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Determining an n-qubit state by a single apparatus through a pairwise interaction

Hengyan Wang,1 Wenqiang Zheng,1 Yafei Yu,2 Min Jiang,1 Xinhua Peng,1,3,* and Jiangfeng Du1,3

1Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

2Laboratory of Nanophotonic Functional Materials and Devices, LQIT & SIPSE, South China Normal University, Guangzhou 510006, China
3Synergetic Innovation Center of Quantum Information & Quantum Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

(Received 17 December 2013; published 3 March 2014)

This paper shows how one can reconstruct an unknown n-qubit state by only a single apparatus. Its core
is a redistribution of the information within an extended Hilbert space by coupling the unknown system with
an assistant system through only a pairwise interaction, which results in a one-to-one mapping between the
unknown density matrix elements and the probabilities of the occurrence of the eigenvalues of a single, factorized
observable of the composite system. In such an interaction configuration, which is more feasible in experiments,
the quality of the measurement only depends on that of the subsystem consisting a of one-qubit system coupled
to a one-qubit assistant. We analyze in detail the performance of this procedure and experimentally implement it
for reconstructing an unknown two-qubit state using a four-nuclear-spin system.
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I. INTRODUCTION

In quantum mechanics, the state of a quantum system can
be completely described by a density matrix. The results of
any measurement of the quantum system can be predicted
from the density matrix. Conversely, the information carried
by the density matrix can be extracted with measurement.
Usually the process of reconstructing an unknown quantum
state by measurement is called quantum state tomography
(QST) [1]. In the last several decades, different QST schemes
have been presented including standard QST [2,3], QST
by means of a single apparatus [4–7], QST on symmetric
informationally complete positive-operator valued measure
[8–12], QST on mutually unbiased bases [13–15], QST via
unambiguous state discrimination [16], direct QST via weak
measurement [17,18], QST via compressed sensing [19,20],
and self-calibrating tomography [21–25].

The principle of complementarity proposed by Bohr [26]
points out the issue that the measurements of certain non-
commuting observables are needed to determine a complete
quantum state. Explicitly, for an N -dimensional quantum
system, N2 − 1 parameters are required to determine its
density matrix. Measuring an observable of this quantum
system can give at most N − 1 independent parameters.
So one has to perform at least N + 1 measurements with
noncommuting observables to completely reconstructing the
unknown density matrix. The simplest example is to determine
the state of a spin-1/2 particle. Its density operator can be
written in the form ρ̂ = 1

2

∑3
i=0 piσ̂i , where the operators

σ̂i ∈ {1̂,σ̂x, σ̂y, σ̂z }, σ̂α (α = x, y, or z) are the Pauli operators,
and 1̂ is a 2 × 2 unit operator. Due to the normalization
condition and the traceless property of Pauli operators, one
has always p0 = 1. The standard QST method consists of
respectively measuring the spin components along the x, y,
and z axes. By doing this, all of pi can be obtained by Tr(ρ̂σ̂i),
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which means that we get the complete information of the
quantum state.

In this paper, we focus on another method for QST by
repeated measurements of a single observable. One practical
advantage of QST with a single observable is that it avoids
some experimental uncertainties related to measurement se-
tups for incompatible observables [4–6,27,28]. An overview
on quantum state tomography with a single observable is
given in Ref. [28]. The main idea is to redistribute the
information about the unknown quantum state into an extended
system by introducing an assistant system A whose dimension
of Hilbert space is no less than the the system S, and a
one-to-one mapping is thus generated between the unknown
density matrix ρ̂ and the joint probabilities to observe a single
observable. This can be done by either measuring a single
“universal” observable on an extended Hilbert space [29] or
measuring a single, factorized observable if we first let the
system S interact with the assistant A for some time under a
suitable, interactional measurement Hamiltonian [4]. For the
latter case, Allahverdyan et al. [4] determined the condition
which the optimized measurement Hamiltonian should meet
for the best determination of a two-level quantum system.
In Ref. [5], we studied in detail this type of measurement
under a Heisenberg coupling Hamiltonian and we found the
optimized measurement Hamiltonian for the simplest case, i.e.,
a one-qubit system coupled to a one-qubit auxiliary system.
We also experimentally demonstrated it using a nuclear
spin 1/2 as the system and a different nuclear spin 1/2 as
the assistant. Recently, we considered the case of a high-
dimensional quantum system and obtained the condition for
the best determination [6]. However, it is both theoretically and
experimentally difficult to achieve the optimal measurement
Hamiltonian for the best determination for a many-qubit
system.

