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We study the nonintegrable Dicke model and its integrable approximation, the Tavis-Cummings model, as
functions of both the coupling constant and the excitation energy. Excited-state quantum phase transitions
(ESQPT) are found analyzing the density of states in the semiclassical limit and comparing it with numerical
results for the quantum case in large Hilbert spaces, taking advantage of efficient methods recently developed.
Two different ESQPTs are identified in both models, which are signaled as singularities in the semiclassical
density of states; one static ESQPT occurs for any coupling, whereas a dynamic ESQPT is observed only in the
superradiant phase. The role of the unstable fixed points of the Hamiltonian semiclassical flux in the occurrence of
the ESQPTs is discussed and determined. Numerical evidence is provided that shows that the semiclassical results
describe very well the tendency of the quantum energy spectrum for any coupling in both models. Therefore, the
semiclassical density of states can be used to study the statistical properties of the fluctuation in the spectra, a
study that is presented in a companion paper.
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I. INTRODUCTION

The Dicke Hamiltonian describes a system of N two-level
atoms interacting with a single monochromatic electromag-
netic radiation mode within a cavity [1]. In the language
of quantum computation, it can also describe a set of N
qubits from quantum dots, Bose-Einstein condensates, or QED
circuits [2–5], interacting through a bosonic field. The Hamil-
tonian is very simple but not exactly solvable and continues
to drive research into its properties. The most representative
feature of the Dicke Hamiltonian is its second-order quantum
phase transition (QPT) in the thermodynamic limit [6,7]. The
ground state of the system goes from a normal to a superradiant
state when the atom-field interaction reaches a critical value.
This transition is an example of a quantum collective behavior
[8]. The interest in solving the Dicke Hamiltonian for a finite
N comes not only from the fact that it provides a good
description for the systems manipulated in the laboratory, but
from the close connection found between entanglement, QPTs,
and quantum chaos [9–11]. Recently, Dicke-like Hamiltonians
have attracted much attention because of the experimental
realization of the superradiant phase transition in a BEC
[12,13,14], while the debate around the validity of the
description and its relation with the no-go theorem is far from
closed [15–21]. In the thermodynamic limit (equivalent in the
present models to the semiclassical limit), when the number of
atoms N goes to infinity, the mean-field description becomes
exact, and a Holstein-Primakoff expansion around it provides
analytic solutions [9], which make it possible to extract the
critical exponents for the ground-state energy per particle, the
fraction of excited atoms, the number of photons per atom,
their fluctuations, and the concurrence [9–11,22]. For a finite
number of atoms N , the model is, in general, nonintegrable,
and care must be taken when the first order in the 1/N
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expansion is employed because of its singular behavior around
the phase transition [23–25].

The existence of an excited-state quantum phase transition
(ESQPT) in the Dicke and Tavis-Cummings (TC) models was
recently pointed out by Perez-Fernández et al. [26]. An ESQPT
takes place along the energy spectrum, for fixed values of
the Hamiltonian parameters. It is manifested by singularities
in the level density, order parameters, and wave function
properties [27]. The ESQPTs have been analyzed in several
nuclear physics models [28] and could have important effects
in decoherence [29] and the temporal evolution of quantum
quenches [30]. Their relationship with the ground-state QPT
is not completely clear, so the issue is open to current
research.

We consider the nonintegrable Dicke model and its in-
tegrable approximation, the TC model, where the counter-
rotating terms are neglected. These models are studied as
functions of the coupling between atoms and field and as
functions of the energy. The ESQPTs in these models are
identified by studying the density of states in the semiclassical
limit. We identify two ESQPT of different nature, a static
one appearing for any coupling and a dynamic ESQPT which
is present only in the superradiant phase. The role of the
unstable fixed points, where abrupt changes in the available
phase take place, in determining the ESQPTs is exposed.
Analytic expressions for the density of states are obtained
which coincide with those derived by Brandes recently
[31]. We compare the semiclassical results with numerical
results of the quantum model in large Hilbert spaces, taking
advantage of efficient methods recently developed [22,32,33].
The comparison shows that the semiclassical results describe
very well the tendency of the quantum spectra, in both the
TC and the Dicke models and for the normal and superradiant
phases. Consequently, the semiclassical density of states can be
used to study the statistical properties of the quantum spectrum
fluctuations, a study that is presented in the companion paper
[34] of this series of two papers, where additionally the
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quantum results are compared with the onset of irregular
trajectories in the semiclassical phase space.

