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Comparative quantum and semiclassical analysis of atom-field systems. II. Chaos and regularity
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The nonintegrable Dicke model and its integrable approximation, the Tavis-Cummings model, are studied as
functions of both the coupling constant and the excitation energy. The present contribution extends the analysis
presented in the previous paper by focusing on the statistical properties of the quantum fluctuations in the energy
spectrum and their relation with the excited-state quantum phase transitions. These properties are compared with
the dynamics observed in the semiclassical versions of the models. The presence of chaos for different energies
and coupling constants is exhibited, employing Poincaré sections and Peres lattices in the classical and quantum
versions, respectively. A clear correspondence between the classical and quantum result is found for systems
containing between N = 80 and 200 atoms. A measure of the Wigner character of the energy spectrum for
different couplings and energy intervals is also presented employing the statistical Anderson-Darling test. It is
found that in the Dicke model, for any coupling, a low-energy regime with regular states is always present. The
richness of the onset of chaos is discussed both for finite quantum systems and for the semiclassical limit, which
is exact when the number of atoms in the system tends to infinite.
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I. INTRODUCTION

The Dicke and Tavis-Cummings (TC) Hamiltonians de-
scribe a system of N two-level atoms interacting with a
single monochromatic electromagnetic radiation mode within
a cavity [1]. One of the most representative features of these
Hamiltonians is their second-order quantum phase transition
(QPT) in the thermodynamic limit [2,3] (equivalent in the
present models to the semiclassical limit). The ground state
of the system goes from a normal to a superradiant state
when the atom-field interaction reaches a critical value. In
a companion paper [4], hereafter referred to as (I), it was
shown that the semiclassical approximation to the density
of states (DoS) describes very well the averaged quantum
density of states (QDoS). From the semiclassical description,
the presence of two different excited-state quantum phase
transitions (ESQPTs) was clearly established in these models.
One ESQPT, referred to as static, occurs for any coupling at an
energy E/(ωoj ) = 1, where the whole phase space associated
with the two-level atoms (the pseudospin sphere) becomes
available for the system. The second ESQPT, referred to as
dynamic, can take place only in the superradiant phase, at
energies E/(ωoj ) = −1. This transition occurs when the top
of the double well (Dicke) or Mexican hat (TC) potential that
develops in the superradiant phase is attained.

The previous results make it possible to study the properties
of the quantum fluctuations using the semiclassical DoS to
separate the tendency or secular variation of the spectrum
from its fluctuations. It is known that the tendency of the
QDoS depends completely on the particular system, but the
properties of the fluctuations are universal [5]. For quantum
systems with a classical analog integrable the fluctuations
are common with those of the so-called Gaussian diagonal
ensemble (GDE), while for time-reversal-symmetric quantum
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systems with hard chaotic classical analog, the fluctuations are
those of the Gaussian orthogonal ensemble (GOE).

In Ref. [6] numerical evidence was presented that suggests
a relationship between the normal-to-superradiant phase tran-
sition and the onset of chaos in the nonintegrable Dicke model.
More recently [7], this relationship was studied more closely
and it was suggested that the onset of chaos is caused by the
precursors of the dynamic ESQPT occurring in the superra-
diant phase. In this contribution we go further in the study
of this relationship between the onset of chaos and singular
behavior of the DoS (ESQPT) and ground-state energy (QPT).
To this end we consider the nonintegrable Dicke model and
its integrable approximation, the TC model. We study these
models as a function of both the coupling between atoms
and field and the excitation energy. The presence of chaos
for different energies and coupling constants is exhibited, in
the semiclassical limit, employing Poincaré sections. The role
of the classical chaos in the Dicke model has been recently
studied in the context of the equilibration of unitary quantum
dynamics [8]. In the quantum case Peres lattices are presented,
which make it possible to characterize regular and chaotic
regions qualitatively. A quantitative measure of the properties
of the energy spectrum is also presented by means of testing
if the nearest-neighbor spacing distribution (NNSD) of the
unfolded energies follows the Wigner distribution of the GOE.
The results of the classical model are compared to the quantum
ones. Similar to the results of Ref. [9], a clear correspondence
between classical and quantum results are found for finite
quantum system ranging from N ∼ 80 to N ∼ 200.

It is found that the onset of chaos in the Dicke model
can only take place in the energy region where the quadratic
approximation of the Hamiltonian, the one obtained by con-
sidering small oscillations around the global energy minimum,
fails to describe the semiclassical model dynamics. For any
coupling there always exist a low-energy interval above the
ground state where only regular patterns are observed. In
particular, for the very small coupling regime γ ≈ 0 this
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energy interval extends to infinity. Above this low-energy
region the quadratic approximation breaks down and room
is left for the onset of chaos. Even if an indirect connection
between the ESQPTs and the onset of chaos can be identified
through the unstable fixed points, the onset of chaos is a
much richer phenomenon than the occurrence of nonanalytic
behavior in the DoS or the ground-state energy.

The article is organized as follows. In Sec. II we present
briefly the quantum Dicke and TC Hamiltonians and their
classical analogs and summarize some of their properties. In
Sec. III a qualitatively analysis of the spectrum is done via
Peres lattices and Poincaré sections, revealing a clear classical
and quantum correspondence at the onset of chaos, in both
the normal and the superradiant phases. The properties of the
energy fluctuations are studied by means of the Anderson-
Darling test for the NNSD against the Wigner distribution.
Section IV contains the conclusions.

II. DICKE AND TAVIS-CUMMINGS HAMILTONIANS

The Dicke and TC Hamiltonians are made of three parts:
one associated with the monochromatic quantized radiation
field (boson operators a and a†), a second one with the atomic
sector (pseudospin operators Jz and J±), and a last one which
describes the interaction between them,

H = ωa†a + ω0Jz

+ γ√
N

[(aJ+ + a†J−) + δ(a†J+ + aJ−)], (1)

where δ = 0 and 1 for the TC and Dicke models, respectively.
A QPT, from the normal to the so-called superradiant phase,
takes place at a value of the coupling constant given by
γc = √

ω0ω/(1 + δ). We focus on the subspace with largest
pseudospin, where j = N /2 [10].

The TC Hamiltonian is integrable because it commutes with
the � operator, � = a†a + Jz + j . Its conserved eigenvalues
λ define a set of subspaces where the TC Hamiltonian can
be diagonalized independently. The Dicke Hamiltonian is not
integrable, but its Hilbert space can be separated in two sectors
depending on the eigenvalue (p = ±) of the parity operator
� = eiπ�.

