + �A]

−
√

C2
m − C2

2
+ dB − dA

dAdB

[q̂B · hB(t̄) + �B], (71)

where

�j =
∮

q̂j · dxj‖, (72)

and dxj‖ = vj‖dt (j = A,B).
For partially cyclic evolutions, the same argument leading

to Eq. (19), here implies

Ūj (t̄) = exp[ihj (t̄) · Hj ], (73)

φ̄tot ≡ arg{Tr[α†(0)eihA(t̄)·HA

α(0)eihB (t̄)·HB

]}. (74)

If, in addition, the evolution is cyclic, then the condition

Ūj (T ) = exp[ihj (T ) · Hj ] = exp i(2πnj/dj )1 (75)

must be satisfied, and the geometric phase is given by Eq. (71),
with t̄ → T , and φ̄tot given by the fractional values in Eq. (67);
for qudits with equal dimensions dA = dB = d,

φg = 2π

d
(nA + nB) −

√
C2

m − C2

2
q̂ · [hA(T ) + hB(T )]

−
√

C2
m − C2

2
(�A + �B). (76)

For given nj values, there is a discrete set {hj (T )}nj
of

solutions to Eq. (75), forming a lattice in R dj −1, which must
be attained by hj (t) in order to produce closed paths in the
projective space of states P . Those cyclic evolutions {hj (t)}0

characterized by nj = 0 also describe closed paths in SU(dj ),
so they are topologically trivial, as SU(dj ) is simply connected.
On the other hand, take for example cyclic evolutions {hj (t)}1,

032106-7



A. Z. KHOURY AND L. E. OXMAN PHYSICAL REVIEW A 89, 032106 (2014)

characterized by nj = 1. They correspond to topologically
nontrivial closed paths in P as (i) they are open in SU(dj ), so
the triviality of closed paths in SU(dj ) does not apply in this
case, (ii) the lattices {hj (T )}0 and {hj (T )}1 are different, and
(iii) the general condition (75), to keep the paths closed in P ,
lead to discrete possibilities, with no solutions continuously
interpolating the nj = 0 and nj = 1 lattices.

Note that closed paths with a fixed base point, and open
paths with fixed endpoints, are fundamental elements to
characterize the topological structure of a manifold. As is
well known, the consideration of equivalence classes of closed
paths, and the natural product based on their composition, leads
to the first homotopy group.

For example, consider an evolution that interchanges a pair
of anyons. This would correspond to a closed path in the
configuration space of indistinguishable particles on the plane,
as well as a closed path in the projective space of two-anyon
states. To generate the fractional statistics phases, this type of
evolution should be controlled. A similar physical content is
contained in the necessary condition (75) to generate closed
paths in the projective space P for a qudit pair.

D. Diagonal evolutions

Consider two qudits with the same Hilbert-space dimension
d that are locally operated by diagonal SU(d) matrices Ūj =
diag[eiχj0 . . . eiχj (d−1) ] (j = A,B) starting from the initial state

|ψ(0)〉 =
d−1∑
n=0

(
1

d
+ q

√
d − 1

d
xn

)1/2

|nn〉. (77)

In this case, ρA(0) = ρB(0) = Q2. The geometric phase
reduces to

φg = φ̄tot −
√

C2
m − C2

2

d−1∑
n=0

xnχT n, (78)

where χT n = χAn + χBn. Since the coefficient matrix and the
local operations are diagonal, the evolution is partially cyclic
at any time t . Then, we can use Eq. (74) to obtain

φ̄tot = arg

{
d−1∑
n=0

(
1

d
+

√
C2

m − C2

2
xn

)
eiχT n

}
. (79)

We note that Eqs. (78) and (79) are very similar to (23)
and (24). However, for diagonal transformations of entangled
states (with dA = dB), the overall cyclic transformation can
be composed of local noncyclic operations, since the total and
geometric phase only depend on hA(t) + hB(t). This fact is
crucial for experimental investigations of the fractional phases
and the role played by entanglement.

