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The parity (P) and time-reversal (T) odd coupling constant associated with the tensor-pseudotensor (T-PT)
electron-nucleus interaction and the nuclear Schiff moment (NSM) have been determined by combining the
result of the measurement of the electric dipole moment (EDM) of a 129Xe atom and our calculations based on
the relativistic-coupled-cluster (RCC) theory. Calculations using various relativistic many-body methods have
been performed at different levels of approximation. The accuracies of our results are estimated by comparing
our dipole polarizability calculations of the ground state of Xe with its most precise available experimental data,
and taking into consideration the difference of the results of our RCC single- and double-excitation calculations
with and without the important triple excitations as well as the size of our basis set. The nonlinear terms that
arise in the RCC theory were found to be crucial for achieving high accuracy in the calculations. We obtain the
upper limits for the T-PT electron-nucleus coupling coefficient and NSM as 1.6 × 10−6 and 1.2 × 10−9e fm3,
respectively, by combining our calculations with the available measurement. Our results, in combination with
future EDM measurements in atomic Xe, could improve these limits further.
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The search for the electric dipole moment (EDM) is now
in its seventh decade [1,2]. The observation of an EDM of
an elementary particle or a composite system would be an
unambiguous signature of the violations of parity (P) and
time-reversal (T) symmetries. T violation implies a charge
conjugation-parity (CP) violation via the CPT theorem [3].
The standard model (SM) of elementary particle physics pro-
vides explanations for the experimentally observed hadronic
CP violation in the decays of neutral K [4] and B [5–7] mesons,
but the amount of CP violation predicted by the SM is not
sufficient to account for the matter-antimatter asymmetry in
the Universe [8]. The current limits for CP-violating coupling
constants deduced from the atomic EDMs are several orders
of magnitude higher than the predictions of these quantities
by the SM [9–11]. In addition, atomic EDMs can probe
CP violation originating from leptonic, semileptonic, and
hadronic CP sources. Combining atomic EDM measurements
with high-precision many-body calculations, it is possible
to obtain various CP-violating coupling constants at the
levels of the nucleus and the electron. Newly proposed
EDM experiments on diamagnetic and paramagnetic atoms
hold the promise of improving the sensitivity of the current
measurements by at least a few orders of magnitude [12–16].
The EDMs of diamagnetic atoms arise predominantly from
the electron-nucleus tensor-pseudotensor (T-PT) interaction
and interaction of electrons with the nuclear Schiff moment
(NSM) [17]. The electron-nucleus T-PT interaction is due to
the CP-violating electron-nucleon interactions which trans-
lates into CP-violating electron-quark interactions at the level
of elementary particles. The NSM, on the other hand, could
exist due to CP-violating nucleon-nucleon interactions and the
EDM of nucleons, and both of them in turn could originate
from CP-violating quark-quark interactions or EDMs and
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chromo EDMs of quarks. In order to obtain precise limits
for the coupling constants of these interactions and EDMs
of quarks, it is necessary to perform both experiments and
calculations as accurately as possible on suitable atoms.

To date, the best limit for a diamagnetic atomic EDM is
obtained from the 199Hg atom as dA < 3.1 × 10−29e cm [18]
and the next best limit comes from an earlier measurement
on the 129Xe atom as dA < 4.1 × 10−27e cm [19]. Both
129Xe and 199Hg isotopes are good choices for carrying out
EDM measurements as they have nuclear spin I = 1/2 and
therefore the interaction with the octupole moment vanishes.
Owing to the fact that the matrix elements of the T-PT
and NSM interaction Hamiltonians increase with the atomic
number (Z) of the system [20], their enhancements in Hg
are larger than those in Xe. However, the new proposals
on EDM measurements in 129Xe argue in favor of carrying
out the experiment in this isotope because of its larger spin
relaxation time [13]. As a matter of fact, three research groups
around the world are now actively involved in Xe EDM
experiments [13,21,22]. Inoue et al. have proposed to utilize
the nuclear-spin maser technique [23] to surpass the limit
provided by the Hg EDM measurement.

