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Spin effects and the Pauli principle in semiclassical electron dynamics
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Several approaches to the semiclassical dynamics of fermions have been proposed in the past. The main subject
under discussion was the inclusion of the Pauli principle, i.e., the fact that two electrons with parallel spins must
be in orthogonal states. In the past, this was sometimes achieved by adding repulsive Pauli potentials or by using
antisymmetric trial states. In this article we show that (a) the use of semiclassical propagators based on classical
trajectories is sufficient to account for the Pauli principle, but (b) a semiclassical wave-function approach is not
satisfactory.
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I. INTRODUCTION

Recent advances in attosecond physics have renewed the
interest in the theoretical description of electron dynamics at
ultrafast time scales. Especially when high-energy phenomena
are of interest, such as strong-field ionization, it should be
reasonable to approximate the dynamics using a semiclassical
approach. However, for more than one electron one has to
take the spin symmetry into account and, as a consequence,
the Pauli exclusion principle. Electrons, or more generally
fermions, with parallel spins have to be in orthogonal states.
The first dynamical treatment of fermions (especially nucle-
ons) was made using completely classical dynamics, with an
additional momentum-dependent Pauli potential, to keep the
fermions apart [1–4]. Boal and Glosli [3] stated that classical
dynamics “incorporates antisymmetrization effects through
a momentum dependent potential.” As an exemplary case,
we report here their choice for the Pauli potential between
particles i and j , although various other forms have been used
in the literature: Defining the phase-space distance (with fitting
parameter α)

X = 1
2 [α2(qi − qj )2 + (pi − pj )2/(�2α2)], (1)

a Pauli potential can then be written as

Vp(X) = α2
�

2

2m

X

eX − 1
. (2)

Already here it should be noted that a Pauli potential based
on phase-space distance cannot account for all spin effects,
because, e.g., the electrons in an atomic 1s and a 2s orbital
have zero distance.

A short time afterwards, a step from classical dynamics
to semiclassical Gaussian wave-packet (GWP) dynamics was
made, so as to include Heisenberg’s uncertainty principle.
(This approach was often termed quantum molecular dy-
namics, which is somewhat misleading.) The nuclear matter
community kept the Pauli potential [5] or introduced a Pauli
blocking [6,7] for this revised approach. The presence of
the Pauli potential led to artifacts in the simulations; e.g.,

wrong thermodynamic properties were predicted. This brought
about the development of yet another semiclassical approach.
Usually, Hartree products of GWPs are propagated in semi-
classical approaches. Instead, one could also antisymmetrize
these products to obtain determinants and rederive equations
of motion for this ansatz. One then arrives at fermionic molec-
ular dynamics (FMD) or antisymmetric molecular dynamics
(AMD) [8–11], which, despite their names, are semiclassical
methods. The basic idea is as follows: Let |�({qi,pi})〉 be a
determinant made of GWPs and spin. One then calculates a
“classical” Lagrangian,

L = 〈�|i� d

dt
− Ĥ |�〉, (3)

and obtains the equations of motion for {qi,pi} from the La-
grange equations. The main difference between this approach
and the usual semiclassical dynamics is that in Eq. (3) the
first step is an integration over position and spin variables.
This ansatz obeys automatically the Pauli and the uncertainty
principles. However, the resulting equations of motion are very
different from the classical ones, and much more complicated.

On the other hand, people have treated electrons semiclas-
sically, without a Pauli potential, and with simple Hartree
products of Gaussians, with some success. For example,
Harabati and Kay [12] used the Herman-Kluk (HK) propagator
[13,14] to describe “collinear helium” in one dimension (1D).
They obtained very good results for the binding energies of
singlet and triplet states. Similar good agreement has been
found for a harmonium system [15] (and for singlet states
in Ref. [16]). A different trajectory guided method led to
similar success for electrons in a hydrogen molecule [17]
and in Ref. [18] the cross section for (Mott) scattering of
identical particles was shown to be semiclassically exact.
These developments have led to several open questions about
what the necessary ingredients for a semiclassical description
of electron dynamics really are. Is a Pauli potential necessary?
Does one have to propagate determinants? How accurate can
semiclassical propagators be when the equations of motion do
not contain information about the spin?
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II. THEORY