IV. EXAMPLES

A. Qubits revisited

As an illustration of the methods used in the previous
section, we now consider a two-qubit system (dA = dB = 2)
initially prepared in the state

|ψ(0)〉 =
√

1 + q|00〉 + √
1 − q|11〉√

2
, (80)

with 0 � q � 1. Note that any two-qubit pure state can be cast
in this form by a suitable local basis choice. In this case, a
single purity vector q can be used for both qubits. For the state
given by Eq. (80), the concurrence is C =

√
1 − q2, and

Q2 =
⎡
⎣ 1+q

2 0

0 1−q

2

⎤
⎦ = 1

2
+

√
1 − C2

2
σz. (81)

Also, we may choose SA(0) = SB(0) = 1. The associated
purity vector simply is q = (

√
1 − C2,0,0). Let us assume

that these qubits evolve under local unitary operators Uj (t) =
eiφj (t)Ūj (t) (j = A,B), where Ūj is a SU(2) matrix acting on
qubit j and φj is the corresponding global phase introduced
by Uj . As in Sec. II B, we can make

Ūj (θj ,ϕj ,χj ) = V̄j (θj ,ϕj )eiχj σz , (82)

and

V̄j (θj ,ϕj ) = exp(iθj p̂j · Pj )

=
[

cos θj

2 i sin θj

2 e−iϕj

i sin θj

2 eiϕj cos θj

2

]
, (83)

where p̂j = (0, cos ϕj , sin ϕj ). Here, ϕj (t), θj (t), and χj (t) are
time-dependent real parameters with initial conditions ϕj (0) =
θj (0) = χj (0) = 0. As before, ϕj (t) and θj (t) can be identified
with angular coordinates on two separate Bloch spheres, one
for each qubit. Thus, the velocity vector corresponding to each
evolution is given by vj = (vj

h,v
j

p1,v
j

p2), where

v
j

h =
√

2 ϕ̇j sin2

(
θj

2

)
,

v
j

p1 = 1√
2

(θ̇j cos ϕj − ϕ̇j sin θj sin ϕj ), (84)

v
j

p2 = 1√
2

(θ̇j sin ϕj + ϕ̇j sin θj cos ϕj ),

and the component of u along the Cartan direction is

v
j

h +
√

2χ̇j . (85)

Now, from Eqs. (33) and (34), the geometric phase for a
pair of qubits following a cyclic evolution under local unitary
operations reduces to

φg = nπ −
√

1 − C2

2
(�A + �B) , (86)

where n = nA + nB . This is a quite intuitive result in which we
identify the topological contribution first predicted in Ref. [16],
and the sum of the usual solid angle contributions from both
qubits weighted by entanglement. For maximally entangled
states, only the two fractional values are left.

It will be particularly interesting to investigate the geomet-
ric phase acquired under partially cyclic evolutions. For these
evolutions,

[
θj (t),ϕj (t)

]
follows a closed path on the Bloch

sphere, but χj (t) does not necessarily make a full cycle. In this
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case, the geometric phase becomes

φg = arctan[
√

1 − C2 tan(χA + χB)]

−
√

1 − C2

(
χA + χB + �A + �B

2

)
. (87)

For product states (C = 0), the χj terms cancel out and
give no contribution to the geometric phase, which is then
determined by the individual solid angles enclosed in the
separate Bloch spheres. As the concurrence increases, the solid
angle contributions diminish and a net effect of the χj terms
appears as a stepwise variation of the geometric phase as a
function of χT = χA + χB . For maximally entangled states
(C = 1), the solid angle contributions completely vanish and
the stepwise evolution degenerates to a discontinuous jump
from 0 to π , which are the allowed fractional phases for
qubits. This simple example illustrates the role played by
entanglement in the way the geometric phase is built during
the evolution.

The result given by Eq. (87) is a generalization of Eq. (9)
in Ref. [20] for the case where both qubits are operated. It is
also very similar to Eq. (36) in Sec. II B, especially if we
notice that

√
1 − C2 = q. Of course, this similarity is not

surprising once we realize that the partial density matrices of
the entangled qubits [ρA(0) = ρB(0) = Q2; see Eq. (81)] are
identical to the single-qubit mixed state considered in Eq. (27).
Therefore, the entanglement signature on the geometric phase
evolution is directly related to the purity of the partial traces
of the two-qubit density matrix. However, there are two
important differences between the two cases. First, since the
two-qubit entangled state considered here is pure, we can
expect the fractional phases to be experimentally observable.
Second, the geometric phase acquired by the entangled qubits
depends on χT = χA + χB , which means that the overall cyclic
transformation can be split into local noncyclic operations
applied to the entangled qubits separately.

