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Concept of a reflective power limiter based on nonlinear localized modes
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Optical limiters are designed to transmit low-intensity light, while blocking the light with excessively high
intensity. A typical passive limiter absorbs excessive electromagnetic energy, which can cause its overheating
and destruction. We propose the concept of a photonic reflective limiter based on resonance transmission via
a localized mode. Such a limiter does not absorb the high-level radiation, but rather reflects it back to space.
Importantly, the nearly total reflection occurs within a broad frequency range and direction of incidence. The
same concept can be applied to infrared and microwave frequencies.
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The continuing integration of optical devices into modern
technology has led to the development of an ever increasing
number of novel schemes for efficiently manipulating the am-
plitude, phase, polarization, or direction of optical beams [1].
Among these manipulations, the ability to control the intensity
of light in a predetermined manner is of the utmost importance,
with applications ranging from optical communications to
optical computing [2,3] and sensoring. As laser technology
progresses, novel protection devices (optical limiters) are
needed to protect optical sensors and other components from
high-power laser damage [4–9].

Here we focus on the most popular, passive optical limiters.
The simplest realization of a passive optical limiter is provided
by a single nonlinear layer with the imaginary part ε′′ of its
permittivity being dependent on the light energy density W .
At low incident energy densities, the value ε′′(W) is relatively
small, and the nonlinear layer is transparent. As the light
intensity increases, the value ε′′(W) also increases, and the
nonlinear protective layer turns opaque. The physical reason
for the increase in ε′′(W) as a function of W can be different
in different nonlinear optical materials. It can be two-photon
absorption, photoconductivity, heating, or a combination of
the above mechanisms. Specific examples of such nonlinear
optical materials can be found in Refs. [7–9] and references
therein. In more sophisticated schemes, the nonlinear layer can
be a part of a complicated optical setup. The problem though
is that in all cases, the nonlinear limiter absorbs the excessive
power, which might cause overheating or even destruction
of the device (a sacrificial limiter). Our goal is, using the
existing nonlinear materials, to design a photonic structure
that would reflect the excessive power back to space, rather
than absorbing it. A free-space realization of such a reflective
limiter is supposed to reflect a high-intensity radiation within
a broad frequency range and regardless of the direction of
incidence.

Our proposal is based on the phenomenon of resonant
transmission through a localized (defect) mode. The localized
mode frequency lies inside a photonic band gap of the
underlying photonic structure. The simplest realization of our
approach is illustrated in Fig. 1, where a nonlinear defect layer
is sandwiched between two linear lossless Bragg mirrors. If the

light energy density W is low, the imaginary part ε′′(W) of the
permittivity of the nonlinear defect layer can be neglected, and
the defect can support a localized mode. As a consequence,
at low light intensities, the layered structure in Fig. 1 will be
transmissive in the vicinity of the localized mode frequency.
If the incident light intensity grows, so does the value ε′′(W).
Eventually, the increase in ε′′(W) decouples the two Bragg
mirrors in Fig. 1, and the entire stack becomes highly reflective,
not opaque, as in the case of a standalone nonlinear layer. In
other words, the high-intensity light will be reflected back to
space, rather than absorbed by the limiter. Even this simple
design can provide protection from high-level radiation within
a broad frequency range and for an arbitrary direction of
incidence. For a given material of the nonlinear defect layer, the
incident light intensity at which the structure in Fig. 1 becomes
highly reflective can be controlled by the proper design of the
Bragg mirrors. A problem with the simple design of Fig. 1
is that the low-intensity transmittance occurs only in the
vicinity of the localized mode frequency. This problem can
be addressed by using more sophisticated photonic structures,
for instance, those involving two or more coupled defect layers,
as is done in the case of optical filters [10].