The classical version of the Dicke and TC models can
be obtained employing the naive substitution [11] of the
pseudospin variables by classical angular momentum ones
(Ji → ji) and the substitution of the boson variables by a
classical harmonic oscillator (variables q and p) with mω = 1.
The pseudospin variables satisfy the Poisson-bracket algebra
{ji,jj } = εijkjk . From there canonical variables {P,Q} = −1
can be obtained as P = jz and Q = φ = tan−1(jy/jx), where
φ is the azimuthal angle of the vector �j = (jx,jy,jz) whose
magnitude is constant | �j | = j . In terms of the canonical
variables the classical Dicke Hamiltonian reads

Hcl = ωojz + ω

2
(q2 + p2)

+ γ
√

j

√
1 − j 2

z

j 2
[(1 + δ)q cos φ − (1 − δ)p sin φ].

(2)

From here the equations of motion are

dq

dt
= ∂Hcl

∂p
= ωp − (1 − δ)γ

√
j

√
1 − j 2

z

j 2
sin φ, (3)

dp

dt
= −∂Hcl

∂q
= −qω − (1 + δ)γ

√
j

√
1 − j 2

z

j 2
cos φ, (4)

dφ

dt
= ∂Hcl

∂jz

= ωo (5)

− γjz

j 3/2
√

1 − j 2
z

j 2

[(1 + δ)q cos φ − (1 − δ)p sin φ],

djz

dt
= −∂Hcl

∂φ
= 2γ

√
j

√
1 − j 2

z

j 2

× [(1 + δ)q sin φ + (1 − δ)p cos φ]. (6)

Employing the semiclassical approximation to the DoS for
a given energy,

ν(E) = 1

(2π )2

∫
dq dp dφ djz δ(E − Hcl(q,p,φ,jz)),

it is possible [see (I)] to identify two ESQPTs in the
energy space. One, referred to as static, occurs at an energy
E/(ωoj ) = 1 for any coupling. The second one, referred to as
dynamic, takes place only in the superradiant phase at energies
E/(ωoj ) = −1. The semiclassical approximation to the DoS
in the Dicke model is given by [4,12]

ω

2j
ν(ε)

=

⎧⎪⎪⎨
⎪⎪⎩

1
π

∫ y+
y−

arccos
√

2γ 2
c (y−ε)

γ 2(1−y2) dy, ε0 � ε < −1,

ε+1
2 + 1

π

∫ y+
ε

arccos
√

2γ 2
c (y−ε)

γ 2(1−y2) dy, |ε| � 1,

1, ε > 1,

(7)

where y± = (− γ 2
c

γ 2 ± γc

γ

√
2(ε − εo)), with εo ≡ − 1

2 ( γ 2
c

γ 2 + γ 2

γ 2
c

),
and we have defined the scaled energy ε = E/(ωoj ). As
discussed in (I), the singular behavior of the DoS can be related
with the unstable points of the Hamiltonian classical flux. The
relationship between the ESQPT and the onset of chaos is
discussed in the following section.

III. REGULARITY AND CHAOS

To establish the onset of chaos in the classical version
of the models, we use Poincaré surfaces of section for
different couplings and energies. All the Poincaré sections
shown along this contribution were obtained as follows. We
solved numerically the equations of motion, Eqs. (3)–(6), and
considered intersections of the orbits with the surface p = 0.
The intersections define a two-dimensional surface in the
three-dimensional space q-jz-φ. For given (E,jz, φ) the energy
conservation, E = Hcl(p = 0,q,jz,φ), gives two possible
values q± for the variable q. We selected points corresponding
to the largest q± and projected them finally in the polar plane
[1 + (jz/j )]-φ. For the quantum versions we use Peres lattices
[13], which are a visual method that plays a role similar to
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that of the Poincaré sections in classical mechanics. The Peres
lattices are very useful to study the route to chaos in quantum
systems with two degrees of freedom. If a quantum system
with two degrees of freedom and unperturbed Hamiltonian H0

is integrable, a plot between the Hamiltonian eigenenergies
and the respective eigenvalues of the constant of motion
I ([H0,I ] = 0) form a lattice of regularly distributed points,
because each energy level has a natural way to be labeled
by the quantum number associated with I . When the system
is perturbed, H = H0 + γH1 and becomes nonintegrable, I

is no longer a conserved quantity. However, we can use the
expectation values of I (the Peres operator) in the energy
eigenstates and plot them against the Hamiltonian eigenvalues.
This choice connects the unperturbed and perturbed cases and
such plots are called Peres lattices. A small perturbation does
not destroy the regular lattice of the integrable case; instead
a localized distortion is created in the lattice while the rest
of the lattice remains regular. As the perturbation increases
the irregular part of the lattice increases as well, making it
possible to identify in a simple way the regions with classical
chaotic, regular, or mixed counterpart. In this way the Peres
method represents a qualitatively sensitive probe that makes
it possible to visualize the competition between regular and
chaotic behavior in the quantum spectrum of a system [14].
Moreover, the freedom in choosing the Peres operator makes it
possible to focus on various properties of individual states and
to closely follow the way chaos sets in and proliferates in the
system. The Peres lattices help us not only to characterize the
chaotic, regular, and mixed regimes in the quantum spectrum,
but to qualitatively identify the ESQPT’s and their properties
as well.

Besides the Peres lattices of the quantum models, we
analyze the statistical properties of their energy spectra, in
different energy intervals and for different couplings.

To this end we test if the energy fluctuations follow the
Wigner distribution [5], which is typical of the quantum sys-
tems with classical counterpart chaotic. The characterization
is performed employing the Anderson-Darling test [15], which
gives a simple criterion to establish if a given empirical set of
data follows a given theoretical distribution. Before presenting
results for the nonintegrable Dicke model, the TC model is
discussed. In particular, we focus on the signatures of the
ESQPT [the abrupt changes in the DoS calculated classically
in (I)] appearing in the Peres lattices of the model.