B. Qutrits

For the two-qutrit case, we will restrict our analysis to local
evolutions in the 3 × 3 Cartan sector of each qutrit ŪA(t) ⊗
ŪB(t) , where

Ūj (t) =

⎡
⎢⎣

eiχj0 0 0

0 eiχj1 0

0 0 eiχj2

⎤
⎥⎦ , (88)

with j = A,B and χj0 + χj1 + χj2 = 0.
Let us suppose that the local basis is chosen so as to leave

the initial two-qutrit pure state in the form

|ψ(0)〉 = 1√
3

[
√

1 + 2q cos(θ + 2π/3)|00〉

+
√

1 + 2q cos(θ + 4π/3)|11〉
+

√
1 + 2q cos θ )|22〉], (89)

where 0 � q � 1, −θ0(q) � θ � θ0(q), and θ0(q) is given by
(40). The maximal concurrence for qutrits is Cm = √

4/3 and
the concurrence of state (89) is C = Cm

√
1 − q2. Since the

coefficient matrix α(0) and the local unitary operations are all

diagonal, the calculation of the nontrivial total phase φ̄tot is
significantly simplified as

φ̄tot = arg{Tr[Q2ŪA(t)ŪB(t)]}, (90)

where

Q2 = 1

3
+ 2q

3

⎡
⎢⎢⎢⎣

cos
(
θ + 2π

3

)
0 0

0 cos
(
θ + 4π

3

)
0

0 0 cos θ

⎤
⎥⎥⎥⎦ .

(91)

Also, the partial density matrices for qutrits A and B at t = 0
are equal to Q2. Therefore, the geometric phase becomes

φg = φ̄tot − 2q

3

[
χT 0 cos

(
θ + 2π

3

)

+ χT 1 cos

(
θ + 4π

3

)
+ χT 2 cos θ

]
, (92)

where χT n = χAn + χBn, and the nontrivial total phase is

φ̄tot = arg

{
eiχT 0

[
1

3
+ 2q

3
cos

(
θ + 2π

3

)]

+ eiχT 1

[
1

3
+ 2q

3
cos

(
θ + 4π

3

)]

+ eiχT 2

[
1

3
+ 2q

3
cos θ

]}
. (93)

Equations (92) and (93) are very similar to the single-qutrit
result given by Eqs. (42) and (43). However, the diagonal
phase shifts χn are replaced by the total phase shifts χT n,
showing the nonlocal character of the geometric phase. For
maximally entangled states (q = 0 ⇒ C = Cm), the integral
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FIG. 1. (Color online) Parametric plot of the quantum state over-
lap for a two-qutrit evolution given by Eqs. (94). (a) q = 0 (C =√

4/3), (b) q = 0.2, (c) q = 0.6, (d) q = 1 (C = 0). The unit circle
is depicted by a dashed red curve for reference.
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FIG. 2. (Color online) Parametric plot of the quantum state over-
lap for a two-qutrit evolution given by Eqs. (95). (a) q = 0 (C =√

4/3), (b) q = 0.2, (c) q = 0.6, (d) q = 1 (C = 0). The unit circle
is depicted by a dashed red curve for reference.

term vanishes, so that φg = φ̄tot . In Fig. 1, we show a
parametric plot of the overlap 〈ψ(0)|ψ(t)〉 in the complex
plane for θ = 0 and different values of q. The diagonal phase
shifts are evolved according to

χT 0 = χT 1 = t, χT 2 = −2t. (94)

For the maximally entangled state (q = 0), the overlap presents
sharp peaks, touching the unit circle at the fractional phases
expected for cyclic evolutions of qutrits. As q is increased, the
path followed in the complex plane degenerates to a circle for
q = 1 (product state).

A second kind of evolution is considered in Fig. 2 in which
the maximally entangled state follows sharp phase jumps
between the fractional values. As entanglement is decreased,
these jumps also degenerate to a continuous phase evolution
(circle) for the product state. The diagonal phase shifts are
evolved as

χT 0 = −t,

χT 1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

t (0 � t � 2π/3)

2π/3 (2π/3 � t � 4π/3)

t − 2π/3 (4π/3 � t � 2π )

4π/3 (2π � t � 8π/3)

t − 4π/3 (8π/3 � t � 10π/3)

2π (10π/3 � t � 4π ),

(95)

χT 2 = −(χT 0 + χT 1).

