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Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity
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It is shown that noncentrosymmetric materials with bulk second-order nonlinear susceptibility can be used to
generate strongly antibunched radiation at an arbitrary wavelength, solely determined by the resonant behavior of
suitably engineered coupled microcavities. The proposed scheme exploits the unconventional photon blockade
of a coherent driving field at the input of a coupled cavity system, where one of the two cavities is engineered
to resonate at both fundamental and second harmonic frequencies, respectively. Remarkably, the unconventional
blockade mechanism occurs with reasonably low quality factors at both harmonics, and does not require a
sharp doubly resonant condition for the second cavity, thus proving its feasibility with current semiconductor
technology.
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Introduction. There is currently a pressing need for the
development of integrated quantum technologies allowing
for the generation and manipulation of quantum states of
electromagnetic radiation, with the ultimate goal of defining
a photonic-based architecture for quantum information pro-
cessing [1]. For interfacing with long-distance infrastructures
based on fiber-optics communication, state-of-the-art sources
of quantum radiation have been recently developed at typical
telecommunication wavelengths, either based on heralding
photons [2,3] or on artificial quantum emitters [4]. However, a
source of quantum radiation that is not related to any resonant
behavior of a quantum emitter, but can be engineered to
operate at arbitrary wavelength and work at room temperature
has not yet been realized. To this end, the single-photon
blockade of a strongly nonlinear system can be exploited to
convert a coherent radiation source of defined wavelength
into antibunched photon streams [5], as recently done in
coupled quantum-dot–cavity systems [6,7], with potential
implications for the realization of single-photon transistors
[8] and interferometers [9].

It has been recently proposed that single-photon blockade
could be achieved in nanostructured cavities either with
second- (χ (2)) [10] or third-order (χ (3)) [11] nonlinear sus-
ceptibility, which can be strongly enhanced by diffraction-
limited photonic confinement [12,13]. On the other hand,
given the small values of typical nonlinear coefficients of
most semiconducting and insulating materials [14], an un-
conventional photon blockade (UPB) process could facilitate
achieving antibunched light emission from suitably engineered
coupled modes [15]. Such mechanism is based on destruc-
tive quantum interference between distinct driven-dissipative
pathways [16,17], and requires a significantly smaller optical
nonlinearity than its conventional counterpart. It has been
recently proposed that UPB might allow one to achieve
antibunched light emission either in passive devices made of
materials with a large χ (3) susceptibility, such as silicon [18],
or in coupled optomechanical systems [19,20].

In this work we investigate the possibility of achieving
UPB in nonlinear materials with χ (2) susceptibility, following
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the proposal in Ref. [10] to obtain conventional single-
photon blockade in photonic microcavities made of a high-
χ (2) nonlinear material—such as, e.g., III-V semiconductors
(GaAs, GaP, GaN, AlN, etc.)—and fulfilling a doubly resonant
condition, i.e., possessing two confined modes at fundamental
and second-harmonic frequencies [21–23], respectively. Since
the scheme proposed in Ref. [10] posed stringent requirements
on the cavity mode quality factor (Q ∼ 106) and on the doubly
resonant condition, here we show that the UPB mechanism
allows one to significantly relax both those requirements.
Moreover, the present χ (2)-based UPB can potentially be
achieved with larger values of the effective nonlinear inter-
action as compared to passive χ (3) nonlinear devices [18],
eventually bringing the overall system parameters closer to
the realm of what is reasonably achievable with current
technology.

Theoretical model. We consider a model of driven-
dissipative coupled resonators, as schematically described in
Fig. 1. The system dynamics can be exactly modeled by solving
the Liouville–von Neumann master equation for the density
matrix

dρ

dt
= i[ρ,Ĥ ] + L(ρ), (1)

where the second-quantized Hamiltonian of the system reads
[24–26]

Ĥ =
3∑

i=1

�iâ
†
i âi + J (â†

1â2 + â
†
2â1)

+gnl
[
â3(â†

2)2 + â
†
3â

2
2

] + F â
†
1 + F ∗â1, (2)

assuming � = 1 throughout this work, for easier notation.
Here, â1 (â2) describes the quantized fundamental mode in
resonator 1 (resonator 2), while â3 is the second-harmonic
mode in the second resonator. The latter is coupled to the â2

mode by the second-order nonlinear coefficient gnl enhanced
by the doubly resonant condition [10], while the nonlinear
optical properties of mode â1 are assumed to be negligible.
We notice that previous studies on UPB with Kerr-type
nonlinearity have shown that assuming a nonlinear response
also in the driven cavity does not significantly affect the result
[17]. As a matter of fact, this consideration holds to a greater
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extent in the present case where, even in the presence of
a χ (2) response in both cavities, the driven cavity will not
necessarily be optimized with a doubly resonant condition.
Equation (2) is written in a rotated frame with respect
to the driving laser frequency, such that �1,2 = ω1,2 − ωL