To illustrate our idea, we consider a pair of identical Bragg
mirrors, each consisting of two alternating layers with real per-
mittivities ε1 and ε2, placed in the intervals −L � z � 0 and
dγ � z � L + dγ . The width of each layer is d. A nonlinear
lossy layer of width dγ is placed between the two mirrors at
0 � z � dγ ; its complex permittivity εγ = ε[1 + iγ |E(z)|2]
is field dependent. In the particular case of ε = ε1 and γ = 0,
we have a standard Bragg mirror with a band gap around the
frequency ωB = c/(n0d) (c is the speed of light). The defect
layer creates a localized mode with the frequency ωr lying
within a photonic band gap. At this frequency, the entire stack
displays resonance transmission accompanied by a dramatic
field enhancement in the vicinity of the defect layer. The
enhanced field, in turn, causes the respective increase in the
imaginary part of the defect layer permittivity, εγ . The latter
will eventually result in decoupling of the two Bragg reflectors
and rendering the entire structure in Fig. 1 highly reflective.

We first consider normal incidence. In this arrangement,
a time-harmonic electric field of frequency ω obeys the
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FIG. 1. (Color online) A power limiter consisting of a nonlinear
lossy layer (blue layer) embedded in a Bragg mirror (white and orange
layers). This setup provides (a) a resonant transmission of a low
intensity light and (b) nearly total reflectivity of a high-intensity light.

Helmholtz equation:

∂2E(z)

∂z2
+ ω2

c2
ε(z)E(z) = 0. (1)

Eq. (1) admits the solution E−
0 (z) = E−

f exp(ikz) + E−
b

exp(−ikz) for z < −L and E+
0 (z) = E+

f exp(ikz) + E+
b

exp(−ikz) for z > L + dγ where the wave vector k = n0ω/c.
The transmittance, reflectance, and absorption, e.g., for a
left incident wave, are then defined as T = |E+

f /E−
f |2;

R = |E−
b /E−

f |2; and A = 1 − T − R, respectively [11].
They can be calculated numerically using a backward map
approach [12].

The amplitudes of forward and backward propagating
waves on the left z < −L (right z > L + dγ ) domains outside
of the Bragg mirror are related to the ones before (after) the
nonlinear impurity layer by the relations:(

Eb
f

Eb
b

)
= M (L)

(
E−

f

E−
b

)
;

(
E+

f

E+
b

)
= M (R)

(
Ea

f

Ea
b

)
, (2)

where M (L) (M (R)) are the 2 × 2 transfer matrices of the optical
structure associated with the domain −L � z � 0 (dγ � z �
L + dγ ). Above we have expressed the field before (after)
the nonlinear layer as Eb = Eb

f exp(ikz) + Eb
b exp(−ikz)

[Ea = Ea
f exp(ikz) + Ea

b exp(−ikz)]. The field Ea(z = dγ )
and its derivative (dEa/dz)|z=dγ

just after the nonlinear layer
is then evaluated using M (R) from Eq. (2) together with the
boundary conditions (associated with a left incident wave)
E+

b = 0 and E+
f = 1. Using Ea(z = dγ ) and [dEa(z)/dz]|z=dγ

as boundary conditions we have integrated backwards
Eq. (1), with the help of a fourth-order Runge-Kutta
algorithm, and obtained the field Eb(z = 0) and its derivative
(dEb/dz)|z=0 at the other end z = 0 of the nonlinear layer.
From these values we evaluate the forward Eb

f and backward
Eb

b propagating amplitudes. Utilizing Eq. (2) together with
M (L) we finally find the amplitudes E−

f and E−
b , which allow

us to calculate T ,R, and A. Note that for a backward map
with boundary condition E+

f = 1 we have |E−
f |2 = 1/T .

