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Generation of isolated asymmetric umbilics in light’s polarization

Enrique J. Galvez* and Brett L. Rojec
Department of Physics and Astronomy, Colgate University, Hamilton, New York, USA

Vijay Kumar and Nirmal K. Viswanathan
School of Physics, University of Hyderabad, Hyderabad, India

(Received 7 October 2013; published 12 March 2014)

Polarization-singularity C points, a form of line singularities, are the vectorial counterparts of the optical
vortices of spatial modes and fundamental optical features of polarization-spatial modes. Their generation in
tailored beams has been limited to so-called “lemon” and “star” C points that contain symmetric dislocations in
state-of-polarization patterns. In this Rapid Communication we present the theory and laboratory measurements
of two complementary methods to generate isolated asymmetric C points in tailored beams, of which symmetric
lemon and star patterns are limiting cases; and we report on the generation of so-called “monstar” patterns, an
asymmetric C point with characteristics of both lemons and stars.
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Line singularity patterns provide an important way to
characterize topologies and their curvatures. Ridge patterns
in fingerprints provide a vivid display of line singularities [1].
More often, line singularities are abstract characterizations of
the principal curvatures of Gaussian topological features [2,3].
Applications include shape interrogation and face recognition
[4], and diagnosis of vector fields such as those exhibited by
the polarization of the sky [5] or in the ellipse patterns of
speckle fields [6–9].

So far, the study of line singularities has relied on the
diagnosis of natural occurrences. Nonseparable superpositions
of polarization and the spatial mode of light can provide
a vehicle for deliberately creating line-singularity patterns
for their study. This polarization-spatial-mode hybridization
also adds a new dimension to imaging, where polarization
provides additional sensing information [10,11]. Different
species exploit polarization-spatial combinations for their
survival [12], and line singularities may provide the means to
characterize them. At the quantum level, these hybrid modes
provide larger Hilbert spaces for encoding information [13].
An investigation of polarization-spatial light modes is also
essential for understanding this type of imaging at a deeper
level [14].

C points are the umbilical points of the line singularities in
the polarization of light because they connect the apex of two
opposite cones (a diabolo): of semimajor and semiminor axis
lengths [2,15]. They consist of a state of circular polarization
surrounded by a field of polarization ellipses in the optical field,
with orientations that rotate about the C point [16]. C points
are singular points of ellipse orientation. They are intimately
linked to the optical vortices of scalar fields, but encode the
optical dislocations in the state of polarization instead of the
phase [17]. The production of the full spectrum of C points is of
interest in its own right, as it reveals a new domain of complex
light not investigated before. The production and analysis of C
points are the basis for new techniques to produce and diagnose
optical vortices, which are of interest in metrology due to their
high sensitivity to perturbations [18].
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The two symmetric types of C-point singularities, known
as “lemons” and “stars”, correspond to dislocations where
the ellipse orientation varies linearly with and counter to the
angle about the singularity, respectively. Yet, the generation
of beams bearing isolated C points (i.e., alone in a light
beam) has been limited to these two cases [19–21]. The
larger class of asymmetric C points containing orientations
evolving nonlinearly has been produced only in speckle
patterns [6–9], or as C-point pairs (dipoles) in tailored
beams [22].

The two symmetric cases are the ends of a spectrum of C
points where the pattern of orientations in the ellipse field
is nonlinear and asymmetric. Within asymmetric C points
is a hybrid type of C point, the “monstar” pattern, which
has features of both lemons and stars. Monstars have been
predicted theoretically [2,23], but have not been produced as
isolated singularities. In this Rapid Communication we present
the theoretical framework and two experimental arrangements
to generate and analyze the full range of isolated C points,
including monstars. We do so via complementary studies in
our two laboratories.