In this paper, we generalize the previous results on the
two-level system to an n-qubit system, where the system S

interacts with the assistant A by only a pairwise interaction.
Such a simple Hamiltonian is feasible for the optimal measure-
ment, which overcomes both the theoretical and experimental
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difficulties considered in the previous research, at the price
of a small loss of the quality of the measurement. We study
the details of this procedure. As an experimental example, we
present the results of the reconstruction of the density matrix of
a two-qubit nuclear spin system in a four-nuclear-spin system,
where we consider three cases: the unknown quantum system
was initially prepared in a mixed state, a pseudo-pure product
state, and a pseudo-entangled pure state.

II. PRINCIPLE AND GENERALIZATION

Consider a large but finite number of identical quantum
systems S consisting of n spin-1/2 particles whose state can
be represented by

ρ̂S = 1

2n

4n−1∑
s=0

csB̂s, (1)

where a complete set of base operators {B̂s} consists of 4n

product operators B̂s :

B̂s =
n∏

k=1

σ̂ k
i , 0 � s � 4n − 1. (2)

Here n is the total number of spins in the system under
consideration, k is an index for the spin and i ∈ {0,1,2,3},
corresponding to the unit operator and Pauli operators
({1̂,σ̂x,σ̂y,σ̂z}). s is the quaternary string constituted by all
of i, covering from 00 . . . 00 to 33 . . . 33. The operators {B̂s}
satisfy

Tr(B̂sB̂r ) = 2nδsr , (3)

where Tr is the trace operation and the Kronecker delta δsr = 1
when s = r , otherwise 0. To determine the state ρ̂S , we can

measure the vector �c = Tr( �̂Bρ̂S) = (c0,c1, . . . ,c4n−1)T with
�̂B = (B̂0,B̂1, . . . ,B̂4n−1)T . Note that B̂0 = 1̂⊗n is a 2n × 2n

unit operator and c0 = 1 due to the normalization condition
Tr(ρ̂S) = 1. This procedure generally refers to the standard
QST, which involves N + 1 noncommuting observables.

Alternatively, all the cs can also be obtained through
QST with a single measurement apparatus by interacting the
unknown system S with an assistant system A in a known state
[4,5]. The dimension of the assistant system A must be no less
than N . The composite system S + A is initially in a product
state ρ̂S+A

0 = ρ̂S ⊗ ρ̂A, and then the interaction between them
drives the system into an entangled state ρ̂τ = Û (τ )ρ̂S+A

0 Û †(τ )
after a duration τ , where the propagator Û (τ ) = e−iĤ τ with the
interaction Hamiltonian Ĥ between S and A. The information
of the unknown system S is redistributed on the whole Hilbert
space of the combined system. Therefore, we can choose to
measure a single, factorized observable P̂ = ω̂(S) ⊗ ô(A) on the
combined system to determine the unknown state ρ̂S , where
ω̂(S) is pertaining to S and ô(A) pertaining to A. Without loss
of generality, the observables ω̂(S) and ô(A) to be measured can
be their x components.

Then the jointed projectors P̂q = P̂ij = ω̂
(S)
i ⊗ ô

(A)
j are

P̂q = 1

22n

2n∏
⊗l=1

[
1̂ + (−1)hl σ̂ l

x

]
, (4)

where hl takes 0 or 1, q = h2n . . . h1h0 ranging from 00 . . . 00
to 11 . . . 11. There are totally 4n projectors covering all of the
measurement outcomes. The repeated measurements of the
observable P̂ give the complete set of the jointed probabilities
pq ,

pq = Tr
(
P̂qÛρS+A

0 Û †) = Tr(P̂qÛ ρ̂S ⊗ ρ̂AÛ †). (5)

As a result of Eq. (1), Eq. (5) can be written in the form

pq = 1

2n

4n−1∑
j=0

cs Tr[P̂qÛ (B̂s ⊗ ρ̂A)Û †]. (6)

To determine the quantum state, we need the 4n − 1 unknown
coefficients cs which are related to the probabilities pq by a
transfer matrix M:

M × 1

2n

⎛
⎜⎜⎜⎜⎜⎜⎝

c0

c1

c2

...
c4n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

p0

p1

p2

...
p4n−1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)

The elements of linear mapping M are determined by

Mqs = Tr[P̂qÛ (B̂s ⊗ ρ̂A)Û †], 0 � q,s � 4n − 1. (8)

Therefore, if the determinant � of the transfer matrix M
is not zero, we can obtain the vector �c = (c0,c1, . . . ,c4n−1)T

(i.e., the unknown state ρ̂S) by the joint probabilities �p =
(p0,p1, . . . ,p4n−1)T . The precision of the back-calculation
depends on the size of the determinant |�| of M, roughly
∝ 1/|�|. Maximizing |�| will minimize the statistical error
of the estimation during the inversion of Eq. (7). Therefore,
the best determination requires us to maximize |�| by a
suitable choice of the initial condition of the assistant ρ̂A

and the propagator Û (τ ) (i.e., the interaction Hamiltonian
Ĥ and the duration τ ). Reference [4] analytically gives the
maximal value of |�| and the detailed form of Û (τ ) for
a two-level system S when the assistant A is initially in a
pure state ρ̂A = 1

2 (1̂ + σ̂ A
z ) or a completely disordered state

ρ̂A = 1
2 1̂. Although we obtained the maximal value of |�|

for an N -dimensional quantum system [6], it is difficult to
obtain the detailed form of Û (τ ) to achieve this maximum.
The optimal evolution Û (τ ) can be numerically searched in a
2N × 2N Hilbert space by optimal control method. Obviously
this is a substantial task.

A simple and effective method can be obtained if we
introduce a pairwise interaction between the system S and
the assistant A:

Ĥ =
n∑

k=1

Ĥ (k,ka ), (9)

as shown in Fig. 1. Here k and ka , respectively, represent the
kth qubits of S and A. The evolution propagator Û (τ ) under
the interaction Hamiltonian Ĥ after a time τ can be written as

Û (τ ) =
n∏

⊗
,k=1

Û (k,ka )(τ ), (10)
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FIG. 1. (Color online) Schematic diagram for measuring an
n-qubit unknown state by a single observable through a pairwise
interaction. The upper spin chain consisting of qubits 1,2, . . . ,n is
the unknown system S, while the lower chain consisting of qubits
1a,2a, . . . ,na is the assistant A. The solid lines represent the pairwise
interactions between qubit k and ka .

where Û (k,ka )(τ ) = e−iĤ (k,ka )τ pertaining to the subspace
spanned by qubit k and its corresponding assistant qubit ka . If
the assistant state ρ̂A has the factorable form ρ̂A = ∏n

⊗,k=1 ρ̂
(k)
A ,

it is straightforward to find from Eq. (8) that the transfer matrix
M has a simple form:

M =
n∏

⊗
,k=1

M̃(k,ka ), (11)

where M̃(k,ka ) is the transfer matrix of the subspace spanned
by qubits k and ka . Moreover, if the states of all the qubits of
A are equivalent, M̃(k,ka ) for each pair of qubits k and ka are
the same. Then we have the determinant of M,

� = det(M) = det(M̃(k,ka ))n×4(n−1)
. (12)

It shows that the maximization of |�| in a 2n-qubit system
under such a pairwise interaction configuration is equivalent
to the maximization of |det(M̃(k,ka ))| in a two-qubit system.
This allows us to draw a conclusion that searching an
optimal evolution U (τ ) (i.e., Ĥ and τ in a 2n-qubit system
under such a configuration is reduced into searching for an
optimal evolution Û (k,ka )(τ ) (i.e., Ĥ (k,ka ) and τ ) in a two-qubit
system. The pairwise interaction is a key prerequisite in this
scheme which is experimentally feasible. Consequently, we
can employ the result of a two-level quantum system [4,5]
for the best determination of an n-qubit system with pairwise
interaction. For a two-level quantum system, the maximum of
|�| is 1/48

√
3 for a pure assistant [4,5]. Therefore, one gets

|�|max =
(

1

48
√

3

)n×4n−1

(13)

for an n-qubit system in this case. Comparing to the result
of Ref. [6], the maximum of |�| of an N (= 2n)-dimension
system for a general interaction Hamiltonian that involves all
N2 − 1 independent generators of group SU(N ) is