The system we use to study these questions contains
two scattering electrons. Depending on their spin, they will
approach each other to different degrees, thus revealing the
effect of the Pauli principle. Additionally, many-electron
systems are governed by the pairwise interaction of electrons,
so that, if the interaction of one pair is described accurately,
it is reasonable to believe that this remains the case for more
particles. Our test system is described by a Hamiltonian of
two interacting but otherwise free electrons in one dimension
(atomic units will be used throughout):

Ĥ = p̂2
1

2
+ p̂2

2

2
+ 1√

(x1 − x2)2 + c
. (4)

The smoothing parameter c = 0.55 has often been used for
electron dynamics before (see, e.g., Ref. [19]).

The process we describe is the scattering of the two
electrons, as a function of their total spin, comparing different
semiclassical methods with exact quantum mechanical prop-
agation. Initially, the two electrons are far apart, as expressed
by the two spatial orbitals:

ϕ1(x) =
(

γ

π

)1/4

e−γ x2/2, (5)

ϕ2(x) =
(

γ

π

)1/4

e−γ (x−15)2/2+ip0x. (6)

We choose γ = 1/4 as a compromise between well-localized
electrons and a limited amount of spreading during the prop-
agation. The first orbital describes an electron at rest, and the
second an electron with momentum p0 = −2 moving towards
the first electron. These spatial orbitals can be combined to
create either a singlet,

�s(x1,x2) = 1√
2

(
1√
2

∣∣∣∣ϕ1↑ ϕ1↑
ϕ2↓ ϕ2↓

∣∣∣∣− 1√
2

∣∣∣∣ϕ1↓ ϕ1↓
ϕ2↑ ϕ2↑

∣∣∣∣
)

(7)

= 1

2
[ϕ1(x1)ϕ2(x2) + ϕ2(x1)ϕ1(x2)](|↑↓〉 − |↓↑〉),

(8)

or a triplet,

�t (x1,x2) = 1√
2

∣∣∣∣ϕ1↑ ϕ1↑
ϕ2↑ ϕ2↑

∣∣∣∣ (9)

= 1√
2

[ϕ1(x1)ϕ2(x2) − ϕ2(x1)ϕ1(x2)]|↑↑〉, (10)

wave function. The energy of the two states is identical, since
at t = 0 the electrons are far apart and the total energy is
conserved. An exact quantum mechanical propagation leads
to a time-dependent electron density, ρs(x,t), for the singlet
state, which illustrates the scattering (see Fig. 1). If the same
calculation is repeated for the triplet state, we obtain a different
density, ρt (x,t). To emphasize the difference between the two,
we show the difference density �ρ(x,t) = ρt (x,t) − ρs(x,t)
in Fig. 2. In the blue area ρs > ρt (Fermi hole), while in
the red area ρs < ρt . This demonstrates the Pauli principle:
Two electrons in a triplet cannot come as close to each other
as two electrons in a singlet. This result is independent of

FIG. 1. (Color online) Time-dependent electron density from an
exact quantum dynamical simulation for the singlet state.

the Sz eigenvalue: If a triplet with two determinants and
(|↑↓〉 + |↓↑〉) is used in Eq. (10), the result remains the same.
The case of a more general wave function, where different
spatial parts belong to different spin states, can always be
reduced to the factorizable case, if the Hamiltonian is not spin
dependent, because different spin states are orthogonal.