A. Integrable case: Tavis-Cummings

It is instructive to plot the Peres lattice for the energy
E/(ωoj ) in the TC model against the excitation number λ,
displayed in Fig. 1 (left) for γ = γc (up) and γ = 2 γc (down),
in the resonant case ω = ωo = 1, for a j = 10 system. In both
plots a dislocation in the regular lattice can be observed at
the point with coordinates E/(ωoj ) = 1 and λ = 2j (20 in
this example). It corresponds to the point in which the static
excited-state phase transition takes place. On the right-hand
side of the same figure, the energy differences between
successive levels, for each value of λ, are shown. It helps
to identify the point where these differences have a minimum.
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FIG. 1. (Color online) Energy (left) and energy difference (right)
as functions of λ. The parameters are j = 10, nmax = 10, λmax = 60,
ω = ω0 = 1, γ = γc (top), and γ = 2γc (bottom).

This is another way to recognize the presence of a singularity
in the DoS, presented in (I).

When we choose Jz as Peres operator, we obtain the Peres
lattices shown in Fig. 2 for two representative values of the
coupling, γ = γc and γ = 2γc in resonance ω = ω0 = 1. It
can be seen from the figure that the Peres lattices are regular
(as expected due to the integrability of the TC model). In the
same figure the two (static and dynamic) ESQPTs are clearly
evidenced by peaks in the lattices at energies E/(ωoj ) = −1
and 1. The ESQPT at the energy E/(ωoj ) = 1 was reported
originally by Perez-Fernández et al. [7] and is associated with
the state with λ = 2j and maximum expectation value of 〈Jz〉.
It corresponds to the static ESQPT found in (I), when the
energy is equal to that of the unstable fixed point in the north
pole of the pseudospin sphere and the whole pseudospin sphere
becomes accessible. This ESQPT appears for any coupling
below or above γc. The other ESQPT, which takes place at

FIG. 2. (Color online) Peres lattices for the TC model, for 〈Jz〉
j

.
The parameters are j = 10, λmax = 50, ω = ω0 = 1, γ = γc (top),
and γ = 2γc (bottom). Each color represents states with the same λ.
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FIG. 3. (Color online) Poincaré sections in polar coordinates of
the pseudospin variables (φ and 1 + jz/j ) for the classical TC model
for the same couplings as Fig. 2 (γ = γc top row and γ = 2γc bottom
row). The energies used are E/(ωoj ) = −0.8 and 1.2 for the top row
and E/(ωoj ) = −1.5 and 1.5 for the bottom one.

E/(ωoj ) = −1, appears only for γ > γc and is associated
with the state with λ = 0, i.e., with no photons and no excited
atoms (the ground state in the noninteracting case). From a
classical point of view it corresponds to the unstable fixed
point that develops at the south pole [see companion paper (I)]
of the pseudospin sphere when γ > γc. The peaks in the lattice
Peres of the TC model will be also present in the Dicke model,
showing that the Peres lattices are able to detect in a visual
and simple way singular behaviors in the models. Poincaré
sections for the classical version of the TC are shown in Fig. 3.
As expected for the TC model, the Poincaré sections give
exclusively regular orbits in accord with the regular patterns
of the quantum Peres lattices.

B. The nonintegrable Dicke model

For the Dicke model, where the � symmetry of the TC
model is broken, more complex Peres lattices are expected.
In Fig. 4 we present Peres lattices for the Dicke model in
the superradiant phase (γ = 3γc), using Jz, J 2

x , and a†a as
Peres operators. In the three lattices a regular region in the
lower part of the spectrum can be clearly identified. For
energies (E/ωoj ) ≈ −2 the regularity begins to disappear and
an irregular pattern is established instead. For larger energies

the lattice is completely irregular. This “route to chaos” in
the quantum results, already sketched by Perez-Fernández
et al. [7], has a classical correspondence as discussed below.
Before, it is worth mentioning, as in the case of the TC model,
signatures of the static and dynamic ESQPTs are clearly seen
in the lattice with Jz as Peres operator. In the leftmost panel
of Fig. 4 two peaks can be distinguished: one located around
E/(ωoj ) = −1, where 〈Jz〉/j takes its lowest value, and a
second one around E/(ωoj ) = 1, where 〈Jz〉/j takes its largest
value. The ESQPTs are related to the unstable fixed points
of the classical Hamiltonian. The second peak is related to
the unstable fixed point which appears for any value of the
coupling where the saturation of the pseudospin variable sets
in, whereas the first one corresponds to the fixed point which
changes from stable (γ < γc) to unstable at γ = γc.

It is possible to understand the structure of the quantum
Peres lattices from the perspective of the classical model. As
shown in Appendix A, if we make a small oscillations approx-
imation around the energy minimum, a quadratic Hamiltonian
is obtained whose normal frequencies are given by

2ω2
± = ω2 + ω2

o ±
√(

ω2
2 − ω2

o

)2 + 16ωωoγ 2

for the normal phase and

2γ 4
c ω2

± = ω2
oγ

4 + ω2γ 4
c ±

√(
ω2

oγ
4 − ω2γ 4

c

)2 + 4ω2ω2
oγ

8
c

for the superradiant one. These frequencies are equal to those
obtained in Ref. [6] by making a Holstein-Primakoff mapping
of the pseudospin variables in the quantum model, likewise
they were recently derived by linearizing the classical equation
of motion [9]. This latter method is completely equivalent
to the one shown in Appendix A. Therefore, for energies
close enough to the energy minimum, a two-dimensional
anisotropic harmonic oscillator is obtained with excitation
eigenenergies given by En+,n− = n+ω+ + n−ω−, with n±
integer numbers equal to or greater than zero. The Peres lattice
of such quadratic Hamiltonian will be completely regular,
and this is what can be seen in the Peres lattices of Fig. 4 for
energies close to the ground-state energy. In order to obtain a
rough estimate of the range of validity of the quadratic (small
oscillations) approximation, we consider, for a given energy
(E) and coupling (γ ), the parameter

v =
∣∣∣∣E − Hq(q,p,Q1,P1)

E − Egs

∣∣∣∣ , (8)

where Hq is the quadratic approximation of the semiclassical
Hamiltonian in the normal or superradiant phase (see
Appendix A) and Egs is the classical ground-state energy for

FIG. 4. (Color online) Peres lattices of the Dicke model using Jz(left), J 2
x (middle), and a†a (right) as Peres operators. The parameters are

j = 40, ω = ω0 = 1, γ = 3γc, and Nmax = 300 [see (I)]. Only positive parity states are considered.
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FIG. 5. (Color online) vmax [see Eq. (8)] as a function of the
energy and coupling for γ < γc (top) and γ > γc (bottom).

the given γ [see Eq. (15) of companion paper (I)]. The smaller
the parameter v, the better is the quadratic approximation. We
maximize the previous parameter in all the available phase
space for a given energy E and coupling γ . The results are
shown in Fig. 5 for the normal (top) and superradiant (bottom)
phases.