1

2n×4n

√
(2n − 1)4n−1

(2n + 1)4n−1 (14)

which mainly lies on the factor [1/2]n×4n

when n is very large.
Eq.uations (13) and (14) have a similar growth law with the
size n of the system, but the present scheme [Eq. (13)] has a

slightly smaller base ( 1
48

√
3
)1/4 ∼ 0.33 than the optimal value

∼1/2 for a general interaction Hamiltonian [Eq. (14)].
For a completely disordered assistant, the optimal propaga-

tor Û (τ ) for a two-level quantum system [5] can be achieved
with the measurement Hamiltonian

Ĥ opt =
√

2
(
Î 1
z ± Î 1a

z

) + 4
√

2Î 1
x Î 1a

x + 2Î 1
z Î 1a

z (15)

and the duration τ = π/4. Here Îα = σ̂α/2 (α = x, y, or z).
In our following demonstration experiment, we chose the
completely disordered state for the assistant that is experi-
mentally easy to prepare. In this case, the maximal size of the
determinant |�| is 1/128 [5].

III. EXPERIMENTAL IMPLEMENTATION

The experiments were carried out at room temperature
on a Bruker AV-400 spectrometer (9.4 T). The physical
system in our experiment is iodotrifluoroethylene molecules
(C2F3I) dissolved in d-chloroform. The molecular structure
and relevant parameters are shown in Fig. 2. One 13C nucleus
and three 19F nuclei represent a four-nuclear-spin system. 13C
and F1 consist of the system labeled as qubit 1 and qubit
2, respectively. F2 and F3 consist of the assistant labeled as
qubit 1a and qubit 2a , respectively (see Fig. 1). The natural
Hamiltonian of the four-nuclear-spin system in the double
rotating frame is

Ĥnmr =
4∑

i=1

ωiÎ
i
z + 2π

4∑
i<j

Jij Î
i
z Î

j
z , (16)

where ωi is the chemical shift of spin i and Jij is the scalar
coupling strength between spins i and j . Note that Î 1

z , Î 2
z , Î 3

z ,
and Î 4

z correspond to Î 1
z , Î 1a

z , Î 2
z , and Î 2a

z in the diagram of the
molecule (Fig. 2).

Figure 3 shows the flowchart of the experiment for
measuring an unknown state by a single observable, which
is divided into three parts:

(a) Initial state preparation ρ̂S ⊗ 1
4 1̂. Here in the exper-

iments, the assistant A is initially in a completely disor-
dered state. We verify this scheme for reconstructing various

12C

( )19
3 2aF

( )19
2 1aF

( )13 1C

( )19
1 2F

FIG. 2. (Color online) Molecular structure and relevant parame-
ters of iodotrifluoroethylene. 13C and three 19F nuclei are used as a
four-qubit quantum system, and the labels in brackets near the nuclei
correspond to the qubits in Fig. 1. The diagonal and nondiagonal
elements represent the chemical shifts and the coupling constants
(in units of Hz) respectively. The spin-lattice relaxation times T1 are
21 s for 13C and 12.5 s for 19F. These parameters are measured at the
temperature T = 303 K.
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Ini�al state Ini�al state 
prepara�on

Hamiltonian Hamiltonian 
simula�on simulation 

and evolu�on

Measurement Measurement 
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1 ˆˆ 1
4S

Natural Hamiltonian

simulate

Op�mal Hamiltonian

The joint projectors 
of    components: 

ˆ
nmrH

2
optH

x q̂P

FIG. 3. (Color online) Flowchart of the experiments. The system
S is initially in an unknown state ρ̂S and the assistant A is initially
in a completely disordered state 1

4 1̂. Then we drive the composite
system S + A to evolve under an optimal Hamiltonian of Eq. (19) for
a time τ which is simulated by NMR techniques. Finally we measure
a single, factorable observable P̂ , i.e., their x components of Eq. (4).

quantum states ρ̂S (a mixed state, a pseudo-pure state and a
pseudo-entangled state).

(b) Dynamical evolution Û (τ ) = e−iĤ τ under the optimal
interaction Hamiltonian Ĥ for the duration τ . We simulate the
dynamics by nuclear magnetic resonance (NMR) techniques.