The article is organized as follows. In Sec. II we present
the Dicke and the TC Hamiltonians and summarize some of
their properties. The classical Hamiltonians are described in
Sec. III together with the analysis of the stable and unstable
fixed points. In Sec. IV the available phase space volume as
a function of coupling and energy is used to determine the
semiclassical density of states. This density is compared with
the quantum result in the same section. Section V contains the
conclusions.

II. DICKE AND TAVIS-CUMMINGS HAMILTONIANS

The Dicke model describes the interaction between a
system of N two-level atoms and a single mode of a radiation
field within a cavity. The Hamiltonian is made of three parts:
one associated to the monochromatic quantized radiation
field, a second one to the atomic sector, and a last one
which describes the interaction between them. The Dicke
Hamiltonian can be written as

HD = ωa†a + ω0Jz + γ√
N

(a + a†)(J+ + J−). (1)

The frequency of the radiation mode is ω, which has an
associated photon number operator a†a. For the atomic part
ω0 is the excitation energy; meanwhile, Jz, J+, J−, are
collective atomic pseudospin operators which obey the SU(2)
algebra. It holds that if j (j + 1) is the eigenvalue of J2 =
J 2

x + J 2
y + J 2

z , then j = N /2 (the pseudospin length) defines
the symmetric atomic subspace which includes the ground
state. γ is the interaction parameter. For atomic systems, it
depends principally on the atomic dipolar moment. Besides,
HD commutes with the parity operator �,

� = eiπ�, with � = a†a + Jz + j. (2)

The eigenvalues of the � operator, λ = n + m + j , are the
total number of excitations, where n is the number of photons
and nexc = m + j the number of excited atoms. As mentioned,
in the thermodynamic limit a second-order QPT takes place
when the interaction parameter reaches the critical value γc =√

ωω0/2, separating the system into two regions: the normal
phase (γ < γc) and the superradiant phase (γ > γc). In the
normal phase the ground state has λ = 0, i.e., no photons
and all atoms in their ground state. The superradiant phase is
characterized by a macroscopic population of the upper atomic
level and a comparable average photon number in the ground
state of the system.

In general, for finite N the Dicke Hamiltonian is not
integrable. However, it has two integrable limits: when γ → 0
and when ωo → 0 [32]. Moreover, when the coupling is weak
it is possible to make the rotating wave approximation by
ignoring the counter-rotating terms. The result is another
integrable limit, the TC Hamiltonian [35]:

HTC = ωa†a + ωoJz + γ√
N

(aJ+ + a†J−). (3)

The TC Hamiltonian is integrable because it commutes with
the � operator. Its conserved eigenvalues λ define a set of
subspaces where HTC can be diagonalized independently.

It also has a QPT in the thermodynamical limit, when the
coupling has a critical value of γc,TC = √

ωoω. For couplings
γ � γc,TC, the ground state is the state with λ = 0, with no
photons nor excited atoms, as in the Dicke model. When
γ > γc,TC the ground state has a certain λc > 0, which grows
monotonically with γ . As an integrable approximation of the
Dicke model, the TC model will help us to gain understand-
ing of the connection between chaos, integrability, and the
ESQPT.

We can write both models in one expression,

H = ωa†a + ω0Jz

+ γ√
N

[(aJ+ + a†J−) + δ(a†J+ + aJ−)], (4)

where δ = 0 and 1 for the TC and Dicke models, respectively.
With this parametrization the QPT’s critical values are γc =√

ω0ω/(1 + δ). From now on, we focus on the subspace with
largest pseudospin, where j = N /2.

III. CLASSICAL HAMILTONIANS

As discussed in previous works for the Dicke [23–25,31,36]
and TC [37] models, many insights can be gained by studying
the classical limit. Since we chose � = 1, this limit is equal to
the thermodynamical limit j → ∞.

The classical versions of the Dicke and TC models can be
obtained employing the naive substitution of the pseudospin
variables by classical angular momentum ones (Ji → ji) and
the substitution of the boson variables by a classical harmonic
oscillator with mω = 1 (

√
2a → q + ip and

√
2a† → q −

ip). Recalling the relations J+ = Jx + iJy an J− = Jx − iJy,
we obtain

Hcl = ωojz + ω

2
(q2 + p2)

+ γ√
j

[(1 + δ)q jx − (1 − δ)p jy]. (5)