As can be seen in the figure, for very small couplings
(γ /γc ≈ 0) the quadratic approximation is valid for any energy,
but for larger couplings, the range of energy where the
quadratic approximation is good decreases as the coupling
approaches the critical value [16]. For the critical value the
quadratic approximation breaks completely for any energy
because the stable point around which the small oscillation
expansion is made changes from stable to unstable (saddle
point), and consequently one of the normal modes is equal
to zero. For couplings above the critical value the quadratic
approximation is valid only for a small interval above Egs ,
which increases as the coupling does. In the energy intervals
where the quadratic approximation is good, only regular
classical orbits are expected and correspondingly a regular
Peres lattice in the quantum version. For energies out of
these intervals irregular or chaotic trajectories are expected
to emerge. In order to visualize the way as the regular tori
break as a function of energy and coupling, we use Poincaré
surfaces of section for couplings both below and above the
critical one. These Poincaré sections are compared with the
respective results of the quantum model.

C. Poincaré sections and Peres lattices

In this section we make a correspondence between
the Poincaré sections obtained through the semiclassical

Hamiltonian, and Peres lattices attained by numerically diag-
onalizing Dicke Hamiltonians with ω = ωo = 1 and different
systems sizes (j = 40, j = 80, and j = 100). Convergence
of the numerical results with respect to the cutoff in the
bosonic space (Nmax) was checked, as explained in (I).
Only results for the positive parity sector of the model are
presented, but similar results are obtained for the negative
parity sector (see Appendix B). Likewise, we analyze the
statistical properties of the quantum energy spectrum in the
following way. For all the cases studied, we consider energy
intervals of N = 301 consecutive states with positive parity.
Knowing the density of states in the classical limit, it is
possible to calculate the unfolded (ei) energy spectrum [5]
as ei = +(Ei), with Ei the ith eigenenergy and +(E) the
cumulative energy density given by +(E) = ∫ E

Emin
ν+(E′)dE′.

ν+(E) is the density of positive parity states, which is given by
ν+(E) = ν(E)/2, where ν(E) is the classical approximation to
the DoS calculated in (I) and given here in Eq. (7). It is easy to
prove that the differences of the unfolded energy spectrum
can be approximated by �i ≡ ei+1 − ei = (1/2)ν([Ei+1 +
Ei]/2)(Ei+1 − Ei). With the unfolded energy differences for
a given interval (N − 1 = 300 differences), we test if they
follow the Wigner distribution Pw(s) = (1/2)πse−πs2/4, char-
acteristic of the quantum systems with hard chaotic classical
analog. We use the statistical Anderson-Darling test [15] which
consists of calculating the so-called Anderson-Darling (A-D)
parameter,

A2 = −(N − 1)

−
N−1∑
k=1

2k − 1

N − 1
{ln Fw(�k) + ln[1 − Fw(�N−k)]} , (9)

where the �k differences are organized in ascending order,
such that �k � �k+1, and Fw(s) is the cumulative distribution
function of the Wigner distribution Fw(s) = ∫ s

0 Pw(s ′)ds ′. It
can be shown [15] that if a set of data �k comes from the
theoretical Wigner distribution, the probability of obtaining a
parameter A2 greater than 2.5 is 0.05 [Pr(A2 > 2.5) = 0.05].
Then if we obtain an A-D parameter larger than 2.5 for a given
set of consecutive N eigenenergies, we can conclude, to a
confidence level of 95%, that the statistical properties of the
energy fluctuations are not described by the Wigner surmise
of the quantum chaotic systems. The A-D parameter can be
considered a measure of the distance of the energy fluctuations
of the Dicke energy spectrum to the Wigner distribution.

We choose representative values of the coupling in order
to observe several regions: the weak coupling normal phase
(γ = 0.2γc), the normal phase close to the critical value
(γ = 0.9γc), the critical coupling (γc), the superradiant phase
near the critical coupling (γ = 1.35γc), and finally, a strong
coupling in the superradiant phase (γ = 2γc).

1. Normal phase

In Fig. 6 we present the Peres lattice E vs 〈Jz〉/j for a
small coupling in the normal phase (γ = 0.2γc). As expected,
according to the results of Fig. 5, the Peres lattice is completely
regular in every energy interval. This regularity is reflected
by the A-D parameter which is greater than 2.5 for all the
energy intervals. Correspondingly, the Poincaré sections of
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FIG. 6. (Color online) Peres lattice jz/j vs E/(ωoj ) for a finite
(j = 40) Dicke model and a coupling γ = 0.2γc [a cutoff Nmax =
160 was used; see (I)]. In the same graph, the Anderson-Darling
parameter (A2/70, solid black line) for a test against the Wigner
distribution of the nearest-neighbor spacings of 301 consecutive states
in the spectrum is shown as a function of the mean energy of the
respective states. The horizontal dashed line indicates the maximal
value (2.5/70) for which the test does not reject the hypothesis of a
Wigner distribution for a confidence level of 95%.

the classical model (Fig. 7) show that, independent of energy,
the whole phase space is filled with regular orbits. The static
ESQPT that takes place at E/(ωoj ) = 1 is clearly seen in
the Peres lattice as a peak located at that energy, where the
expectation value 〈Jz〉 attains its maximal value.

Next, we increase the coupling to a value near but below the
critical value (γ = 0.9γc) where, according to Fig. 5, the two-
modes quadratic approximation is valid only in a small interval
above the energy minimum. In Fig. 8 the corresponding Peres
lattice is shown, where it can be observed that only in the
low part of the energy spectrum a regular lattice appears,
a regularity which is explained by the two-modes quadratic
approximation around the Egs . For larger energies the lattice
is completely irregular. The A-D parameter quantifies this
change observed in the Peres lattice: For energies close to
the ground states it is greater than 2.5 (rejecting, then, the
hypothesis of a Wigner distribution in the energy fluctuations),
and as the energy increases the A-D parameter decreases. For
an energy close to E/(ωoj ) = 0.2 it attains values below 2.5.