and �3 = ω3 − 2ωL. The fundamental modes in the two
resonators are evanescently coupled to each other through
the tunneling rate J , and the first resonator is pumped at
a rate F , while losses of the three modes are described
in Eq. (1) by the Lindblad term L(ρ) = ∑

i κi[âiρâ
†
i −

â
†
i âiρ/2 − ρâ

†
i âi/2]. The nonlinear interaction coefficient in

the second resonator can be directly determined from the
material χ (2), which makes the model suitable to describe
resonators made of noncentrosymmetric materials (such as
III-V semiconductors). In particular, with the simplifying as-
sumption that fundamental and second-harmonic modes have a
large spatial overlap [10], such term is approximately reduced
to gnl � ε0 [ω2/(ε0εr )]3/2 χ̄ (2)/

√
Veff , where χ̄ (2) gives a scalar

approximation for the second-order susceptibility tensor χ
(2)
ijk

coupling the relevant fundamental and second-harmonic field
components, respectively [27]. In the latter expression, Veff

is an effective volume arising from the confinement of the
classical field profiles in the resonator, assumed to be described
by a normalized scalar function f (r) such that

∫ |f (r)|2d3r =
1. Within this formalism, an appropriate definition of effective
volume is Veff = [

∫ |f (r)|3d3r]−2, as previously derived [10].
In the following, we will study the occurrence of single-

photon blockade of an input laser field, described by the last
two terms in Eq. (2). As a relevant figure of merit for photon
antibunching [28], we will specifically refer to the second-
order correlation function at zero time delay from the output of
the first cavity: g(2)(0) = 〈â†2

1 â2
1〉/〈â†

1â1〉2 = Tr{â†2
1 â2

1ρss}/n2
1,

where n1 = Tr{â†
1â1ρss}, and ρss is the steady-state solution

corresponding to dρ/dt = 0 in Eq. (1). The main approxima-
tions of this model with respect to realistic implementations
are as follows. First of all, we are assuming that the evanescent
coupling of neighboring photonic resonators can be described
within a tight-binding scheme, where the tunnel-coupling rate
simply derives from the overlap between the evanescent tails
of the cavity mode profiles (see scheme in Fig. 1). However,
care must be taken in the case of photonic crystal cavities at
large coupling, where additional phases might be added to the
tunneling term [29]. Then, mixing of input-output channels is
neglected here, although it can be straightforwardly taken into
account within this formalism [30]. Finally, we are neglecting
any nonlinear source of losses in Eq. (1), which is justified
at low pumping rates (i.e., low photon occupation in the first
cavity, n1 � 1).

Analytic solution. We assume relaxation of the second-
harmonic condition by several linewidths, i.e., ω1 = ω2 and
|ω3 − 2ω2|/κ 	 1, where we will set κ1 = κ2 = κ henceforth.
In the low-pumping limit and for ωL ∼ ω2, the nonlinear term
in Eq. (2), Ĥnl = gnl[â3(â†

2)2 + â
†
3â

2
2], is effectively described

by a Kerr-type nonlinear Hamiltonian, i.e., Ĥ ′
nl = Ueff(â

†
2â2 +

â
†
2â

†
2â2â2), with the nonlinear shift Ueff � g2

nl/(�3 − 2�2).
One simple way of deriving this result is to compute the energy
of the state |0,2,0〉 accounting for the coupling to the state
|0,0,1〉 to lowest-order perturbation theory. Here {|n1,n2,n3〉}

χ(2)

FIG. 1. (Color online) Scheme of the system under investigation:
two tunnel-coupled resonators (ω1 ∼ ω2) are driven through the
direct injection of a coherent field into cavity 1, while cavity 2
has a doubly resonant condition for modes at frequencies ω2 and
ω3 ∼ 2ω2, respectively. The latter are nonlinearly coupled by a bulk
χ (2) susceptibility. Within this scheme, output of the device is only
collected after cavity 1.

are photon number states, where ni are the occupation numbers
of modes 1–3, respectively. Given the analogy of this effective
model with the one studied in Refs. [15,17], UPB can be
expected to occur in such doubly resonant system even
with gnl � κ , thus relaxing the stringent conditions on the
fundamental mode quality factor, Q1,2 = ω1,2/κ . In particular,
an analytic solution can be given for the optimal system param-
eters giving rise to strong antibunching [17]: laser frequency
detuning, �

opt
1 = �

opt
2 = −κ/2

√
3, and tunnel-coupling rate,

Jopt/κ � [(2/3
√

3)κ/Ueff]1/2. In the following, we will set
the laser frequency close to the optimal detuning condition,
�1 = �2 = −0.28κ � �3 (hence Ueff � g2

nl/�3), and we
will refer all the energy scales to the fundamental mode
linewidth (i.e., κ = 1). We will then study the numerical results
by solving the master equation for the full model (2) as a
function of the relevant parameters.