In Ref. [36] it was shown that the previous Hamiltonian is
entirely equivalent to that obtained by using bosonic and
SU(2) coherent states. The pseudospin variables satisfy the
Poisson-bracket algebra {ji,jj } = εijkjk . Canonical variables
satisfying {P,Q} = −1 can be constructed from them as
P = jz and Q = φ = tan−1(jy/jx), where φ is the azimuthal
angle of the vector �j = (jx,jy,jz) whose magnitude is constant
| �j | = j . In terms of the canonical variables, the classical Dicke
and TC Hamiltonian reads

Hcl = ωo jz + ω

2
(q2 + p2) + γ

√
j

√
1 − j 2

z

j 2

× [(1 + δ) q cos φ − (1 − δ) p sin φ]. (6)

The associated classical equations of motion are

dq

dt
= ∂Hcl

∂p
= ω p − (1 − δ)γ

√
j

√
1 − j 2

z

j 2
sin φ, (7)

dp

dt
=−∂Hcl

∂q
= −ω q − (1 + δ)γ

√
j

√
1 − j 2

z

j 2
cos φ, (8)
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dφ

dt
= ∂Hcl

∂jz

= ωo − γjz

j 3/2
√

1 − j 2
z

j 2

× [(1 + δ)q cos φ − (1 − δ)p sin φ], (9)

djz

dt
= −∂Hcl

∂φ
= 2γ

√
j

√
1 − j 2

z

j 2

× [(1 + δ)q sin φ + (1 − δ)p cos φ]. (10)

The fixed points of the Hamiltonian flux correspond to
the values (qm,pm,jzm) which produce the simultaneous
cancellation of the four derivatives. Two of them are present
for any value of the coupling constant γ ,

(qm,pm,jzm) = (0,0,±j ).

Note that jz = ±j correspond to the north and south poles of
the pseudospin sphere where the value of the azimuthal angle
is irrelevant. If we evaluate the Hamiltonian in the previous
fixed points, we obtain, respectively and for any coupling, the
energies ε = ±1, where we have, conveniently, rescaled the
energy as

ε ≡ E

ωoj
. (11)

The nature of the previous fixed points is as follows, the point
(qm,pm,jzm) = (0,0,+j ) is an unstable fixed point for any
value of the coupling γ , whereas the point (qm,pm,jzm) =
(0,0,−j ) is a stable fixed point for couplings γ � γc that
becomes unstable for couplings γ > γc. It represents the
semiclassical description of the ground state in the normal
phase, with no photons and no excited states.

For couplings larger than the critical one, new stable
points emerge whose properties depend on the model we are
considering, Dicke (δ = 1) or TC (δ = 0). For the Dicke model
two degenerate stable fixed points emerge which are given by

(qm,pm)± =
[
∓2γ

√
j

ω

√
1 −

(
γc

γ

)4

,0

]
,

(12)

(cos φm,jzm)± =
[
±1,−j

(
γc

γ

)2 ]
,

whereas for the integrable TC model a continuous set of stable
fixed points parametrized by the angle φ ∈ [0,2π ) appear,
which are given by

(qm,pm) = γ
√

j

ω

√
1 −

(
γc

γ

)4

(−cos φ, sin φ),

(13)

jzm = −j

(
γc

γ

)2

.

The continuous set of fixed points in the TC model is a
consequence of the symmetry associated with the conserved
quantity � (2), whose classical version is �c = (q2 + p2)/2 +
jz + j .

To better visualize the properties of the fixed points in
both models, we construct energy surfaces in terms of the
pseudospin variables jz and φ. Equating to zero Eqs. (7) and
(8) we obtain

√
jωp = (1 − δ)γ

√
j 2 − j 2

z sin φ and
√

jωq =

FIG. 1. (Color online) Contour plots of the energy surface
[Eq. (14)] for the TC (top) and Dicke (bottom) models for three
different couplings. Dark tones indicate low values of the energy.
Angular variables of the pseudospin �j are used: φ is the azimuthal
angle and θ is the zenith angle measured with respect to the south
pole (jz = −j cos θ ).

−(1 + δ)γ
√

j 2 − j 2
z cos φ; by substituting these results in the

Hamiltonian we obtain a semiclassical expression for the
energy as a function of jz and φ,

E(jz,φ)

ωoj
= jz

j
− γ 2

2γ 2
c

(
1 − j 2

z

j 2

) [
1 − 4δ

(1 + δ)2
sin2 φ

]
.