It is interesting to inspect how the overlap path is affected
when the diagonal phase shifts evolve at very different speeds.
For example, consider a maximally entangled state evolving
according to

χT 0 = t, χT 1 = 30t, χT 2 = −31t. (96)
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)|

ψ
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FIG. 3. (Color online) Parametric plot of the quantum state over-
lap for a pair of maximally entangled qutrits under the joint evolution
given by Eqs. (96). The unit circle is depicted by a dashed red curve
for reference.

The corresponding result is displayed in Fig. 3. A complicated
trajectory appears within the limits of the perimeter defined
by Fig. 1(a). This result raises the question of whether this
fractional phase structure could still be observed under random
local SU(3) transformations.

It is also interesting to compare the evolution of a maximally
entangled state with partially entangled states having the same
single-qutrit probability distribution. For example, let us take
the initial state

|ψ(0)〉 =
√

q

3
( |00〉 + |11〉 + |22〉)

+
√

1 − q

6
( |01〉 + |02〉 + |12〉

+ |20〉 + |21〉 + |10〉), (97)

with q ranging between 1/3 for the product state and 1 for
the maximally entangled state. The probability distribution for
qutrit A is

P A
n =

2∑
m=0

|〈nm|ψ(0)〉|2 = 1

3
, (98)

for n = 0,1,2, and similarly for P B
n . To illustrate the role of

entanglement, we can take the following parametric evolution:

χA0 = χA1 = t, χA2 = −2t,
(99)

χB0 = χB1 = 2t, χB2 = −4t,

where the local phase shifts are asymmetrical. The parametric
plot of the state overlap when the qutrits are subjected to the
evolution given by Eqs. (99) is presented in Fig. 4. As we can
see, only the maximally entangled state achieves maximum
overlap at the fractional phases expected for qutrits. This
comparison was used in Refs. [21] and [23] in the context of
entangled photon pairs, where the quantum state overlap was
associated to the visibility of two-photon interference fringes.
Maximum visibility (overlap) can only occur with maximally
entangled states at the allowed fractional phases.
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FIG. 4. (Color online) Parametric plot of the quantum state over-
lap for a two-qutrit evolution given by Eqs. (99). (a) q = 1/3 (C = 0),
(b) q = 1/2, (c) q = 2/3, (d) q = 1 (C = √

4/3). The unit circle is
depicted by a dashed red curve for reference.

C. Qubit-qutrit

We now illustrate the simplest case with asymmetrical
Hilbert spaces. Let us consider a qubit-qutrit system (dA =
2,dB = 3) initially prepared in the state

|ψ(0)〉 =
√

1 + q|00〉 + √
1 − q|11〉√

2
, (100)

with 0 � q � 1. The reduced density matrices of the qubit and
the qutrit are

ρA(0) = Q2, ρB(0) =
[
Q2 0

0 0

]
, (101)

where

Q2 = 1

2
+

√
1 − C2

2
σz, (102)

and C =
√

1 − q2 is the qubit-qutrit concurrence. First, let us
suppose that both the qubit and the qutrit evolve under local
diagonal operations such that

ŪA(t) =
[
eiχA 0

0 e−iχA

]
,

ŪB(t) =
⎡
⎣eiχB0 0 0

0 eiχB1 0
0 0 eiχB2

⎤
⎦ , (103)

with χB0 + χB1 + χB2 = 0. Then, the geometric phase ac-
quired is

φg = arctan

[√
1 − C2 tan

(
χA + χB0 − χB1

2

)]

−
√

1 − C2

(
χA + χB0 − χB1

2

)
. (104)

This result is identical to the two-qubit geometric phase if we
make the identification χB ≡ (χB0 − χB1)/2. Note that state
(100) does not include the third component of the qutrit, which
remains unaffected as long as only diagonal operations are
performed. Thus, the qutrit behaves as an effective qubit and
only two-qubit fractional phases can be observed.