It is convenient to work with the rescaled variable
Ẽ(z) = √

γE. In this representation, Eq. (1) becomes

∂2Ẽ(z)

∂z2
+ ω2

c2
ε̃(z)Ẽ(z) = 0, (3)

where ε̃(z /∈ [0,dγ ]) = ε(z), while ε̃(z ∈ [0,dγ ]) =
εγ (1 + i|Ẽ(z)|2). In other words, in this representation,
the nonlinear layer has a fixed absorption rate which is equal

FIG. 2. (Color online) Normal incidence for the structure of
Fig. 1. We report the transmittance T , absorption A, and reflectance
R, as a function of the energy density of the incident light WI

at a resonant frequency ωr ≈ 8.15. The parameters of the one-
dimensional photonic band-gap structure are indicated at the text.
We observe that for moderate values of WI , both T and A are
suppressed and the system becomes reflective, i.e., R ≈ 1. Inset: T ,
A, R for a single nonlinear layer (normal incidence). This system, for
moderate WI values, does not reflect but mainly absorbs the incident
energy.

to unity, the outgoing field boundary associated with the
backward map varies as Ẽ+

f = √
γ while the incident light

energy density is WI ≡ |Ẽ−
f |2 = γ /T = γ |E−

f |2.
In Fig. 2 the effect of the incident intensity WI on the trans-

mission, reflection and absorption of a resonant localized mode
is presented. The one-dimensional photonic band gap medium
used in these simulations consists of 40 layers on each side with
alternating permittivities ε1 = 4 and ε2 = 9. The width of the
impurity layer is dγ = 1 and the amplitude ε of the nonlinear
permittivity is ε = 9. We have confirmed numerically that in
the linear case the defect creates a resonant mode at ωr ≈ 8.15
[13] at the band gap of the Bragg mirrors, which is localized
around the impurity. We find that as the incident light energy
density WI increases (main panel of Fig. 2), the transmittance
of this resonant mode decreases, with a simultaneous increase
of the absorption. Further increase of WI , results in noticeable
growth of the reflectance with a simultaneous decrease of the
absorption and transmittance. Eventually both T and A vanish
for moderate values of WI . In other words the system reflects
completely the incident radiation. For the shake of comparison
we also calculated T ,A, and R versus WI for a single nonlin-
ear layer with no Bragg reflectors (see inset of Fig. 2). We find
that for the same range of moderate values of WI , the system
rather absorbs the energy instead of reflecting it back to space.

For normal incidence, a further theoretical analysis based
on the so-called backward mapping [12] can be carried out.
To this end we assume that the permittivity of the nonlinear
layer is εγ (z) = ε[1 + iγ |E(z)|2]δ(z). This approximation is
justified in the case of a thin metallic defect. For the analytical
calculation of T ,R, and A, we proceed along the same lines
that we have highlighted in the numerical analysis previously.
For the sake of generality we will assume that the transport
characteristics of the left and right linear subsystems are
encoded in the values of their left (right) transmission tL(tR)
and reflection rL(rR) amplitudes. The elements of the transfer
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matrices M (L) and M (R) [see Eq. (2)] are defined as M
(L/R)
11 =

1/t∗L/R , M
(L/R)
12 = −rL/R/tL/R , M

(L/R)
21 = −(rL/R/tL/R)∗, and

M
(L/R)
22 = 1/tL/R . We remark that bistabilities are present for

a very narrow parameter range of the system and therefore
can be omitted from our considerations below.

Next we calculate the field amplitudes just before and
after the delta defect by utilizing the transfer matrices Eq. (2)
associated with the linear segments. For a left incident wave,
we have at z = 0−

Eb
f = E−

f

t∗L
− rLE+

f

tL
; Eb

b = E+
f

tL
− E−

f r∗
L

t∗L
, (4)

while at z = 0+ just after the delta defect we have

Ea
f = t∗RE+

f

1 − |rR|2 ; Ea
b = tRr∗

RE+
f

1 − |rR|2 . (5)

Using Eqs. (4) and (5) together with the continuity of the field
at z = 0 and the suitable discontinuity of its derivative we
write the incident and reflected field amplitudes in terms of
the transmitted wave amplitude

E−
f =

{
1

τ0
− i

(
1

τ
− 1

τ0

)
γ |ξ |2|E+

f |2
}
E+

f ,

(6)

E−
b =

(
tL

1 − rL

){
ξE+

f − (1 − r∗
L)

t∗L
E−

f

}
,

where τ is the transmission amplitude in the absence of the
δ-like layer, τ0 is the transmission amplitude when γ = 0,
and ξ = t∗R+tRr∗