(14)

For the TC model (δ = 0) the energy surface is independent
on the angle φ. In Fig. 1 contour plots of the energy surface
are shown for the TC and Dicke models and for three different
values of the couplings. Variables φ and θ are used, where θ

is the zenith angle of �j measured with respect to the south
pole (jz = −j cos θ ). Because of the symmetry � of the TC
model, its contours are circular for any coupling. For small
couplings the energy surfaces of the Dicke and TC models are
almost indistinguishable, with circular contours and a global
minimum in the south pole (θ = 0). For couplings close but
below the critical value, the global minimum is yet the south
pole but the contours begin to exhibit deformation in the Dicke
model. For couplings above γc, the south pole becomes a local
maximum for the TC model and a saddle point in the Dicke
model. Besides, according to Eq. (13), two degenerate minima
appear in the case of the Dicke model in φ = 0 and π , whereas
for the TC model, the energy surface takes a Mexican hat form
with a continuous set of minima circularly located around the
south pole, which is related to a Goldstone mode [38,39].

The energy minimum is obtained by evaluating the Hamil-
tonian in the stable fixed points. The result, valid for both the
TC and Dicke models, is given by

εmin ≡ Emin

ωoj
=

{−1 for γ � γc,

− 1
2

( γ 2
c

γ 2 + γ 2

γ 2
c

)
for γ > γc.a

(15)

This function is shown in Fig. 2, together with cuts of the
energy surface (14) for sin φ = 0. The cuts are shown as
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FIG. 2. Scaled energy minimum [εmin ≡ Emin/(ωoj )] as a func-
tion of the coupling constant measured with respect to the critical
value (γ /γc). In the insets three typical energy surfaces are shown
for couplings, from left to right, γ /γc = 0.2, 1.0, and 2.0. Stable
and unstable fixed points are signaled by gray and black circles,
respectively. The angle θ is that formed by the pseudospin �j and the
negative z axis.

a function of the angle θ , where positive and negative θ

correspond, respectively, to φ = 0 and φ = π . The fixed points
and their respective nature can be easily visualized in these
energy surfaces, and it is apparent that the transition that
takes place in the critical coupling is a second-order pitchfork
transition.

IV. DENSITY OF STATES

The stable fixed points of the classical TC and Dicke
models (gray dots in Fig. 2), identified and discussed in the
previous section, are useful to understand the behavior of
the energy minimum, associated with the ground-state QPT
in the quantum version of the models. Likewise, the unstable
ones (black dots in Fig. 2) are benchmarks in the energy
space which indicate abrupt changes in the behavior of the
available phase space. These changes, whose quantum analogs
are referred to as ESQPT [27], deserve a detailed analysis
which is conducted in the following.

A. Classical volume of the available phase space

The volume of the available phase space for a given energy
(E), which divided by (2π�)2 with � = 1, is given by

ν(E) = 1

(2π )2

∫
dq dp dφ djz δ(E − Hcl(q,p,φ,jz)). (16)

The previous expression, according to the Gutzwiller’s trace
formula [40], is the semiclassical approximation of the
quantum density of states. Recently, this volume was evaluated
as an inverse Laplace transform of the partition function
of the model [31]. Alternatively, we calculate the integral
directly. The quadratic nature of the Hamiltonians for the boson
variables makes it possible to perform the integrals over p and

q, giving (see Appendix A)

ν(E) = 1

2πω

∫
djz

∫
dφ. (17)

To evaluate this expression we need to know the range of the
pseudospin variables for a given energy E. Here we present
the main results; the details are shown in Appendix A. For
the TC model the � symmetry allows the angle variable φ

take any value in the interval [0,2π ) for any coupling and
energy. Therefore, Eq. (17) reduces to ν(E) = (1/ω)

∫
djz.

On the other hand, the values the variable jz can take depend
on coupling and energy. Three different energy regimes are
identified (a) 1 < ε, (b) −1 � ε � 1, and (c) εo � ε < −1,
with εo = − 1

2 ( γ 2
c

γ 2 + γ 2

γ 2
c

). The latter interval appears only in
the superradiant phase (γ � γc). For energies 1 < ε the whole
pseudospin sphere is available: jz ∈ [−j,j ] and, consequently,
the available phase space volume saturates (ν = 2j/ω). For
energies −1 � ε � 1, the jz variable takes values only in the
interval [−j,jy+] with y±, (|y+| < 1) given by

y± =
[
−γ 2

c

γ 2
± γc

γ

√
2(ε − εo)

]
. (18)

For couplings above the critical value, γ > γc, according
to Eq. (15), the range of possible energies extends until
εo < −1. For the interval ε ∈ [εo,−1) the south pole of the
pseudospin sphere (jz = −j ) is inaccessible and the jz variable
is restricted to the interval jy− � j � jy+, with |y±| < 1
given by Eq. (18). With the previous results the classical
approximation for the density of states in the TC model can be
easily obtained:

ω

2j
ν(ε) =

⎧⎪⎨
⎪⎩

γc

γ

√
2(ε − ε0), ε0 � ε < −1,

1
2

[
1 − γ 2

c

γ 2 + γc

γ

√
2(ε − ε0)

]
, |ε| � 1,

1, ε > 1.