Numerical results. From a numerical point of view, the
steady-state condition of Eq. (1) is solved by representing
the field operators on the basis of Fock states defined above.
The truncation of the Hilbert space is optimized by setting
different cut-off occupations in each field (n1 � 6, n2 � 10,
and n3 � 2 in this case), and carefully checking for numerical
convergence against the total number of excitations (Nmax =
10 in this work). In Fig. 2(a), the second-order correlation
function at zero time delay for radiation emitted from the
driven cavity is shown on a logarithmic scale color plot,
which highlights the antibunching region as a function of
J and gnl, respectively. In these calculations, we assumed
�3/κ = 10, and similar quality factors for fundamental and
second-harmonic modes, Q3 = ω3/κ3 � Q1, i.e., κ3 = 2κ .
The optimal antibunching condition corresponding to the
effective Kerr model, namely, a plot of the function gnl/κ =
[2�3/(3

√
3κ)]1/2κ/J in the figure (white line), is faithfully

reproduced by the full numerical solution, confirming the oc-
currence of the UPB mechanism in such a system. As a conse-
quence, strong photon antibunching is obtained also for gnl �
κ , relaxing the requirements of Ref. [10]. Simultaneously,
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FIG. 2. (Color online) (a) Color scale plot of log10[g(2)(0)] as a
function of tunnel coupling (J ) and second-order nonlinearity (gnl),
for parameters (in units of κ): F = 1, κ3 = 2, �1 = �2 = −0.28,
and �3 = 10. The optimal antibunching condition for the effective
Kerr model is also shown (white line; see text). (b) A few cuts taken
from the color plot, displaying g(2)(0) as a function of J , for different
values of gnl.

given that the nonlinear shift in the effective Kerr model
is given by g2

nl/�3, the UPB also allows one to relax the
doubly resonant condition, i.e., strong antibunching will also
be possible for �3/κ 	 1. From the cuts of the color scale
plot shown in Fig. 2(b), for a value gnl/κ = 0.1 the optimal
antibunching condition occurs at J/κ � 19.45, which will be
used in the following calculations.

In Fig. 3 the dependence of the photon antibunching is
checked against the Q factor of the second-harmonic mode.
In particular, this plot is especially relevant in view of the
potential difficulties in engineering three-dimensional semi-
conductor microcavities in which the second-harmonic mode
has a comparatively similar Q factor as the fundamental mode
[31]. We set the system parameters to the optimal antibunching
condition for gnl/κ = 0.1, and scan the second-harmonic mode
loss rate ranging from κ3 � κ (i.e., corresponding to the
optimistic condition Q3 = 2Q) up to κ3 � 102κ . As shown
in the figure, the antibunching is also preserved for a second-
harmonic Q factor that is an order of magnitude smaller than

Q3/Q

g(
2)

(0
)

FIG. 3. (Color online) Dependence of antibunching on the
second-harmonic quality factor, Q3, for parameters (in units of κ):
F = 1, gnl = 0.1, J = 19.45, and Q1 = Q2 = Q.

the fundamental mode. Hence, the second-harmonic Q factor
is less relevant for the UPB mechanism to take place in this
system. UPB is enforced by quantum interference and it is
therefore affected by pure dephasing processes occurring in the
resonators. More precisely, suppression of photon antibunch-
ing occurs when the pure dephasing rate is on the order of the
effective nonlinear shift, Ueff , as already discussed for the Kerr-
type UPB [18]. However, for the passive systems considered in
this work, such an effect should be small (mainly determined
by thermal fluctuations of the resonances) [32]. Moreover, the
pure dephasing of mode 3 can be shown to scarcely affect
UPB: A temporally random energy shift δE of the eigenvalue
corresponding to the state |0,0,1〉 results (from lowest-order
perturbation theory, similar to the argument used to derive Ueff

above) in a shift δE(gnl/�3)2 � δE for the |0,2,0〉 state.
Finally, the spectrum of the emitted photons per unit

time from the driven cavity can be calculated as S(ω) =
(κ/2π )

∫ 〈â†(t)â(0)〉e−iωtdt , and it is shown in Fig. 4 for this
UPB source under optimal conditions. The dominant emission
evidently occurs at the driving laser frequency. In fact, the
peak at ω = ωL inherits the resolution-limited linewidth from
the (ideally) monochromatic driving field. The external peaks
occur at ω1 ± J , for J/κ = 19.45, and they correspond to the
normal modes of the coupled cavity system, whose linewidth
is instead determined by κ . We notice that although most of
the signal will be emitted at frequency ω = ωL, it is, however,
a small occupation of the normal modes of the coupled system
that produces the destructive quantum interference giving rise
to the UPB mechanism [33].