R

1−|rR |2 . From Eq. (6) we deduce the transmission,
reflection and absorption amplitudes. For the transmission
and reflection amplitude we get that

t = 1
1
τ0

− i
(

1
τ

− 1
τ0

)
γ |ξ |2|E+

f |2 ,

r =
(

tL

1 − rL

){
tξ − 1

t∗L
(1 − r∗

L)

}
. (7)

The transmittance, reflectance, and absorption can then
be calculated as T = |t |2,R = |r|2, and A = 1 − T − R.
From Eq. (7) we observe that increasing γ (we note that the
energy density of the incident light WI ∼ γ ) results in an
increase of the denominator of the transmission amplitude
and therefore to a decrease of T (for very large γ values it
becomes zero). At the same time the reflection amplitude,
becomes r → ( tL

1−rL
){− 1

t∗L
(1 − r∗

L)} corresponding to perfect
reflection, i.e., R → 1. Consequently in this limit we have
zero absorption A = 0.

Figure 3 demonstrates the effect of WI on a resonant
localized mode for the case of symmetrically placed Bragg
mirrors on the left and right side of a δ-like defect. The
alternate layers at the Bragg mirrors have permittivity ε1 = 4
and ε2 = 9 while the permittivity of the defect layer is ε = 1.5.
The transport characteristics of the Bragg mirrors tL = tR and
rL = rR have been calculated numerically and used as inputs in
Eqs. (7). We find (see Fig. 3) that the overall behavior of T , R,
andA is similar to the one observed in the simulations of Fig. 2.

For comparison, we also report (inset of Fig. 3) the
behavior of T ,A, and R, for a single nonlinear layer (without

FIG. 3. (Color online) Transport characteristics for the model of
a nonlinear δ-like defect embedded in a Bragg mirror. The theoretical
results of Eq. (7) shown here, reproduce nicely the features of the
simulations reported in Fig. 2. In the inset we report, for comparison,
A,T , andR for a single nonlinear layer. We assume normal incidence
at ω = 0.7 ≈ ωr .

any Bragg mirrors), vs the incident light energy density WI .
They are calculated analytically using the continuity of the
field and the discontinuity of its derivative at the position
of the δ defect. Specifically, T = 4

(kε0)2+(2+kε0γ |E+
f |2)2 ; R =

(kε0)2(1 + γ 2|E+
f |4)T /4 and A = kε0γ |E+

f |2T . We find that
for moderate WI values the single nonlinear layer is mainly
absorptive (inset of Fig. 3) while the structure of Fig. 1 is
mainly reflecting the incident light back to space (main panel of
Fig. 3).

We have also investigated the efficiency of the proposed
limiter in the case of oblique incidence. A representative
example in the case of an incident angle φ = 6◦ is shown in
Fig. 4. The Bragg mirror considered in this example consists
of two layers with permittivities ε1 = 9, ε2 = 16 while the

FIG. 4. (Color online) Simulations for the structure of Fig. 1 for
oblique incidence at ω = 8.95 ≈ ωr . The parameters of the Bragg
mirror are indicated at the text while the incident angle is φ = 6◦.
We find that for moderate values of the energy density of the incident
light WI , the transmittance and absorption are suppressed and the
system is reflective, i.e., R = 1. In the inset we report for comparison
(and for the same range of WI values) the A, T , and R values for
the case of a single nonlinear layer. This system mainly absorbs the
incident energy.
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nonlinear impurity has permittivity ε = 16. We find again that
as the incident light energy density WI takes moderate values,
the transmittance and the absorption are suppressed, and the
structure becomes reflective, i.e., R ≈ 1. This behavior has to
be contrasted with the one found for the single nonlinear layer
where for moderate WI values the dominant mechanism is
absorption; see the inset of Fig. 4.