(19)

The volume of the available phase space for the TC model
for three different couplings, as a function of the energy, is
shown in the top panels of Fig. 3. The available phase space
in the pseudospin space for different energy regimes is also
shown above the curves, indicated by gray zones in the polar
plots, 1 + (jz/j ) vs φ. The changes in the available phase
space that occur at energies ε = ∓1 are clearly indicated by
discontinuities in the derivatives ν ′(ε), shown as insets at the
bottom of each panel.

For the Dicke model, the range of the jz variable is (see
Appendix A) given by the same expressions as in the TC
model: jz ∈ [jy−,jy+] for εo � ε < −1, jz ∈ [−j,jy+] for
−1 � ε � 1, and jz ∈ [−j,j ] for 1 < ε. On the other hand,
since the � symmetry is broken for the Dicke model, the
available range of the φ variables depends on coupling and
energy. For energies 1 < ε, as in the TC model, the available
pseudospin phase space saturates and φ takes values in the
whole interval [0,2π ). For energies −1 � ε � 1 the whole
interval [0,2π ) is accessible only if −j � jz � εj . For jε <

jz � jy+ the φ variable is restricted by the condition

2j
γ 2

c

γ 2

(jz − jε)(
j 2 − j 2

z

) � cos2 φ � 1. (20)
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FIG. 3. (Color online) Scaled available phase space volume ων(ε)/(2j ) for the TC model (top) and Dicke model (bottom) as a function of
ε ≡ E/(ωoj ), for couplings γ = 0.2γc (left), γ = γc (middle), and γ = 2γc (right). The derivatives of ν(ε) are shown as insets at the bottom
right of each panel. Polar plots, 1 + (jz/j ) vs φ, of the available pseudospin phase space (gray zones) for representative energies (ε = −0.5
and 1.5) are shown in the upper part of the panels. In the rightmost panels a third polar plot is added depicting the available phase space in the
superradiant region, for ε = −2.0 (TC, top) and ε = −1.6 (Dicke, bottom).

Finally, for εo � ε < −1 (possible only in the superradiant
phase γ > γc), the φ variable is restricted by the same
condition (20). Having identified the range of the pseudospin
variable, it is straightforward to obtain an expression for ν(ε)
for the Dicke model,

ω

2j
ν(ε) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
π

∫ y+
y−

arccos
√

2γ 2
c (y−ε)

γ 2(1−y2) dy, ε0 � ε < −1,

ε+1
2 + 1

π

∫ y+
ε

arccos
√

2γ 2
c (y−ε)

γ 2(1−y2) dy, |ε| � 1,

1, ε > 1,

(21)

where y± is given by (18).
The previous expression for the available phase space

volume is plotted in Fig. 3 for three couplings as a function
of the energy, in the bottom panels. The available pseudospin
phase space for energies in the different regimes is also shown
above the curves as gray areas in the polar plots. The changes
in the available phase space occurring at energies ε = ∓1 are
evident as discontinuities and divergences in the derivative
ν ′(ε). Observe that for small couplings (γ = 0.2γc, left) the
Dicke and TC curves are very similar, but they differ clearly at
the critical coupling, where the available regions in the Dicke
model are highly deformed. The differences are more dramatic
in the superradiant phase γ > γc: While a discontinuity in
the first derivative occurs at ε = −1 for the TC model, the
nonanalytic behavior of the derivative of ν(ε) in the Dicke
model is a logarithmic divergence [31]. This behavior can
be understood by looking at the geometry of the available phase

space in both models. In the TC model the available phase
consists of a single circularly symmetric connected region, but
in the Dicke model it consists of two disconnected regions for
ε < −1, which touch each other in the saddle point at ε = −1
and merge for larger energies ε > −1. In the next two sections,
the previous classical approximations for the density of states
are compared with the results coming from diagonalizing the
Hamiltonian of the TC and Dicke quantum models.