(c) Measurement of the joint probabilities pq and then the
reconstruction of the unknown quantum state by the inverse
mapping.

A. Initialization

In our experiment, the assistant A is initially in a completely
disordered state 1

4 1̂ and then we test the scheme for three
different cases listed in Table I: when the unknown state ρ̂S

is a mixed state ρ̂S1, a pseudo-pure product state ρ̂S2 and a
pseudo-entangled state ρ̂S3, respectively. In NMR quantum
information, we usually use the pseudo-pure state (PPS)
[30] ρ̂ = 1−ε

2n 1̂ + ε|ψ〉〈ψ | instead of an ideal pure state |ψ〉,
where ε ∼ 10−5 is the polarization. Since unitary operations
and measurement in NMR do only affect the pure state
part except for a trivial scalar factor ε, a PPS is equivalent
to the corresponding pure state. When |ψ〉 is an entangled
state, we call the state of the system as a “pseudo-entangled
state.” Here we only consider the traceless deviation part ρ̂�

of PPS ρ̂ = 1
2n 1̂ + ερ̂� [31]. For example, for the thermal

equilibrium state ρ̂S1 of the system S, ρ̂� ∝ Î 1
z + γF /γCÎ 2

z ,
where γC and γF are gyromagnetic ratios of nuclei 13C and
19F respectively. Their ratio is γC/γF ≈ 1:3.7415. Using the
PPS technique [30,31], we prepare a pseudo-pure product
state ρ̂S2 with ρ̂� ∝ Î 1

z + Î 2
z + 2Î 1

z Î 2
z corresponding to the

pure state |00〉12, and a pseudo-entangled state ρ̂S3 with
ρ̂� ∝ 2(Î 1

x Î 2
x − Î 1

y Î 2
y + Î 1

z Î 2
z ) corresponding to the entangled

state (Bell state) 1√
2
(|00〉 + |11〉)12. The pulse sequences for

the preparation are shown in Table I. With standard QST [32],
we obtained the experimental fidelities of these three prepared
deviation matrices ρ̂S1, ρ̂S2, and ρ̂S3, which are 0.997, 0.996,

TABLE I. (Color online) Pulse sequences for preparing the three
different initial states ρ̂S ⊗ 1

4 1̂ of the composite system S + A. Here
[θ ]kυ̂ denotes a θ rotation of qubit k around υ̂ axis, Gz represents
a pulsed-field-gradient along z− axis to destroy all the transverse
magnetization generated by the radio frequency (rf) pulses, and the
delay d1 = | 1

4J12
| is a free evolution under natural Hamiltonian Ĥnmr

with the duration d1. Here we used spatial averaging method [30,34]
to prepare a PPS. Based on PPS, we prepared a pseudo-entangled state
with a pseudo-Hadamard gate and controlled-NOT gate (CNOT) [35].
CNOT(12) denotes that qubit 1 is a controlled qubit while qubit 2 is
a target qubit.

Pulse sequenceˆ

1ˆS

2ˆS

3ˆS

ˆS
1 2ˆ ˆ3.7415z zI I

1 2 1 2ˆ ˆ ˆ ˆ2z z z zI I I I

1 2 1 2 1 2ˆ ˆ ˆ ˆ ˆ ˆ2 x x y y z zI I I I I I

1 ,2

2 x

Gz

1 ,2
2

22
2,11

1 1

0.3205
2

5
4 4

x
x

yy
yx

Gz

d d Gz

1

12
2 y

PPS CNOT

and 0.996. The fidelity is defined by [33]

F = Tr(ρ̂ini ρ̂th)√
Tr

(
ρ̂2

ini

)
Tr

(
ρ̂2

th

) , (17)

where ρ̂ini is the experimentally reconstructed density matrix
and ρ̂th is the theoretical one.