The corresponding Poincaré sections (Fig. 9) follow closely
the previous route of the quantum model. For energies close

FIG. 7. (Color online) Poincaré sections (p = 0) in the polar
plane [1 + (jz/j )]-φ of the classical model for the same coupling as
previous figure (γ = 0.2γc). They correspond to energies E/(ωoj ) =
−0.5 and 2.0.

FIG. 8. (Color online) The same as Fig. 6, for a coupling γ =
0.9γc and an Anderson-Darling parameter divided by 20 (A2/20).
The horizontal dashed line indicates the value 2.5/20.

to the energy minimum, the phase space is covered only by
regular orbits. As the energy increases, some regular tori
break and a mixed phase space is obtained with regular
and chaotic orbits. For energies E/(ωoj ) > 0 the regular tori
have almost disappeared and the phase space is ergodically
covered by chaotic trajectories. Interestingly, for energies
around E/(ωoj ) ≈ 2.5, a revival of regular orbits is obtained
in the classical model (bottom right panel of Fig. 9); in
correspondence this revival is also seen in the quantum
model in the same energy region, where a regularity can
be observed in the Peres lattice, and the A-D parameter
increases above 2.5. The static ESQPT that takes place at

FIG. 9. (Color online) Classical Poincaré sections (p = 0) in the
polar plane [1 + (jz/j )]-φ for the same system as previous figure
(γ = 0.9γc) and energies E/(ωoj ) = −0.8, −0.5 (top row), 0.5, 1.2
(central row), and 1.8, 2.5 (bottom row).
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FIG. 10. (Color online) The same as Fig. 6, for the critical
coupling γ = γc and an Anderson-Darling parameter divided by 30
(A2/30). The horizontal dashed line indicates the value 2.5/30.

energy E/(ωoj ) = 1 can be seen in the Peres lattice even
if it is blurred by the quantum chaos present in this energy
region. Another interesting characteristic of the Peres lattice
can be seen in energies above E/(ωoj ) > 1. According to
the classical analysis, for these energies the trajectories are
chaotic and explore ergodically the whole pseudo-spin sphere.
The quantum consequence of this classical result is that the
expectation value of the operator Jz (in fact any component
of the pseudospin operator �J ) must be equal to zero. This is
what can be seen in the Peres lattice for E/(ωoj ) > 1, where
the points are noticeably localized around the value 〈Jz〉 = 0.

The small oscillations approximation makes it possible to
explain the regularity observed in the low-energy region in both
the quantum and the classical results; however, the breaking
of this quadratic approximation does not mean that the system
is chaotic. This statement can be clearly seen in the case of
the model with the thermodynamical limit critical coupling
γ = γc. For this particular case the quadratic approximation
fails for any energy because one of its normal modes is exactly
zero. Even so, the Peres lattices and the classical trajectories
show (Figs. 10 and 11) regular patterns for energies close to the
minimum, with irregular features appearing at larger energies
[E/(ωoj ) � −0.8]. The results for the critical value are very
similar to those of the case γ = 0.9γc discussed above.

The above results show that the presence of chaos in
the Dicke model is not restricted to the superradiant phase.
Irregular patterns, in the classical and corresponding quantum

FIG. 11. (Color online) Poincaré sections (p = 0) for γ = γc and
energies E/(ωoj ) = −0.9, −0.8 (top), and −0.2, 0.2 (bottom).

model, appear, except in the perturbative region γ ≈ 0, in
the normal phase for large-enough energies. The same can be
said for the critical case: Regularity is observed in the energy
regime immediately above the energy minimum, and chaotic
features are observed at larger energies.

2. Superradiant phase

For couplings in the superradiant phase, a new energy
region appears below the normal phase lowest energy. This
new energy region corresponds, from a classical point of view,
to the motion of the pseudospin variables in the double well
energy surface where the parity symmetry is spontaneously
broken. The top of this double well energy surface is given by
the ground-state energy of the normal phase [E/(ωoj ) = −1],
where the dynamical ESQPT takes place. As a first example in
this coupling regime, we consider a coupling near but above
the critical one γ = 1.35γc. The corresponding Peres lattices
are shown in Fig. 12, whereas the classical Poincaré sections

FIG. 12. (Color online) (Top) Peres lattice for a finite system
j = 40 and coupling γ /γc = 1.35 (a cutoff Nmax = 160 was used)
and the Anderson-Darling parameter (A2/160, solid black line). The
horizontal dashed line indicates the maximal value (2.5/160) for
which the test does not reject the hypothesis of a Wigner distribution
for a confidence level of 95%. (Middle) A closer view of the low
part of the spectrum for a larger system (j = 100, with a cutoff
nmax = 70). (Bottom) Anderson-Darling parameter for the system of
central panel, the horizontal dashed line indicates the value 2.5.
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FIG. 13. (Color online) Poincaré surfaces of section for the same
system as the previous figure (γ = 1.35γc). Every panel corresponds,
respectively, to energies E/(ωoj ) = −1.16, −1.0 (top); −0.95, −0.8
(middle); and −0.5, 0.5 (bottom).

are shown in Fig. 13. As it happened in the previous cases
and as expected according to the Fig. 5, for the low-energy
regime a regular lattice is obtained and correspondingly only
classical regular orbits appear in the Poincaré sections. In the
case of a medium size quantum system (j = 40 top panel of
Fig. 12), the regular lattice seems to extend until the energy of
the dynamic ESQPT [E/(ωoj ) = −1]; however, a closer view
of the same energy region using a larger system (j = 100)
unveils a richer structure in the denser Peres lattice: The regular
lattice extends beyond the critical energy E/(ωoj ) = −1. For
a small interval around E/(ωoj ) = −1, regular and irregular
lattices coexist. For larger energies the lattice is completely
irregular. These lattice characteristics are reflected by the
respective A-D parameters (bottom panel of Fig. 12), which
decrease drastically from large values at energies close to
the minimum. At E/(ωoj ) ≈ −0.8 it attains values around
A2 = 5, and finally, at an energy E/(ωoj ) ≈ −0.5 it takes
values smaller than A2 = 2.5. The classical results have a clear
correspondence with the quantum ones, as can be verified
in the Poincaré sections of Fig. 13: regular orbits for low
energies [including the critical energy E/(ωoj ) = −1], mixed
dynamics or soft chaos (coexistence of regular and chaotic
trajectories) at energies near but above the critical energy
E/(ωoj ) = −1, and hard chaos (chaotic trajectories fulling the
whole available phase space) for energies E/(ωoj ) � −0.5.
The precursors of the ESQPTs, both the dynamic and the static,
can be clearly seen in the Peres lattice of the j = 40 system
(top panel of Fig. 12), as a change in the slope of the tendency
of the 〈Jz〉 values as the energy is increased.