III. RESULTS

Given the numerically exact quantum results we can
address the question of whether the Pauli repulsion can be
reproduced by semiclassical methods and, if so, what the
necessary conditions are (Pauli potential, determinants instead
of Hartree products, etc.). First, we note that both spatial
orbitals in Eqs. (5) and (6) are chosen to be Gaussians. In
the following, we employ different propagation techniques for
those Gaussians, based on work by Heller [20,21] and Herman
and Kluk [13]. In all cases we have renormalized the numerical
results by calculating

Ns/t (t) = 〈�s/t (t)|�s/t (t)〉 (11)

and dividing the wave function by
√

Ns,t at each time step
[14,22]. As a first test we consider the frozen and thawed
Gaussian propagation of the wave function [20], whereby only
a single trajectory per Gaussian is necessary. The observable
used to show the effect of the Pauli repulsion is 〈(x̂1 − x̂2)2〉1/2

(the distance between the two electrons). Results are shown
in Fig. 3. One notes that the quantum mechanical expectation
values agree initially, with a larger distance for the triplet
at later times, as expected from the previous considerations.

FIG. 2. (Color online) Difference density �ρ(x,t) = ρt (x,t) −
ρs(x,t). In the triplet case, the electrons keep a larger distance because
of Pauli repulsion.
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FIG. 3. (Color online) Expectation values 〈(x1 − x2)2〉1/2 for the
exact propagation and the frozen and thawed Gaussian wave-packet
propagations.

While the two electrons are close to each other, the triplet
experiences a stronger repulsive force, so that the triplet-singlet
difference approaches a constant value at long times. (The final
kinetic energies must be the same.) In contrast, the frozen and
thawed Gaussian results show almost no difference between
singlet and triplet, except for a very short time during the
collision. This can be understood using the analytic results
shown in Appendix. Using the relative coordinate ŷ = x̂1 − x̂2

we find for the triplet-singlet difference

�y2 = εt

Reγt sinh(εt )
� 0, (12)

with

εt = Reγt

(
q2

t + 1

Reγt

(pt + Imγtqt )
2

)
. (13)

The difference �y2 is largest for εt = 0 and approaches zero
for large values of εt . From Eq. (13) it follows that εt is small
during the collision, but grows quadratically with the distance
qt . Therefore, the semiclassical approximations to the wave
function cannot reproduce the long time difference between the
two spin states. Only if εt is small, i.e., when the wave packets
overlap and interference becomes possible, can a difference
occur. The different sign of the spatial superposition then leads
to the difference in the expectation value. However, Eq. (12)
tells us also that the distance between singlets can never be
smaller than the distance between triplets, in agreement with
the exact calculation.

After the semiclassical approximation to the wave function,
we consider semiclassical approximations to the propagator
and here especially the HK propagator, which has been
developed in Refs. [13,14]; for an early review see Ref. [23].
The HK time-evolution operator (for two electrons in 1D)
which approximates the exact quantum time evolution is given
by

KHK(t) =
∫

Rqpt e
iSqpt

2∏
k=1

|g(qk,pk,t)〉〈g(qk,pk,0)|dqkdpk

2π�
,

(14)

0 2 4 6 8 10 12 14
time (atomic time units)

0

4

8

12

16

<
(x

1-x
2)2 >

1/
2  (

bo
hr

)

QM singlet
QM triplet
HK singlet
HK triplet
FG singlet
FG triplet

FIG. 4. (Color online) Comparison of exact quantum mechanical
expectation values with semiclassical results from the semiclassical
HK propagation and prefactor-free frozen Gaussian (FG) prop-
agation. Both semiclassical methods show noticeable differences
between parallel and antiparallel spins.

with q = (q1,q2),p = (p1,p2), and the bare potential in the
expression for the action Sqpt . Furthermore, it contains a
prefactor, Rqpt , which is dependent on the so-called sta-
bility or monodromy matrix and accounts among others
for approximate normalization of the dynamics [14,24]. It
differs in a fundamental way from the single trajectory
approaches used before by containing an integral over phase
space.