B. Quantum density of states in the Tavis-Cummings model

The basis in which the TC Hamiltonian is diagonalized, for
fixed j , can be labeled by λ and m. For a given value of λ,
the number of states in each subspace is Nst (λ) = min(λ +
1,2j + 1). This number of states grows linearly with λ up to
λ0 = 2j , and from that value on it remains fixed in 2j + 1.
It represents a static change in the density of states which is
always present. The eigenstates of HTC can be classified as
E(i,λ), i = 1, Nst (λ). To obtain a complete energy spectrum
up to an energy Eref , all subspaces up to λmax must be included,
where min(E(i,λmax)) > Eref .

We have studied the resonant case, ω = ωo = 1, which has
γc,TC = 1.0. Selecting N = 200 (j = 100), λmax = 2000 is
enough to provide the complete energy spectrum up to the
scaled energy ε = 6.4 for γ = γc,TC, with 264 000 states, and
up to ε = 3.3 for γ = 2γc,TC with 160 000 states.

Using n as the order number in which each state with
energy E appears in the energy spectrum, in top row of
Fig. 4 we present n

N as function of ε for (a) γ = γc,TC,
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FIG. 4. (Color online) (Top row) n

j
as a function of ε for

(a) γ = γc and (b) γ = 2γc. (Bottom row) Averaged quantum density
of states, ω

2j

�n̄

�Ē
(blue points), in the TC model as a function of ε̄ for

(a) γ = γc and (b) γ = 2γc. The continuous red lines depict the
semiclassical results.

(b) γ = 2γc,TC. Notice the three regions, displayed with
different colors, corresponding to ε0 � ε < −1, |ε| � 1, and
ε > 1 in Fig. 4(b), while in Fig. 4(a) there are only two,
because the ground-state energy is εGS = EGS/(ωoj ) = −1.
The thin lines inside are the fits in each region, inspired in their
functional form in the integrals of ν(ε). It is worth mentioning
that the derivatives of the fitted function coincide with ν(ε),
with differences of the order 1

N .
While the curves presented in the top row of Fig. 4 seem to

be smooth, obtaining their first derivative as finite differences
in order to estimate the quantum density of states is tricky
because the fluctuations obscure the results. To overcome this
difficulty we have taken averages of the energy Ē(n̄) over
intervals of 600 levels, with average number of state n̄. From
these averaged quantities we obtain the average derivative �n̄

�Ē
,

displayed in the bottom row of Fig. 4.
The continuous red curves representing ν(ε) overlap nicely

with the averaged numerical results, presented as points. The
static excited-state phase transition at ε = 1 is present in both
cases, while the dynamic phase transition at ε = −1 can be
observed, very clearly, for the superradiant case γ = 2γc,TC.

C. Quantum density of states in the Dicke model

We repeat some of the calculations we did in the case
of the TC model for the Dicke model, but in this case
we must be careful with the convergence of the numerical
solutions because the model is not integrable. We diagonalize
numerically the Dicke Hamiltonian employing an extended
bosonic coherent basis (see Appendix B), which let us obtain
a significative part of the energy spectra with a small truncation
or cutoff [22,32,33]. For a given truncation we can estimate for
each individual excited state a lower bound of the numerical

FIG. 5. (Color online) Averaged quantum density of states, ω

2j

�n̄

�Ē

(blue points), in the Dicke model as a function of ε̄ for γ = γc

(top) and γ = 2γc (bottom). The continuous red lines indicate the
corresponding semiclassical results.

precision in the wave function, as pointed out in Appendix B.
In this way we can monitor that each eigenstate has converged
up to some chosen significative figures. We have selected the
resonant case ω = ωo, with N = 80 (j = 40).

For the Dicke model the fluctuations in energy are smaller
than in the TC, and the averages of the energy Ē(n̄) are
taken over intervals of 20 levels, with average number of
state n̄. From these averaged quantities we obtain the average
derivative �n̄

�Ē
, displayed in Fig. 5.

The continuous red curves plot ν(ε), the same ones plotted
in Fig. 3, which also in this case overlap nicely with the
averaged numerical results, presented as points. The static
ESQPT at ε = 1 is present in both cases, while the dynamic
phase transition at ε = −1 can be observed, very clearly, for
the superradiant case γ = 2γc.

The numerical evidence provided in this section shows
that the semiclassical density of states describes correctly the
tendency of the quantum spectra of the TC and Dicke models,
in both the normal and the superradiant phases. Consequently,
the semiclassical result can be safely used to perform the
so-called unfolding of the quantum spectra and study the
statistical properties of quantum fluctuations. It is well known
that the properties of these fluctuations are the same as those of
different random matrix ensembles depending on the dynamic
of the underlying semiclassical model: the Gaussian diagonal
ensemble (GDE) for quasi-integrable or regular dynamics,
and the Gaussian orthogonal ensemble (GOE) for chaotic
dynamics with time-invariant symmetry. This analysis is
performed in the companion paper [34] to this one.