C points appear in the optical field when we combine
an optical vortex in one state of circular polarization with a
plane wave in the opposite state of polarization [17,23]. If we
represent the polarization field of a C point in polar coordinates
(r,φ) by

� = (cos β reiφ + sin β re−iφeiγ )eiδêR + êL, (1)

where êR and êL denote states of right and left circular
polarization, respectively, we can map all types of C points
onto a unit sphere, proposed here, and shown in Fig. 1. The
basis for all asymmetric C points is an asymmetric vortex
(first term), formed by a superposition of vortices of opposite
topological charge.

In the topology of Gaussian surfaces, C points are umbilical
points of degenerate curvature [2]. Line-singularity patterns
of light, known as “polarization lines”, connect the semimajor
axes of the polarization ellipses. The polarization lines of a
lemon contain one angular direction where all the ellipse’s
semimajor axes are radial, as shown in Fig. 1 for the
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FIG. 1. (Color) C-point sphere denoting by color the three mor-
phological regions of C points: lemons (L), monstars (M), and stars
(S). The polar coordinates are 2β and γ (for δ = 0), as specified
by Eq. (1). Inserts show polarization lines corresponding to selected
points on the sphere.

(symmetric) case β = 0. Star C points have three angles
with radial polarization lines, as shown in Fig. 1 for the case
β = π/2.

As the pattern of polarization lines is made asymmetric, a
third type of umbilic appears: the monstar. Similarly to the
lemon, this type of C point has ellipse orientations that rotate
in the same sense as the angular coordinate φ; and similarly
to the star, it has three angles where the polarization lines are
radial. The monstar region of Fig. 1, “monstardom”, has zero
width for γ = 0. It has a maximum northward extension in a
cusplike termination of the region for γ = π . Starting from
Eq. (1), at a given point (r,φ) the orientation of the ellipse
θ is half of the relative phase between the two polarization
components, or θ = φ. After some algebra the latter becomes
a cubic equation in tan φ. The case γ = π can be solved
analytically: the point at the tip of the cusp corresponds to
tan β = 1/3 [24]. The equatorial line represents a unique set
of modes that involve π -phase shear singularities carrying C
lines of circular polarization but no C points [25].

Varying the phase δ in Eq. (1) does not produce new
patterns: a C point with parameters (β,γ,δ) is the same as
the one with (β,γ − 2δ,0) but rotated by δ. The normalized
areas of the regions on the sphere are 0.382 for lemon, 0.118
for monstar, and 0.5 for star. With proper weighting [26], they
give the correct density fractions of C points found in random
fields: 0.447, 0.053, and 0.5, respectively [9,23,26].

The sphere is fundamentally related to the sphere of first-
order spatial modes proposed earlier [27], where any mode is a
superposition of antipodal modes. This way, we can represent a
C point as a superposition of any two C-point antipodes on the
sphere. In this work we create the C-points experimentally
via two sets of antipodes: polar antipodes [i.e., Eq. (1)]
via superpositions of Laguerre-Gauss modes, and equatorial
antipodes (below) via superposition of Hermite-Gauss modes.

In the approach using antipodal equatorial modes, x and y

are the spatial basis:

� = (cos ψ x + sin ψ yeiα)eiηêR + êL. (2)

The spatial mode for the case α = 0, ψ = π/4, and η = 0
is implemented with a Hermite-Gauss mode: HG10 rotated by
45◦ degrees, which is proportional to (x + y) times a Gaussian
function; the latter does not affect the morphology of the
C point. [The same is true with Laguerre-Gauss modes for
implmenting the optical vortices of Eq. (1).] Its antipode, at
α = π , ψ = π/4, and η = 0, is the mode HG10 rotated by
−45◦. The correspondence between the two sets of angles
can be obtained after some algebra. A simple case adapted to
the experimental conditions keeps ψ = π/4. For this case,
β = π/4 − α/2, γ = −π/2, and δ = η + α/2 − π/4. The
thick solid and dashed lines on the sphere correspond to the
sequence of states followed when varying α with η = 0, and
varying η with α = π/6, respectively.