The last case we present is one with a large coupling, deep in
the superradiant phase (γ = 2.0γc). Again, we have a regular
region in the low energy sector and a hard chaotic region
for higher energies. As in the previous cases the precursors
of the two ESQPTs are clearly seen in the Peres lattice
shown in the top panel of Fig. 14. In the same panel the
regular part of the lattice seems to be limited by the critical
energy of the dynamic ESQPT [E/(ωoj ) = −1]; however,

FIG. 14. (Color online) (Top) The same as the top panel of Fig. 12
but for a coupling γ /γc = 2.0 and an Anderson-Darling parameter
divided by 100 (A2/100). The horizontal dashed line indicates the
value 2.5/100. (Middle) Peres lattice in a smaller energy interval
for a larger system (j = 80); the bosonic cutoff used was Nmax = 95.
(Bottom) Anderson-Darling parameter for the system of central panel,
the horizontal dashed line indicates the value 2.5.

a closer view to that energy region for a larger system
(j = 80) unveils a more involved relationship between the
ESQPT and the transition to chaos. Differently from the case
shown in the middle panel of Fig. 12 (γ = 1.35γc, for a
system size j = 100), the regular part of the Peres lattice in
this case (middle panel of Fig. 14) does not extend beyond
E/(ωoj ) = −1, but it is upper limited by E/(ωoj ) ≈ −1.1.
For low energies the lattice is completely regular, whereas
for energies around E/(ωoj ) ≈ −1.1 a coexistence of regular
and irregular patterns is obtained. At the critical energy of the
dynamic ESQPT the lattice seems to be completely irregular,
and the same is obtained for larger energies. The previous
qualitative observations are quantitatively reflected by the A-D
parameter (bottom panel of Fig. 14) which decrease abruptly
in an energy interval around E/(ωoj ) ≈ −1.1 below the value
A2 = 2.5. The classical Poincaré sections (Fig. 15) present a
very similar route to chaos. For E/(ωoj ) = −2.0 only regular
orbits are obtained, whereas for E/(ωoj ) = −1.4 a mixed
phase space with regular and chaotic trajectories appears. In
a narrow energy interval the phase-space properties change
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FIG. 15. (Color online) Poincaré surfaces of section for the same
system as the previous figure (γ /γc = 2.0). Every panel corresponds,
respectively, to energies E/(ωoj ) = −2.0,−1.4 (top); −1.2, −1.0
(middle); and −0.5, 1.5 (bottom).

rapidly. For E/(ωoj ) = −1.2 the chaotic trajectories fill the
available phase space, except a small stability island, which
disappears completely at larger energies.

The Peres lattices and the classical results which support
and explain the different structures found in them, show
that the change from a regular regime to a chaotic one in
the Dicke model is much more involved that the transitions
linked to the DoS (ESQPT) or the ground-state properties
(QPT). While the ESQPT and QPT are well defined transitions
in the classical limit [they are unambiguously indicated by
nonanalytic behavior of the ground-state energy and volume
of the available phase space ν(E)], the transition from a regular
regime (at low energies) to a chaotic one (large energies)
cannot be unambiguously defined even in the classical limit.
Instead, continuous changes in the phase-space structures are
obtained, which include a mixed or soft chaos regime where
regular and chaotic patterns coexist, in both the classical and
the quantum results and in both the normal and the superradiant
phases. Nevertheless, an indirect connection between chaos
and the ESQPT can be obtained through the unstable fixed
points of the classical version. They determine clearly the
energies where changes in the available phase space take
place and, consequently, singular behavior in the classical
approximation of the DoS; on the other hand, they are also
involved in the breaking of the quadratic approximation which
is a necessary (but not sufficient) condition for the presence of
chaos in the classical model.

Finally, it is worth mentioning that the results presented
above show that the Peres lattices are a very useful tool to
explore in a qualitative and quick way the presence of chaos
in the quantum models. Moreover, they are useful to give
indications about the properties of the corresponding classical
model. The Peres lattices make it possible to visualize at a
glance the system properties in the energy space, contrary to

the traditional Poincaré sections which are defined only for
a given energy. With the Peres lattices it is easy to select
individual states and identify if they are part of the regular
or chaotic lattice part. In this sense they can be useful to
perform more detailed studies about the classical and quantum
correspondence such as the work of Ref. [9], where the
Husimi functions of selected eigenstates are calculated and
compared with the classical results. As in the present study,
in that reference a clear quantum-classical correspondence is
obtained for systems with sizes of order N ∼ O(102).

IV. CONCLUSIONS

Using both a semiclassical analysis and results of an
efficient numerical procedure to diagonalize the quantum
Hamiltonians, we have studied the Dicke and TC models in
the space of coupling and energy. We focused on the onset
of chaos in the nonintegrable Dicke model, one of the global
properties of the energy-coupling space.

We explore the properties of the quantum and classical
models as a function of coupling and energy with regard to
the onset of irregular patterns. Poincaré surfaces of section
and Peres lattices were used, respectively, for the classical
and quantum versions. A clear classical and quantum global
correspondence was obtained for system sizes ranging from
N = 80 to 200.

Through the unstable fixed points, an indirect connection
between the ESQPTs and the onset of chaos was identified;
however, the latter is a much richer phenomenon than the
occurrence of nonanalytic behavior in the DoS or the ground-
state energy. It was found that the onset of chaos is related with
the breaking of the quadratic approximation of the Hamiltonian
that is obtained by considering small oscillations around the
global energy minimum. It was confirmed in the quantum and
classical versions, that chaos is present, both in the normal and
superradiant phase, for large-enough energies, except in the
perturbative regime γ ≈ 0. Conversely, for any coupling there
always exist an energy interval above the energy minimum
where only regular patterns are obtained. In particular, for the
very small coupling regime γ ≈ 0 this energy interval extends
to infinity. Once the quadratic approximation is broken, more
energy is needed to produce chaotic patterns, something that
can be clearly seen in the classical system with critical
coupling, where one of the normal modes of the quadratic
approximation is exactly zero, which implies that terms of
order larger than two have to be considered. Even so, the
system presents regular patterns in the low-energy regime,
and irregular trajectories appear until larger energies. The
Peres lattices used to study the quantum versions were a very
useful tool to identify qualitatively the chaotic and regular
features of the spectrum; moreover, they show clear signatures
of the ESQPTs. The qualitative information provided by the
Peres lattices was quantitatively confirmed by analyzing the
statistical properties of the quantum fluctuations. We tested if
the fluctuations of the spectrum in different energy intervals
follow the Wigner distribution characteristic of the hard
chaotic systems.