V. CONCLUSIONS

Using both a semiclassical analysis and results of an
efficient numerical procedure to diagonalize the quantum
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Hamiltonians, we have studied the Dicke and TC models in the
space of couplings and excitation energies. We have focused
on a global property in the energy-coupling space: the ESQPTs
or singular behavior of the density of states.

Analytical results for the semiclassical approximation to the
density of sates were derived by calculating the volume of the
available phase space for a given coupling and energy. From
the classical analysis, two different unstable fixed points of the
Hamiltonian flux can be identified. The first one located at the
north pole of the pseudospin sphere appears for any coupling.
The second one appears only in the superradiant phase and is
located at the south pole of the pseudospin sphere. The role
of these unstable fixed points in relation to the occurrence
of the ESQPTs was discussed and established. The unstable
points are benchmarks in the energy space which indicate an
abrupt change in the available phase space. The two unstable
fixed points produce two kinds of ESQPTs. The first one,
referred to as static ESQPT, occurs for any coupling at energy
E/(ωoj ) = 1. At this energy the whole pseudospin sphere
becomes available for the system. The second ESQPT, referred
to as dynamic, occurs only for couplings larger than the critical
one at energies E/(ωoj ) = −1. This transition occurs when
the top of the double well (Dicke) or Mexican hat (TC)
potential that develops in the superradiant phase is attained.
The abrupt changes in the available phase space are reflected
in the classical density of states as nonanalytic behavior of its
first derivative. For the integrable TC model, the first derivative
shows a discontinuity for both the static and the dynamic
ESQPTs. For the Dicke model the static ESQPT is equally
reflected by a discontinuity of the first derivative, but the
dynamic ESQPT is associated with a logarithmic divergence
of the first derivative. For the quantum case, finite systems
[N = 200 (TC) and N = 80 (Dicke)] were diagonalized in
large energy regions which include all the regimes identified in
the semiclassical approximation. The tendency of the quantum
spectra was obtained by averaging the energy and the number
of state index, over intervals of 600 (TC) and 20 (Dicke)
contiguous states. After this average procedure, it was shown
that the quantum results overlap perfectly with the semiclas-
sical density of states. This result confirms that the semi-
classical approximation is appropriate for performing the
unfolding of the quantum spectrum and, consequently, for
studying the properties of its fluctuations [34].
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APPENDIX A: AVAILABLE PHASE SPACE FOR A GIVEN E

Here, we perform the boson variables (q and p) integration
of [with Hcl(q,p,φ,jz) defined in Eq. (6)]

ν(E) = 1

(2π )2

∫
djz dφ dp dq δ(E − Hcl(q,p,φ,jz))

and determine the range of the pseudospin variables for a given
energy and coupling. The q integration is straightforward by
using the properties of the Dirac δ,

ν(E) = 1

(2π )2

∫
djz dφ dp dq

[
δ(q − q+)

|∂Hcl/∂q|q+
+ δ(q − q−)

|∂Hcl/∂q|q−

]
,

where q± are the roots of the quadratic equation E −
Hcl(q,p,φ,jz) = 0,

ωq± = −γ
√

j cos φ

√
1 − j 2

z

j 2
(1 + δ) ±

√
−ω2p2 + b p + c,

(A1)
with the coefficients b and c given by

b = 2ωγ
√

j sin φ

√
1 − j 2

z

j 2
(1 − δ)

and

c = γ 2j cos2 φ

(
1 − j 2

z

j 2

)
(1 + δ)2 + 2ω(E − ωojz).

Evaluating the derivatives, one obtains |∂Hcl/∂q|q+ =
|∂Hcl/∂q|q− =

√
−ω2p2 + bp + c; then the q integration

yields

ν(E) = 1

(2π )2

∫
djz dφ dp

2√
−ω2p2 + bp + c

,

with the limits in the variables jz, φ, and p determined by the
condition −ω2p2 + bp + c � 0. The p integration is easily
performed by writing

−ω2p2 + bp + c = ω2(p+ − p)(p − p−),

with p± the roots (p− � p+) of the quadratic polynomial
−ω2p2 + bp + c = 0,

ν(E) = 2

ω(2π )2

∫
djz

∫
dφ

∫ p+

p−
dp

1√
(p+ − p)(p − p−)

= 2π

ω(2π )2

∫
djz

∫
dφ.