We present two laboratory approaches to preparing tailored
beams bearing isolated C points. In one approach (done
at Colgate University), we implemented Eq. (1) with the
polarization interferometer of Fig. 2(a). A spatially filtered
vertically polarized optical beam from a helium-neon laser
entered the interferometer via a nonpolarizing beam splitter.
One of the arms was phase shifted by δ using a Pancharatnam-
Berry phase shifter. The two beams were incident onto a
spatial light modulator (SLM), which was encoded in half
pane, a phase-blazed amplitude-modulated superposition of
Laguerre-Gauss modes. The mode appeared diffracted 0.5◦
from the specular reflection. The other pane had a plain

FIG. 2. (Color online) Apparatuses to produce C points.
(a) Using Laguerre-Gauss spatial modes, which includes a helium-
neon laser (L), beam expander with spatial filter, nonpolarizing
(BS) and polarizing (PBS) beam splitters, half-wave plate (HWP),
quarter-wave plate (QWP), Pancharatnam-Berry phase shifter (PS),
polarizer (P), and spatial light modulator (SLM). Inset shows an
example of the programming of the SLM. (b) Using Hermite-Gauss
spatial modes, with the following additional components: objective
lenses (OL) and optical fiber (OF).
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blazed grating. A half-wave plate in the path of one of the
beams rotated its linear polarization to horizontal. A mirror
and a polarizing beam splitter recombined the two beams. A
quarter-wave plate placed after the interferometer put the two
polarization components in circular polarization states.

We diagnosed the polarization pattern of the light using
imaging polarimetry, which involved gathering six images
obtained via polarizing filters. These images were used to find
the Stokes parameters for each pixel of the imaged beam and
thus the complete state of polarization [22,24].

In the other approach (done at the University of Hyderabad),
we performed superpositions of antipodal equatorial modes
[Eq. (2)], implemented by superpositions of Hermite-Gauss
modes. This was done via intra-optical-fiber manipulation
of polarization and spatial modes, as shown in Fig. 2(b).
A circularly polarized Gaussian beam was launched skew
off-axially into a step-index circular-core two-mode optical
fiber (V No. 3.805, 37.4-cm long) by means of an objective lens
(0.4 NA). This excited a superposition of a circularly polarized
anisotropic vortex and an orthogonally polarized fundamental
mode. Thus, the fiber-mode dynamics generated isolated C
points on their own, as shown in previous studies [28–30]. The
launch angle of the light into the fiber selected angles α and ψ

in the implementation of Eq. (2). The light emerging from the
fiber was collimated and the relative phase between the two
circular components [η in Eq. (2)] was adjusted by a half-wave
plate. The detection method was the same as the one described
earlier.

The results obtained with the apparatus of Fig. 2(a) are
shown in Fig. 3. The first row has the predicted polarization
lines, the second row has the theoretically predicted ellipse
field, and the third row has the measured images, with the
ellipse field obtained from the polarimetric analysis. The false

FIG. 3. (Color) Results of theoretical calculations and experi-
mental measurements when using Laguerre-Gauss modes as the
spatial mode basis [Eq. (1)]. The first row has the calculated
polarization lines, with the radial lines shown in red. The second
and third rows show the modeled and measured ellipse fields. The
solid lines in the ellipse fields correspond to the predicted orientations
of the radial lines. The false color represents the orientation of the
ellipses, and the saturation of the color is proportional to the intensity
of the beams.

FIG. 4. (Color) Results of data taken using the Hermite-Gauss
spatial basis modes [Eq. (2)]. The first and third rows are the calculated
and measured polarization-line maps, with the radial lines shown in
red. The second row shows the modeled ellipse fields, with solid lines
corresponding to the predicted orientations of the radial lines, white
contours denoting intensity contours, and colors denoting ellipse
orientation.

color indicates the orientation of the ellipses, which is also
the Stokes field [6,25], defined as arg(S1 + iS2), where S1 and
S2 are the Stokes parameters. The saturation of the color is
proportional to the intensity of the light in the beam.