B. Hamiltonian simulation and evolution

For a completely disordered assistant, the optimal propaga-
tor for an unknown two-bit state [5] can be

Û
(2)
opt (τ ) = e−iĤ

(2)
opt τ , (18)

where the optimal Hamiltonian is

Ĥ
(2)
opt =

√
2
(
Î 1
z + Î 2

z + Î 1a

z + Î 2a

z

) + 2
(
Î 1
z Î 1a

z + Î 2
z Î 2a

z

)
+ 4

√
2
(
Î 1
x Î 1a

x + Î 2
x Î 2a

x

)
(19)

and τ = π
4 . The optimal Hamiltonian is the Heisenberg XZ

model while the natural Hamiltonian of the sample is the
Ising model of Eq. (16). In general, if the different terms
of Hamiltonian do not commute with each other, we cannot
realize the terms sequentially. However, it is possible to
approximate the overall evolution by using Trotter’s formula
[36,37]

e(A+B)δt = e(Aδt/2)e(Bδt)e(Aδt/2) + O(δt3) (20)

if the duration δt is kept sufficiently short. Our target Hamilto-
nian of Eq. (19) can be decomposed into two non-commutative
parts,

Ĥx = 4
√

2
(
Î 1
x Î 1a

x + Î 2
x Î 2a

x

)
,

(21)
Ĥz =

√
2
(
Î 1
z + Î 2

z + Î 1a

z + Î 2a

z

) + 2
(
Î 1
z Î 1a

z + Î 2
z Î 2a

z

)
.
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Then the propagator of Eq. (18) can be approximately written
as

Û
(2)
opt (τ ) =

m∏
i=1

Ûm(δt)

=
{
Ûz

(
δt

2

)
Ûx(δt)Ûz

(
δt

2

)}m

+ O(δt3), (22)

where τ = mδt is the whole evolution time, and

Ûz

(
δt

2

)
= e−i δt

2 Ĥz , Ûx(δt) = e−iδtĤx (23)

represent the evolutions under the partial Hamiltonians.
Theoretically, more pieces m and shorter δt are desired for
more accuracy of the approximation. However, experimentally
we will choose an appropriate short time δt to make the
approximation effective. If τ = π/4 and m = 2, The resulting
approximate evolution

Û (2)
ap (τ ) =

{
Ûz

(
δt

2

)
Ûx(δt)Ûz

(
δt

2

)}2

(24)

has a fidelity of 0.996 with the target evolution,
where the gate fidelity is defined F (Û (2)

opt (τ ),Û (2)
ap (τ )) =

Tr[Û (2)
ap (τ )†Û (2)

opt (τ )]/16 [33]. The Ûz( δt
2 ) and Ûx(δt) operators

can be implemented by the free evolution and rf pulses.
Figure 4 shows the pulse sequence for approximately im-
plementing the propagator Û (2)

ap (τ ). This bottom-up approach
involves a series of rf pulses and evolutions, and hence
accumulates considerable experimental errors and decoher-
ence effects. In this experiment, to improve the experimental
precision, we used an alternative way to achieve the target
propagator with engineered quantum control pulses [38–40].
It exploits the gradient ascent pulse engineering (GRAPE)
technique to synthesize Û

(2)
opt (τ ) with one single engineered

rf pulse only. Thus the error accumulation due to gate
imperfections is avoided, and the experimental fidelity for

Qubit 1 

Qubit 2 

Qubit 3 

Qubit 4 

1
ˆ ( )zzU 1

ˆ ( )zzU2
ˆ ( )zzU 3

ˆ ( )zzU 2
ˆ ( )zzU

1Û 1Û2Û 2Û

  

ˆ ( )zz iU

FIG. 4. (Color online) Pulse sequence for implementing

the propagator Û (2)
ap (τ ). Here, Ûzz(θi) = e−iθi (Î1

z Î
1a
z +Î2

z Î
2a
z ) with

θ3 = 2θ1 = 2δt, θ2 = 4
√

2δt and t1 = |θi/(2πJ11a
)|, t2 =

|θi/(2πJ22a
) − θi/(2πJ11a

)|. The local operators

Û1 = e−i
√

2
2 δt(Î1

z +Î2
z +Î

1a
z +Î

2a
z )e−i π

2 (Î1
y +Î2

y +Î
1a
y +Î

2a
y ) and Û2 =

ei π
2 (Î1

y +Î2
y +Î

1a
y +Î

2a
y )e−i

√
2

2 δt(Î1
z +Î2

z +Î
1a
z +Î

2a
z ).

the target propagator is maintained at a high level. The
GRAPE coherent control pulse for implementing Û

(2)
opt (τ ) was

theoretically obtained with a high fidelity of 0.997 and a pulse
length 8 ms.