The classical analysis performed in this contribution allows
us to gain many insights about the results obtained in the quan-
tum versions. For instance, it was shown that the two-modes
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approximation obtained in [6] by making a Holstein-Primakoff
of the pseudospin variables in the quantum model is valid
in the thermodynamic (equivalent here to the semi-classical)
limit, but only for an energy region immediately above the
ground-state energy. Moreover, the two-modes approximation
explains very well the regular patterns found in the low-lying
energy spectrum of the finite quantum Dicke model.

This global study may be useful as a navigation chart to
more detailed studies that focus on the classical-quantum
correspondence of single states, such as that performed in
Ref. [9]. Finally, the results presented here for optical models
confirm results of previous studies, performed in the context of
nuclear physics simple models [14,17,18], about the classical
and quantum correspondence with regard to the onset of chaos
in the extended energy and coupling space.
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APPENDIX A: SMALL OSCILLATIONS AROUND THE
ENERGY MINIMA

If small oscillations around the energy minimum are
considered, a quadratic Hamiltonian is obtained whose normal
frequencies ω± give the low-lying energy spectrum of the
quantum model with excitation energies En+,n− = ω+n+ +
ω−n−, with n± = 0,1,2,... For couplings below the critical
value the normal modes of the low-energy regime can be
obtained by expanding the classical Hamiltonian (2) around the
global minimum jz = −j . This expansion is easily obtained by
transforming [11] the angular momentum canonical variables
(jz and φ) to Q1 = √

2(j + jz) sin φ, P1 = √
2(j + jz) cos φ.

In terms of these variables the classical Hamiltonian (2) of the
Dicke model (δ = 1) reads

Hcl = −ωoj + ωo

2

(
Q2

1 + P 2
1

) + ω

2
(q2 + p2)

+2γ qP1

√
1 − Q2

1 + P 2
1

4j
. (A1)

By expanding the square root in the previous Hamiltonian, we
obtain, to leading order, a quadratic Hamiltonian

Hq = −ωoj + ωo

2

(
Q2

1 + P 2
1

) + ω

2
(q2 + p2) + 2γ qP1, (A2)

with normal frequencies [19] given by

2ω2
± = ω2 + ω2

o ±
√(

ω2
2 − ω2

o

)2 + 16ωωoγ 2.

For couplings larger than the critical one, two degenerate
minima emerge, and the expansion has to be taken around
these new minima (qm, pm, φm, jzm) given by Eq. (12) in the
companion paper (I). The expansion until the quadratic leading

terms is

Hq = Egs + ω

2
[(q − qm)2 + p2]

+ jωo

2

⎡
⎣(

γ 2

γ 2
c

− γ 2
c

γ 2

)
φ2 + (γ /γc)4(

γ 2

γ 2
c

− γ 2
c

γ 2

)
(

jz − jzm

j

)2
⎤
⎦

+
√

ωωoj√
γ 2

γ 2
c

− γ 2
c

γ 2

(q − qm)

(
jz − jzm

j

)
. (A3)

The normal modes of the previous quadratic Hamiltonian
can be obtained easily [19]; they are

2γ 4
c ω2

± = ω2
oγ

4 + ω2γ 4
c ±

√
(ω2

oγ
4 − ω2γ 4

c )2 + 4ω2ω2
oγ

8
c .

APPENDIX B: BASIS WITH DEFINED PARITY

The extended bosonic basis we used in (I) to diagonalize
the Dicke Hamiltonian is given [20,21] by the eigenstates of
the Dicke Hamiltonian in the limit ω0 → 0, which are

|N ; j,m′〉 ≡ 1√
N !

(A†)N |N = 0; j,m′〉, (B1)

where A† = a† + 2γ√
Nω

Jx , m′ are the eigenvalues of Jx ,

and |N = 0; j,m′〉 = |α = − 2γm′

ω
√
N 〉|jm′〉, with |α〉 a boson

coherent state and |jm′〉 an eigenstate of the Jx operator.
The previous states are not eigenstates of the parity operator
� = eiπ� = eiπ(Jz+j )eiπa†a . In order to analyze the statistical
properties of the Dicke spectrum, we have to separate the
energy eigenstates according to their parity (p = ±). To this
end, we construct a basis which is also an eigenbasis of the
parity operator. It is easy to prove that

|N ; j,m′〉

= 1√
N !

(
a† + 2γ√

Nω
m′

)N ∣∣∣∣α = − 2γm′

ω
√
N

〉
|jm′〉;

(B2)

this result shows that the states (B1) are proportional to |jm′〉. It
can be shown (see [22]) that the action of the rotation operator
eiπ(Jz+j ) over |jm′〉 gives

eiπ(Jz+j )|jm′〉 = |j − m′〉.
Therefore, we have

eiπ(Jz+j )|N ; j,m′〉

= 1√
N !

(
a† + 2γ√

Nω
m′

)N ∣∣∣∣α = − 2γm′

ω
√
N

〉
|j − m′〉.

(B3)

On the other hand, by using the properties of the coherent
states, it is straightforward to show that eiπa†a(a†)k|α〉 =
(−1)k(a†)k| − α〉. With the previous result we obtain

eiπa†a|N ; j,m′〉

= (−1)N
1√
N !

(
a† − 2γ√

Nω
m′

)N ∣∣∣∣α = 2γm′

ω
√
N

〉
|jm′〉.

(B4)
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By putting together Eqs. (B3) and (B4) we obtain

�|N ; j,m′〉

= (−1)N
1√
N !

(
a† − 2γ√

Nω
m′

)N ∣∣∣∣α = 2γm′

ω
√
N

〉
|j − m′〉

= (−1)N
1√
N !

(
a† + 2γ√

Nω
Jx

)N ∣∣∣∣α = 2γm′

ω
√
N

〉
|j − m′〉

= (−1)N
1√
N !