The first and last columns of Fig. 3 show lemon and star
C-point fields. The right-handed circularly polarized points are
surrounded by a right-handed ellipse-field region bounded by
a circular L line of linearly polarized states. At radii larger
than the L line, the states of polarization are left-handed. We
added the predicted radial polarization lines (0 for β = 0; 0,
±34.2◦ for β = 30◦; 0, ±42.2◦ for β = 40◦; and 180◦, ± 60◦
for β = 90◦) to guide the eye.

The middle columns show two cases involving monstars.
As can be seen, the ellipse patterns show unambiguously the
characteristics of monstars. The measured orientation of the
ellipses agrees with the expectations. The experimental pat-
terns also show characteristics that are common in laboratory
conditions, such as slight misalignments and Gouy phases.
These can be seen in the curved boundaries between colors,
which are especially pronounced for β = 0 and β = 90◦. The
theoretical maps do not model these effects.

The results using Hermite-Gauss spatial modes are shown
in Fig. 4. The first row has the simulated polarization lines
for each case, the second row has the modeled pattern, and
the third row shows the measured polarization-line maps
[7,9], which are the polarization lines extracted from the
data. The background colors in the second row represent the
orientation of the ellipses in the field. All C points shown
have asymmetric patterns. The first and second columns show
lemons obtained with parameters α = 30◦ and η = 90◦, and
α = 30◦ and η = 270◦, respectively. They are equivalent to
those produced via Eq. (1) with β = 30◦, γ = 90◦, and
δ = 60◦; and β = 30◦, γ = 90◦, and δ = 240◦, respectively. In
contrast to the symmetric lemon of Fig. 3 (case β = 0), these
lemons are highly asymmetric. The fifth column of Fig. 4
is an asymmetric star with α = 330◦ and η = 0◦. C points
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with α = 330◦ are stars with nearly equatorial latitude on the
sphere, equivalent to a value of β of 60◦.

The third and fourth columns of Fig. 4 are highly asym-
metric monstars with α = 30◦ and η = −3◦; and α = 30◦
and η = 178◦, respectively. These cases are near the lemon-
monstar boundary, and where there is radial-line degeneracy.
For example, when η = 180◦ (and α = 30◦), two radial lines
appear at the same angle: φ = 150◦, with the third one
appearing at φ = 180◦. As η is increased, the radial line
disappears creating a lemon with φ = 180◦. Conversely, if
η is decreased, the radial line splits forming a monstar, as
shown, with radial lines at 178.7◦, 125.5◦, and 113.9◦. The
measured patterns agree with the expectations. Discrepancies
in the location of the radial lines are due to errors in the fiber
launch angles for setting α and ψ = 45◦.

In summary, we have described two methods to pre-
pare optical beams bearing asymmetric C points. We have
presented experimental demonstrations of the production of
these asymmetric polarization singularities, which include
monstars, an asymmetric C point not produced previously
in isolation. In addition, we have presented that the space
containing asymmetric singularities can be mapped onto the
two-dimensional surface of a sphere.

Polarization-spatial modes hold promise for the discovery
of new phenomena and applications. When we add polarization

to scalar fields, the modal landscape changes dramatically:
singular points may no longer be dark, and interferometry
techniques yield to polarimetry [31]. The use of of light beams
with amplitude and polarization modulations may allow a finer
type of manipulation where the forces depend on the field
gradient and on the orientation or state of the electric field
relative to the objects’ axis of symmetry [32]. At the quantum-
mechanical level, the asymmetric C points that we produce are
a spatial mode qutrit “entangled” with the polarization qubit of
a single photon. The merging of spatial modes and polarization
promises advances in imaging and information multiplexing
with light. It opens new possibilities for understanding the
ways in which these manifest in nature [12], an area that has yet
to receive much attention. More generally, light polarization
provides a framework for a deeper study of line singularities
and their use to describe natural phenomena.
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