In this Rapid Communication, we report the results of our
systematic theoretical studies of the P and T odd coupling
constant for the T-PT interaction and of the NSM in 129Xe.
To this end, we have developed many-body methods in the
framework of the third-order many-body perturbation theory
[MBPT(3)] for a better understanding of the different classes
of correlation effects, the coupled-perturbed-Hartree-Fock
(CPHF) method in order to reproduce the previously reported
results, and the relativistic-coupled-cluster (RCC) theory to
bring to light the roles of both the CPHF and non-CPHF
contributions (e.g., pair-correlation effects) to all orders in
the residual Coulomb interaction (the difference between the
exact two-body Coulomb and the mean-field interactions).
In the present work, we consider one hole–one particle and
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two hole–two particle excitations, i.e., the coupled-cluster
theory with single and double excitations (CCSD) method
and its linearized approximation, the LCCSD method. We
also supplement the CCSD by an important subset of triple
excitations. The ground state of a closed-shell atom such as
Xe can be exactly described in the RCC theory by

|�〉 = eT |�0〉, (1)

where the cluster operator T generates all possible excitations
from the Dirac-Hartree-Fock (DF) wave function |�0〉. How-
ever, if T = T1 + T2, then this approximation corresponds to
the CCSD method. These operators can be expressed in second
quantization notation using the hole and particle creation and
annihilation operators as

T1 =
∑
a,p

a†
paat

p
a and T2 = 1

4

∑
a,b,p,q

a†
pa†

qabaat
pq

ab , (2)

where t
p
a and t

pq

ab are the excitation amplitudes from the
occupied orbitals denoted by a,b to the unoccupied orbitals
denoted by p,q which embody correlation effects among the
electrons to all orders.

We consider the Dirac-Coulomb (DC) Hamiltonian which
in atomic units (a.u.) is given by

H =
∑

i

⎡
⎣cαD · pi + (βD − 1)c2 + Vn(ri) +

∑
j>i

1

rij

⎤
⎦ , (3)

where c is the velocity of light in vacuum, αD and βD are
the Dirac matrices, Vn denotes the nuclear potential obtained
using the Fermi-charge distribution, and 1

rij
is the dominant

interelectronic Coulombic repulsion. We also take into account
one order of an additional operator Hadd which is either the
dipole operator D for the evaluation of dipole polarizability
(α) or the P- and T-violating interaction Hamiltonians for
determining their corresponding coupling coefficients. The
T-PT and the NSM interaction Hamiltonians are given
by [24,25]

H TPT
EDM = iGF CT√

2

∑
σn · γDρn(r) (4)

and

H NSM
EDM = 3S.r

B4
ρn(r), (5)

respectively, with GF is the Fermi coupling constant, CT is
the T-PT coupling constant, σn= 〈σn〉 I

I
is the Pauli spinor of

the nucleus for the nuclear spin I , γD represents the Dirac
matrices, ρn(r) is the nuclear density, S = S I

I
is the NSM, and

B4 = ∫ ∞
0 drr4ρn(r).

To distinguish between the correlations only due to the
Coulomb and the combined Coulomb and the additional
interaction, we further define

T = T (0) + T (1) (6)

for the cluster operators T (0) and T (1) that account for the
correlations only due to the Coulomb interaction and the
combined Coulomb-additional interactions, respectively. To
ensure the inclusion of only one order of the additional
interaction in the wave function, we express

|�〉 � (
eT (0) + eT (0)

T (1)
)|�0〉 = |�(0)〉 + |�(1)〉, (7)

where |�(0)〉 and |�(1)〉 are the unperturbed and the first-order
perturbed wave functions due to the additional interaction.
Owing to the nature of the additional operators, the first-order
perturbed wave function is an admixture of both the even
and odd parities. The working equations for evaluating the
excitation amplitudes of these RCC operators are described in
Ref. [26].

Using the generalized Bloch equation, we can also ex-
press [26]

|�〉 = �(0)|�0〉 + �(1)|�0〉 =
∑

k

[�(k,0) + �(k,1)]|�0〉, (8)

where the �’s are known as the wave operators with �(0,0) = 1
and �(1,0) = Hadd and k represents the order of interactions due
to the Coulomb repulsion.