The effectiveness of the structure of Fig. 1 to act as a
self-protecting power limiter for any incident angle calls for a
generic argument for its explanation. The following heuristic
argument, provides some understanding of the mechanism un-
derlying our structure. First we recall that the defect results in
the creation of a resonance mode which is localized around the
impurity layer at z = 0 and decays away from its localization
center with an envelope profile Er (z) ∼ exp(−α|z|) (all dis-
tances are measured in units of the width layer d). An incoming
(say from the left) wave that carries an incident energy flux S
can resonate via this mode as long as the loss coefficient is γ �
γ ∗ ∼ S/W0 ∼ exp(−2αL) [W0 ∼ |Er (z = 0)|2 ∼ exp(2αL)
is the mode energy density at z = 0 [14]]. In other words,
the energy that is absorbed from the nonlinear lossy layer via
the resonant mode cannot be more than the incoming energy.
Therefore for any γ > γ ∗ the resonant mode will not be sus-
tained, and thus the transmissionT will be exponentially small.

We proceed in our argument by noticing that the resonant
mode is located at the band gap of the Bragg mirror,
and therefore it can be written as a superposition of two
evanescent modes, one growing and another one decaying;
i.e., Er (z) ∼ ψ+(z) + ψ−(z), where ψ− ∼ α− exp(−z) and
ψ+ ∼ α+ exp(z). Let us assume that α+ ∼ O(1) [15]. Then
the field at the outer boundary of the left mirror at z = −L

is Er (z = −L) = α+ exp(−L) + α− exp(L) ∼ α− exp(L). At
the same time due to continuity at the boundary we expect that
the resonance wave function must be equal to the incoming
field, which we assume to take some constant value, i.e.,
α− exp(L) ∼ O(1). This can only happen if α− → 0. Finally
we recall that the incoming energy flux is given by the
Poynting vector S, which in the case of evanescent modes is
S ∼ ψ+ψ− = α+α− → 0 [16]. Therefore there will be no net
flux towards the structure, and thus A ≈ 0. Since T ≈ 0 and
A ≈ 0, we conclude that most of the incident light energy is
reflected back, i.e., R ≈ 1.

We have examined the scattering problem for a periodic
layered structure with an embedded nonlinear defect. We

presume that the imaginary part ε′′ of the permittivity of the
defect layer increases with the light energy density, which
is normally the case. We have shown that such a layered
structure can act as a reflective power limiter. Specifically,
at low intensity of the incident light, the entire stack is highly
transmissive in the vicinity of the localized mode frequency.
When the input power exceeds a certain level, the nonlinearity
suppresses the localized mode, and the layered structure
becomes highly reflective (not absorptive!) within a broad
frequency range and for a wide direction of incidence. In other
words, the excessively strong radiation will be reflected back to
space, rather than being absorbed by the lossy nonlinear layer.
This can prevent overheating and destruction of the limiter.
A simple realization of such a self-protected (reflective) power
limiter is provided by a lossy nonlinear layer sandwiched
between two Bragg mirrors, as shown in Fig. 1. A shortcoming
of such a simple design is that although the high-intensity
radiation will be reflected back to space within a broad
frequency range, the low-intensity transmittance occurs only
within a narrow frequency band in the vicinity of the
localized mode frequency. This problem can be addressed by
using a more sophisticated layered structure than that shown
in Fig. 1.

The above approach to the realization of a reflective
power limiter is perfectly scalable and can be applied to any
frequency range. Of course, the structural geometry and the
material choice of the nonlinear layer and the Bragg reflectors
are all dependent on the frequency of interest and on the light
intensity limitations. For instance, the material of choice for
the nonlinear defect layer can be ZnSe (at optical frequencies)
and InP or GaAs (at near-infrared frequencies) [7–9]. The
Bragg reflectors can be made of alternate layers of silicon
nitride (Si3N4) and silica (SiO2). For a given nonlinear defect
layer, the incident light intensity at which the whole structure
in Fig. 1 turns from transmissive to highly reflective is strongly
dependent on the number of layers in the Bragg reflectors.
An experimental realization of this setup is currently under
investigation.
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