In order to evidence the dual dimensional structure of the
qubit-qutrit system, using only diagonal evolutions, we must
consider an initial state with all qubit and qutrit components.
We can build a simple numerical example with the following
maximally entangled state:

|ψ(0)〉 = 1√
2
|00〉 + 1

2
|11〉 + 1

2
|12〉, (105)

for which Q2 = 12×2/2, SA(0) = 12×2, and

SB(0) =

⎡
⎢⎣

1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

⎤
⎥⎦ . (106)

According to Eq. (68), the integral contribution for the
geometric phase never vanishes for qudits with different
dimensions, even for maximally entangled states. The dual
dimension behavior, however, will still be present in the
nontrivial total phase φ̄tot . Let us consider the local diagonal
evolutions given by Eqs. (103). In this case, we obtain

φ̄tot = arg

{
cos

(
χA − χB2 − χB1

2

) e−iχB1/2

2

+ cos
(
χA − χB1 − χB2

2

) e−iχB2/2

2

}
, (107)

and

φg = φ̄tot − χB0

4
. (108)

The fractional phases expected for a qubit-qutrit system are

φ̄tot = nπ + 2mπ

3
, (109)

with n,m ∈ Z. Therefore, the qubit-qutrit system can exhibit
the qubit, the qutrit, or a combination of both topological
phases when subjected to cyclic evolutions under SU(2) ⊗
SU(3) operations. In Fig. 5, different diagonal evolutions are
considered. In all cases, the qutrit is operated by

χB0 = χB1 = t,

χB2 = −2t, (110)

while different evolutions are considered for the qubit. The
dual phase behavior can be observed in Fig. 5(a), while
Figs. 5(b) and 5(c) display the qutrit and qubit phases,
respectively. The dual phase behavior also becomes evident
when we make the qubit evolution much faster than the qutrit,
as in Fig. 5(d). In this case, a complicated path is drawn by
the quantum state overlap in the complex plane, touching the
unit circle only when the fractional phases allowed for the
qubit-qutrit system are attained.
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FIG. 5. (Color online) Parametric plot of the qubit-qutrit quan-
tum state overlap for the initial condition given by Eq. (105). (a)
χA = 1.5t , (b) χA = 3t , (c) χA = 3.5t , (d) χA = 100t . The unit circle
is depicted by a dashed red curve for reference.

V. CONCLUSION

In this article, we presented a detailed description of
the geometric phase acquired by entangled qudits operated
by local unitary transformations. Our previous result [20]
was detailed and extended to pairs of qudits with general
dimensions dA and dB . This was achieved by utilizing the
singular value decomposition of the coefficient matrix defined
by the two-qudit quantum state. This decomposition involves
a pair of matrices in SU(dA) and SU(dB), respectively, with
the dimensions of the individual qudit Hilbert spaces. The
fractional phase values naturally appear as the possible factors
arising from cyclic evolutions of these local components.
They completely encompass the geometric phase acquired by

maximally entangled qudits with equal dimensions, subjected
to cyclic evolutions. However, in a more general scenario
where partially entangled states or different qudit dimensions
are considered, the geometric phase can assume continuous
values in addition to the fractional phase contribution.

To put in evidence the role played by entanglement and the
SU(d) parameters of the local transformations, we used the ge-
ometric phase derived by Mukunda and Simon in Refs. [9,10],
as well as the decomposition of the local transformations into
the Cartan and coset SU(d)/U(1)d−1 sectors. In particular,
we showed that the geometric phase given by Mukunda and
Simon gives rise to a holonomic contribution built in the Cartan
sector and a nonholonomic one built in the coset sector. Our
results regarding the fractional phases in higher dimensions
were illustrated with numerical examples for two-qutrit and
qubit-qutrit systems. This investigation could be applied to
different experimental contexts, including entangled photon
pairs created by spontaneous parametric down conversion,
nuclear magnetic resonance, trapped ions, and other setups
dealing with entangled states.

Qudit gates based on topological phases are a potentially
robust means to implement quantum algorithms [43–45]. In
order to demonstrate the usefulness of the fractional phases
for quantum information protocols, it will be crucial to
investigate the phase evolution under local random unitary
transformations. It is well known that two-qubit entangled
states are robust against certain kinds of noise [46], which
motivated an alignment free quantum cryptography protocol
[47,48]. We shall leave the investigation of the fractional
phases under noisy evolutions to a future contribution.
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