As shown in Fig. 4 (see black and red lines), HK
semiclassical dynamics using 105 trajectories reproduces the
quantum results and the difference between the singlet and
triplet states extremely well. In order to understand if the
phase-space integration is responsible for the good results
of HK, we repeated the calculation (using 105 trajectories)
with the prefactor set to 1, see blue lines in Fig. 4. In both
cases, the wave function has been renormalized [22]. Apart
from the renormalization, this is similar to the conventional
frozen Gaussian approach [21]. In this case too, the differ-
ence between singlet and triplet states is well reproduced,
although some of the accuracy is lost. From these results
we conclude that for the distinction of singlets and triplets
it is sufficient to allow interference of trajectories, creating
“collective correlation,” in the nomenclature of E. Heller [21].
The semiclassical time-evolution operator is similar to its exact
quantum counterpart exp(−iĤ t), which also acts only on the
spatial part of the initial state and does not depend on the
spin degrees of freedom. We note that all four semiclassical
propagation methods discussed are symmetric with respect to
exchange of electrons, so that the antisymmetry of the initial
state is preserved.

Finally, we also studied the time evolution of the dis-
tance using what is known as classical Wigner dynamics
[25,26] or, equivalently, the linearized semiclassical initial
value representation [27,28] developed in the Miller group.
Here, a phase-space integration is performed, but no phase
information is used during the propagation. As a consequence,
the difference between the singlet and triplet states, as might
have been expected, is lost.

In the simulations described above, only a single
observable was discussed. However, we would like to
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point out that, if the time-dependent distance is correctly
reproduced, then also the velocities or momenta must be
correct and also, at least substantially, the kinetic and potential
energies.

To summarize, we have shown that neither Pauli potentials
nor symmetry adapted trial states are needed to capture
the difference between the interactions of electrons with
parallel and antiparallel spin. Both the frozen Gaussian
approach of Heller and the HK propagator reproduce the
dynamics correctly. In contrast, neither of the single trajectory
approaches gives correct results. For both spins, the electrons
come far too close together. The semiclassical propagators
can reproduce the singlet or triplet difference well since they
are acting on the spatial part of the wave function only. The
difference between the singlet, Eq. (8), and the triplet, Eq. (10),
wave functions is the change of sign between the Hartree
products. As long as this phase difference is propagated in
time correctly, all observables will have the correct time
dependence. The present study however cannot answer the
question of whether the propagation of determinants instead
of Hartree products, i.e., FMD, might be more efficient.
A study by Shalashilin [29] found that the description of
double ionization using FMD is considerably easier than
that using coupled coherent states. A systematic comparison
of FMD with semiclassical initial value representation and
HK, with regard to the number of trajectories and the
complexity of the equations of motion, has to be left for the
future.
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APPENDIX: ANALYTIC RESULTS
FOR SINGLE TRAJECTORY PROPAGATIONS

If the semiclassical approximation is made to the wave
functions (8) and (10), it is possible to derive some analytic
expressions for the difference between the singlet result and
the triplet result. To do so, we first introduce the difference
coordinate y = x1 − x2. The propagation in the center-of-mass
coordinate is trivial and can therefore be ignored here. The
spatial part of the wave packet in the relative coordinate is
then

〈y|
±,t (p,q)〉 = N
(
e−γt (y−qt )2/2+ipt (y−qt )

± e−γt (y+qt )2/2−ipt (y+qt )
)
, (A1)

with qt and pt being the position and momenta propagated
according to the classical equations of motion, and γt being the
(possibly time-dependent) inverse width of the wave packet,
which obeys the equation of motion

dγt

dt
= −2iγ 2

t + i
d2V

dy2
. (A2)

In the wave function the + corresponds to the singlet wave
function (antisymmetric in spin) and the − to the triplet
wave function (antisymmetric in space). We can now calculate
the expectation value for the relative coordinate using only
Gaussian integration,

〈
±,t |ŷ2|
±,t 〉 = 1

2Reγt

+ q2
t ∓ εt exp(−εt )

Reγt [1 ± exp(−εt )]
, (A3)

and the difference between triplet and singlet,

�y2= 〈
−,t |ŷ2|
−,t 〉 − 〈
+,t |ŷ2|
+,t 〉= εt

Reγt sinh(εt )
�0,

(A4)

with

εt = Reγt

(
q2

t + 1

Reγt

(pt + Imγtqt )
2

)
. (A5)

The interpretation of these results is given in the main text.
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