(A†)N |N=0; j, − m′〉= (−1)N |N ; j, − m′〉.
Then, the invariant subspaces of the parity operator are
generated by states (B1) with the same values N and |m′|.

It is straightforward to diagonalize the parity operator in
these subspaces, and we obtain the eigenstates of the Dicke
Hamiltonian in the limit ω0 → 0, which are simultaneously
eigenstates of the parity operator �,

|N ; j,m′; p = ±〉
= 1√

2(1 + δm′,0)
[|N ; j,m′〉 ± (−1)N |N ; j, − m′〉]. (B5)

Using this basis we can separate from the beginning the two
parity sectors of the Dicke model and use the extended coherent
basis, which has been shown [20,21] to be very efficient to
study large Dicke systems.
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[18] P. Stránský, M. Kurian, and P. Cejnar, Phys. Rev. C 74, 014306

(2006).
[19] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics

(Addison-Wesley, Reading, MA, 2001).
[20] Q. H. Chen, Y. Y. Zhang, T. Liu, and K. L. Wang, Phys. Rev. A

78, 051801 (2008); T. Liu, Y. Y. Zhang, Q. H. Chen, and K. L.
Wang, ibid. 80, 023810 (2009).

[21] M. A. Bastarrachea-Magnani and J. G. Hirsch, Rev. Mex. Fis. S
57, 69 (2011).

[22] A. R. Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, NJ, 1996).

032102-11

http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1103/PhysRev.93.99
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1016/0003-4916(73)90039-0
http://dx.doi.org/10.1103/PhysRevA.7.831
http://dx.doi.org/10.1103/PhysRevA.7.831
http://dx.doi.org/10.1103/PhysRevA.7.831
http://dx.doi.org/10.1103/PhysRevA.7.831
http://dx.doi.org/10.1103/PhysRevA.89.032101
http://dx.doi.org/10.1103/PhysRevA.89.032101
http://dx.doi.org/10.1103/PhysRevA.89.032101
http://dx.doi.org/10.1103/PhysRevA.89.032101
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevE.67.066203
http://dx.doi.org/10.1103/PhysRevLett.90.044101
http://dx.doi.org/10.1103/PhysRevLett.90.044101
http://dx.doi.org/10.1103/PhysRevLett.90.044101
http://dx.doi.org/10.1103/PhysRevLett.90.044101
http://dx.doi.org/10.1103/PhysRevE.83.046208
http://dx.doi.org/10.1103/PhysRevE.83.046208
http://dx.doi.org/10.1103/PhysRevE.83.046208
http://dx.doi.org/10.1103/PhysRevE.83.046208
http://dx.doi.org/10.1103/PhysRevLett.108.073601
http://dx.doi.org/10.1103/PhysRevLett.108.073601
http://dx.doi.org/10.1103/PhysRevLett.108.073601
http://dx.doi.org/10.1103/PhysRevLett.108.073601
http://dx.doi.org/10.1088/1367-2630/14/7/073011
http://dx.doi.org/10.1088/1367-2630/14/7/073011
http://dx.doi.org/10.1088/1367-2630/14/7/073011
http://dx.doi.org/10.1088/1367-2630/14/7/073011
http://dx.doi.org/10.1103/PhysRevA.88.043835
http://dx.doi.org/10.1103/PhysRevA.88.043835
http://dx.doi.org/10.1103/PhysRevA.88.043835
http://dx.doi.org/10.1103/PhysRevA.88.043835
http://dx.doi.org/10.1088/0031-8949/87/03/038114
http://dx.doi.org/10.1088/0031-8949/87/03/038114
http://dx.doi.org/10.1088/0031-8949/87/03/038114
http://dx.doi.org/10.1088/0031-8949/87/03/038114
http://dx.doi.org/10.1016/0003-4916(92)90178-O
http://dx.doi.org/10.1016/0003-4916(92)90178-O
http://dx.doi.org/10.1016/0003-4916(92)90178-O
http://dx.doi.org/10.1016/0003-4916(92)90178-O
http://dx.doi.org/10.1103/PhysRevE.88.032133
http://dx.doi.org/10.1103/PhysRevE.88.032133
http://dx.doi.org/10.1103/PhysRevE.88.032133
http://dx.doi.org/10.1103/PhysRevE.88.032133
http://dx.doi.org/10.1103/PhysRevLett.53.1711
http://dx.doi.org/10.1103/PhysRevLett.53.1711
http://dx.doi.org/10.1103/PhysRevLett.53.1711
http://dx.doi.org/10.1103/PhysRevLett.53.1711
http://dx.doi.org/10.1103/PhysRevE.79.066201
http://dx.doi.org/10.1103/PhysRevE.79.066201
http://dx.doi.org/10.1103/PhysRevE.79.066201
http://dx.doi.org/10.1103/PhysRevE.79.066201
http://dx.doi.org/10.1214/aoms/1177729437
http://dx.doi.org/10.1214/aoms/1177729437
http://dx.doi.org/10.1214/aoms/1177729437
http://dx.doi.org/10.1214/aoms/1177729437
http://dx.doi.org/10.1088/0031-8949/87/03/038106
http://dx.doi.org/10.1088/0031-8949/87/03/038106
http://dx.doi.org/10.1088/0031-8949/87/03/038106
http://dx.doi.org/10.1088/0031-8949/87/03/038106
http://dx.doi.org/10.1103/PhysRevLett.93.102502
http://dx.doi.org/10.1103/PhysRevLett.93.102502
http://dx.doi.org/10.1103/PhysRevLett.93.102502
http://dx.doi.org/10.1103/PhysRevLett.93.102502
http://dx.doi.org/10.1103/PhysRevC.74.014306
http://dx.doi.org/10.1103/PhysRevC.74.014306
http://dx.doi.org/10.1103/PhysRevC.74.014306
http://dx.doi.org/10.1103/PhysRevC.74.014306
http://dx.doi.org/10.1103/PhysRevA.78.051801
http://dx.doi.org/10.1103/PhysRevA.78.051801
http://dx.doi.org/10.1103/PhysRevA.78.051801
http://dx.doi.org/10.1103/PhysRevA.78.051801
http://dx.doi.org/10.1103/PhysRevA.80.023810
http://dx.doi.org/10.1103/PhysRevA.80.023810
http://dx.doi.org/10.1103/PhysRevA.80.023810
http://dx.doi.org/10.1103/PhysRevA.80.023810