Discussion. The present proposal could be realized with
state-of-the-art technology employing different material plat-
forms. In particular, bulk nonlinear susceptibility can be of
the order of χ (2) ∼ 10–100 pm/V for the main III-V materials
employed in optoelectronics research, such as GaAs [14,34],
GaP, GaN, and AlN [35]. Assuming diffraction-limited cavity
confinement, e.g., with engineered photonic crystal cavities,
an estimate of the single-photon nonlinearity for a doubly
resonant system with these materials is gnl ∼ 1 μeV [10].
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FIG. 4. (Color online) Spectrum of the antibunched radiation
emitted from the driven cavity, for parameters (in units of κ): F = 1
(n1 � 10−6), gnl = 0.1, J = 19.45, and κ3 = 2.

Working in the typical telecommunication band, i.e., around
ω ∼ 0.7–0.9 eV, the required loss rate is κ = 10gnl = 10 μeV,
corresponding to a fundamental mode Q factor Q ∼ 80 000
(e.g., at 0.8 eV). These values could be routinely achieved
in photonic crystal cavities made of III-V semiconductor
materials [36]. Interestingly, the required Q factor for the
second-harmonic mode is on the order of 10 000, which
could stimulate further research in designing doubly resonant
microcavities. Finally, for optimal antibunching, the required
normal mode splitting in the photonic molecule is 2J �
0.4 meV with these parameters, but it could be further reduced
for larger gnl/κ . As the time interval over which antibunching
occurs in UPB is limited by π/J [15,17], this value implies a
time resolution of roughly 10 ps for experimentally showing
UPB with single-photon correlation measurements [37].

Among the different types of photonic microcavities,
photonic crystal molecules can be fabricated and controlled
to a high degree of precision [38–40], with a footprint
ranging in the few micrometers range, which makes these
platforms one of the preferential systems to realize the present
proposal in compact and integrated photonic chips. It should
be emphasized that in the present scheme both parameters Ueff

and J depend on structural details of the coupled cavity system.
In particular, Ueff is determined by the detuning ω3 − 2ω2,
as previously discussed. Hence, in a realistic nanofabricated
system, the optimal condition Jopt/κ will be affected by the
tolerance in the fabrication process. For example, the typical

uncertainty in the resonant wavelength of a photonic crystal
cavity lies within the nanometer range, while Q = 80 000
corresponds to a cavity linewidth of κ ∼ 0.02 nm at telecom
wavelengths. Therefore, device postselection or postprocess-
ing will unavoidably be required for fine tuning, which has
already been shown, e.g., in photonic crystal cavities [39,40].
However, we notice from Fig. 2(b) that the tolerance on the
value J/κ depends on the effective nonlinearity gnl, although
antibunching can be preserved up to several fundamental mode
linewidths [e.g., g(2)(0) � 0.5 for J spanning about 15κ around
the optimal condition, at given gnl/κ = 0.1].

In terms of efficiency, the UPB mechanism is known to
be limited to occupancy in the first cavity n1 � 1. In fact,
the antibunching rapidly degrades for values of n1 � 10−2,
as already pointed out in Ref. [15]. By knowing the loss rate
κ for a specific system implementation, the average photon
number allows one to estimate the efficiency of this source
of antibunched radiation, i.e., the emission rate Rem = n1κ .
Assuming a loss rate corresponding to Q � 8 × 104 at ω1,2 �
0.8 eV, one can estimate a maximum antibunched photon rate
exceeding Rem ∼ 10 MHz.

Conclusion. We have shown that antibunched radiation can
be obtained at the output of a coupled cavity system under
coherent continuous wave driving, only exploiting the bulk
material second-order nonlinearity and without the need for
quantum emitters or cavity QED effects. The mechanism relies
on an unconventional photon blockade induced by quantum
interference between excitation or deexcitation pathways, and
it is only subject to suitable engineering of the coupled cavity
system and the operational conditions. In particular, it is
important for at least one of the two resonators to be engineered
for a doubly resonant condition at fundamental and second-
harmonic frequencies. We have shown that antibunching of the
emitted radiation is robust against the second harmonic mode
quality factor, as well as the second-harmonic detuning from
the sharp doubly resonant condition. Moreover, the spectrum
of such antibunched radiation is dominated by photons at
the driving laser frequency. This work can be of interest for
the realization of integrated sources of quantum radiation in the
telecom band, working in room-temperature quantum photonic
circuits, as a promising alternative to the use of single quantum
emitters such as semiconductor quantum dots.
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