C. Measurement and reconstruction

After the coupling evolution, we measured the x compo-
nents of the four qubits to obtain the joint probabilities pq of
the projective operators P̂q in Eq. (4). An equivalent choice
would be the y components, while z components are infeasible
due to the symmetry properties of the evolution [5]. For this
purpose, we transferred the x components to z components
using a [π

2 ]1,2,1a ,2a−y pulse and destroyed off-diagonal elements
by a magnetic field gradient pulse Gz. The populations could
then be measured by applying another reading-out pulse to
each of the qubits and measuring their free induction decays
(FIDs). The resulting pulse sequence for the readout is thus[

π

2

]1,2,1a ,2a

−y

− Gz − SWAP(1j ) −
[
π

2

]1

y

− FID(13C),

(25)

where j = 1, 2, 1a , or 2a denotes qubit j , and SWAP(1j ) is
SWAP gate between qubit 1 and qubit j . Because we used an
unlabeled sample, the molecules with a 13C nucleus are present
at a concentration of about 1% (the natural abundance). The
signals of 19F from the quantum register with the 13C nucleus
are hidden under the signals from the molecules containing the
12C isotope. Accordingly, the information of the 19F spins is
transferred to the 13C spin by a SWAP gate and read through the
13C spectrum. The measured FIDs after the reading-out pulses
along with the normalization condition

∑
q pq = 1 allows us to

reconstruct 16 diagonal elements (populations) in the density
matrix, which correspond to 16 joint probabilities pq . The
information about the state ρ̂S was then obtained by the inverse
mapping M−1.

D. Experimental results

Figure 5 shows the experimentally observed NMR signals
after Fourier transformation of the corresponding FIDs for
the carbon spin for three different initial states: the thermal
equilibrium state ρ̂S1, the pseudo-pure state ρ̂S2, and the
pseudo-entangled state ρ̂S3. Here fluorine’s information (F1,
F2, F3) is detected through the 13C NMR spectra by SWAP

gates acting on 13C and 19F. The intensities of the different
resonance lines correspond directly to population differences
[41], corresponding to the joint probabilities pq of projection
operators on the x direction. We fit the NMR signals by
Lorentzian curves to obtain their intensities. From these
populations, we determine the initial condition cs by inverting
Eq. (7). The deduced coefficients cs are shown in Fig. 6, and
agree well with the theoretical ones. The average standard error
is around 4%. To further quantify the experimental states, we
calculate the state fidelities by Eq. (17). The experimental
fidelities of three initial states ρ̂S1, ρ̂S2, and ρ̂S3 reconstructed
by this method are 0.998, 0.995, and 0.987, respectively.

The experimental errors mainly come from the inhomo-
geneity of static magnetic fields, the imperfection of rf and
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FIG. 5. (Color online) Experimental 13C NMR spectra (denoted by thick blue lines) for reconstructing the three different unknown states:
the thermal equilibrium state ρ̂S1, the pseudo-pure state ρ̂S2, and the pseudo-entangled state ρ̂S3 from left to right. From top to bottom are the
final information of 13C, F1, F2, and F3 sequently. The intensities of different resonance lines correspond directly to population differences
between two related energy levels. Fluorine’s information is observed through the 13C NMR spectra by SWAP gates acting on 13C and 19F.
The theoretical expectations are denoted by thin red lines obtained by a NMR simulation program (NMRSIM) in Bruker’s TopSpinTM software
package. The numbers of repeated scans for ρ̂S1, ρ̂S2 and ρ̂S3 are, respectively, 32, 32, and 64.

GRAPE pulses, and the relaxation effect. In experiments,
we used 2–4 GRAPE pulses for the equilibrium state ρ̂S1,
4–5 for the pseudo-pure state ρ̂S2, and 5–6 for the pseudo-
entangled state ρ̂S3. Therefore, the experimental fidelity of
ρ̂S3 is relatively low compared to ρ̂S1 and ρ̂S2 due to the more

1ˆS

2ˆS

3ˆS

ˆ ˆ
s

s
c

Tr
B

FIG. 6. (Color online) Experimentally reconstructed coefficients
cs from the experimentally measured joint probabilities pq by the
inverse mapping M−1 for three initial states ρ̂S1, ρ̂S2, and ρ̂S3. cs is
from 1 to 15 where c0 is the coefficient of identity.

complex pulse sequence. The experimental time is about 38 ms
for ρ̂S1, 42 ms for ρ̂S2, and 57 ms for ρ̂S3.