The previous result is valid provided that the roots p± are real,
which, in turn, occurs only if the maximum of the polynomial
−ω2p2 + bp + c is greater than or equal to zero:

b2

4ω2
+ c � 0.

By substituting the values of b and c, the previous condition
reads

γ 2

2γ 2
c

(1 − y2)

[
(1 − δ)2

(1 + δ)2
sin2 φ + cos2 φ

]
� y − ε, (A2)

with γc = √
ωωo/(1 + δ), and we have used the variables

y ≡ jz/j (|y| � 1) and ε ≡ E/(ωoj ). The previous condition
determines the range of the pseudospin variables for a given
energy ε. For the TC model (δ = 0) the previous condition is
independent of φ and simplifies to

γ 2

2γ 2
c

(1 − y2) � y − ε;
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therefore, no restriction for the variable φ occurs and it can take
any value in the interval [0,2π ). If ε > 1 the previous condition
is satisfied in the whole interval y ∈ [−1,1], in this case the
whole pseudospin sphere is accessible. For −1 � ε � 1, the
condition is satisfied only for y ∈ [−1,y+] (y+ < 1), where y±
are the roots of γ 2

2γ 2
c

(1 − y2) = y − ε, given in Eq. (18). Finally,
for energies ε < −1, the condition is satisfied in the interval
y ∈ [y−,y+] (|y±| < 1) only if γ > γc and ε � εo, where εo <

−1 is the classical ground-state energy in the superradiant
phase defined immediately after Eq. (18).

For the Dicke model (δ = 1) the condition (A2) is

γ 2
c

γ 2

2(y − ε)

1 − y2
� cos2 φ; (A3)

clearly, this condition constrains the values the φ variable
can take. If ε > 1 the condition is satisfied for the whole
pseudospin sphere y ∈ [−1,1] (jz ∈ [−j,j ]) and φ ∈ [0,2π ).
For energies satisfying −1 � ε � 1, similar to the TC case,
the condition can be satisfied only for y ∈ [−1,y+], but here,
contrary to the TC case, a restriction to the φ variable appears
as follows: If y ∈ [−1,ε], φ takes values in the whole interval
[0,2π ), but if ε < y � y+ the angular variable is restricted by
the condition (A3), which is satisfied for values in intervals
around φ = 0 and φ = π .

Finally, as in the TC case, for energies ε < −1, the
condition can be satisfied in the interval y ∈ [y−,y+] only
if γ > γc and ε � εo, where εo < −1 is the classical ground-
state energy in the superradiant phase. However, now, contrary
to the TC case, the angular variable is restricted by the
condition (A3).

APPENDIX B: NUMERICAL SOLUTIONS AND
PRECISION IN THE WAVE FUNCTION

We use an extended bosonic coherent basis in order to
diagonalize the Dicke Hamiltonian [22,32,33]. The basis

corresponds to the eigenstates of the Dicke model’s integrable
limit ω0 → 0. We write it as |N ; j,m′〉, where m′ are the
eigenvalues of Jx and N is the eigenvalue of the A†A operator,
with A = a + 2γ√

Nω
Jx ,

|N ; j,m′〉 = 1√
N !

(A†)N |N = 0; j,m′〉. (B1)

The vacuum for a given m′ is a boson coherent state (|α〉) times
an eigenstate of the Jx operator:

|N = 0; j,m′〉 =
∣∣∣∣α = − 2γm′

ω
√
N

〉
|jm′〉.

Now, the kth excited-state wave function of the Dicke
Hamiltonian can be written as

|�k(Nmax)〉 =
Nmax∑
N=0

j∑
m′=−j

Ck
N,m′ |N ; j,m′〉. (B2)

Here Ck
N,m′ are the coefficients of the kth wave function in

terms of the extended bosonic coherent basis and Nmax is the
value of the truncation or cutoff in the number of displaced
excitations (0 � N � Nmax). The probability PN of having N

excitations in the kth state is

P k
N = |〈N |�k〉|2 =

∑
m′

∣∣Ck
N,m′

∣∣2
. (B3)

We define the departure for exact precision in the calculated
wave function as [41]

�P k =
j∑

m′=−j

∣∣Ck
Nmax+1,m′

∣∣2
. (B4)

By diagonalizing the Hamiltonian with several truncations,
we consider that the solution has converged if �P k is smaller
than certain tolerance, Nmax being the minimum value of the
truncation necessary for obtaining the numerical solution to
the desired precision.
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Hirsch, Phys. Rev. A 83, 051601(R) (2011).

[24] O. Castaños, E. Nahmad-Achar, R. López-Peña, and J. G.
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