IV. CONCLUSIONS

QST with a single observable appears highly attractive
since this may well have practical advantages compared
with standard QST; e.g, it is more economical, more easily
accessible in experiments, and the incomplete or noisy ex-
perimental data in quantum mechanical systems can be more
easily dealt with using standard statistical and information
theoretical methods [4]. We consider the measure scheme
of an n-qubit unknown quantum state by means of a single
observable, where a pairwise interaction is introduced as
the controlled Hamiltonian to couple the unknown system
with a known n-qubit assistant. Under this configuration, the
quality of the measurement scheme depends on that of the
subsystem consisting of two qubits; i.e., maximizing the size
of the determinant |�| in a 2n-qubit system is equivalent to
maximizing |det(M̃(k,ka ))| in a two-qubit system. Therefore,
the previous results can be generalized into an n-qubit case. A
simple dynamical process (e.g., by a Heisenberg XZ model or
a Heisenberg XY model) can afford a very valid determination
of ρ̂S to maximize |�| in such a pairwise interaction. This
type of interaction is always found in many physical systems:

032103-6



DETERMINING AN n-QUBIT STATE BY A SINGLE . . . PHYSICAL REVIEW A 89, 032103 (2014)

apart from nuclear spins (like in this work), they also occur in
quantum dots [42–44], donor atoms in silicon [45], quantum
Hall systems [46], and electrons on helium [47].

Moreover, we have experimentally demonstrated the
present scheme for obtaining a two-qubit state from the results
of repeated measurements with a single, factorized observable,
where another two-qubit system is introduced as the assistant.
We performed the experiments for the three different initial
states: the equilibrium state ρ̂S1, the pseudo-pure state ρ̂S2,
and the pseudo-entangled state ρ̂S3. After an evolution under a
designed pairwise interaction, we measured the x components
of the whole system S + A. The joint probabilities give the
initial density matrix of the system S by a one-to-one map-
ping. The experimental results are good agreement with the
theoretical exceptions. In our NMR experiments, measuring
a single observable leads to a simpler reading-out procedure,
since only x components are required. As a price, this method
requires an assistant with the same dimension and a nontrivial
system-assistant interaction. Therefore, the single-apparatus

quantum state tomography is important for a situation with a
physically transparent measurement base and with a realistic
system-assistant interaction. We hope this practical QST with
a single observable will be useful in large-qubit systems.

ACKNOWLEDGMENTS

The authors thanks Prof. S. J. Wu for the useful discussion.
This work is supported by the National Key Basic Research
Program of China (Grants No. 2013CB921800 and No.
2014CB848700), the National Natural Science Foundation
of China under Grants No. 11375167, No. 11227901, and
No. 91021005, the Chinese Academy Of Sciences, the
Strategic Priority Research Program (B) of the CAS (Grant
No. XDB01030400), the Research Fund for the Doctoral
Program of Higher Education of China under Grant No.
20113402110044, and the Scientific Research Foundation for
the Returned Overseas Chinese Scholars, State Education
Ministry.

[1] C. W. Helstrom, Quantum Detection and Estimation Theory
(Academic, New York, 1976).

[2] D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, Phys.
Rev. A 64, 052312 (2001).

[3] R. T. Thew, K. Nemoto, A. G. White, and W. J. Munro, Phys.
Rev. A 66, 012303 (2002).

[4] A. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen,
Phys. Rev. Lett. 92, 120402 (2004).

[5] X. Peng, J. Du, and D. Suter, Phys. Rev. A 76, 042117 (2007).
[6] Y. Yu, H. Wen, H. Li, and X. Peng, Phys. Rev. A 83, 032318

(2011).
[7] A. Shukla, K. R. K. Rao, and T. S. Mahesh, Phys. Rev. A 87,

062317 (2013).
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[21] A. M. Brańczyk, D. H. Mahler, L. A. Rozema, A. Darabi, A. M.
Steinberg, and D. F. V. James, New J. Phys. 14, 085003 (2012).
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