We also consider contributions from the important triple ex-
citations in our calculations perturbatively (CCSDpT method)
using the operator

�
pert
abg→pqr =

∑
s〈pr| 1

rij
|sg〉�(∞,0)

ab→sq + ∑
c〈cr| 1

rij
|ag〉�(∞,0)

bc→qp

εa + εb + εg − εp − εq − εr

,

(9)

where ε’s are the orbital energies and a → p represents
replacement of the occupied orbital a by a virtual orbital
p in |�0〉. In the MBPT(3) method, we restrict k up to 2.
The diagrams that make important contributions in this approx-
imation are given explicitly in Ref. [26]. While in the CPHF
method, we consider �(k,0) ≈ �(0,0) and �(k,1) is evaluated to
infinite order by restricting it only to one-hole–one-particle
excitations by defining

�(∞,1)
a→p =

∞∑
k=1

∑
b,q

⎧⎨
⎩

[〈pb| 1
rij

|aq〉 − 〈pb| 1
rij

|qa〉]�(k−1,1)
b→q

εa − εp

+
�

(k−1,1)†

b→q

[〈pq| 1
rij

|ab〉 − 〈pq| 1
rij

|ba〉]
εa − εp

⎫⎬
⎭ , (10)

with �(0,1)
a→p = −〈p|Hadd|a〉

εp−εa
.

Using the many-body tools discussed above, we evaluate
X representing polarizability α, η = dA

〈σN 〉CT
, or ζ = dA

S/(|e|f m3)
by considering the appropriate additional operator using the
general expression

X = 2
〈�(0)|D|�(1)〉
〈�(0)|�(0)〉 . (11)

In the MBPT(3) method, we have

X = 2

∑m=k+1,2
k=0 〈�0|�(m−k−1,0)†D�(k,1)|�0〉∑m=k+1,2
k=0 〈�0|�(m−k−1,0)†�(k,0)|�0〉

. (12)

Therefore, the lowest-order MBPT(1) with k = 0 corresponds
to the DF approximation and the intermediate MBPT(2)
approximation follows with k = 1.

The above expression yields the forms X =
2〈�0|{D�(∞,1)}con|�0〉 in the CPHF method and X =
2〈�0|{

︷︸︸︷
D T (1)}con|�0〉 in the RCC theory with

︷︸︸︷
D =

(1 + T (0)† )D in the LCCSD method and
︷︸︸︷
D = eT (0)†

DeT (0)

is a nontruncating series in the CCSD and CCSDpT methods.
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FIG. 1. Example of a few dominant non-CPHF diagrams from
the MBPT(3) method involving D and the corresponding perturbed
interaction operator Hadd.

The subscript “con” implies that all the terms inside the
curly bracket are connected. We have described in an earlier
work the procedure for evaluating the diagrams that make the

dominant contributions to
︷︸︸︷
D [26].

We calculate α for the ground state of Xe by the
methods mentioned above to test their accuracies. The
most precise measured value of this quantity is reported as
27.815(27)ea3

0 [27]. In Table I, we present the calculated α,
η, and ζ values along with the experimental and previously
reported results. As can be seen from this table, the DF result
for α is close to the experimental result, but this is not the
case when correlation effects are added via the MBPT(2) and
MBPT(3) methods. The results of the all-order CPHF, LCCSD,
CCSD, and CCSDpT methods are in good agreement with
the measured value, but the CCSDpT result is more accurate
than the former methods. The rationale for considering the
nonlinear RCC terms in the singles and doubles approximation
supplemented by important triple excitations for the precise
evaluation of the ground-state properties in Xe atom can
be attributed to the non-negligible contributions from the
non-RPA diagrams, as have been explicitly demonstrated in
our earlier study on the polarizabilities of the closed-shell
atomic systems [26]. It is also significant to note that the EDM
enhancement factors exhibit different correlation trends than
those of polarizability. The results increase gradually from
the DF level after the inclusion of the correlation effects
in the passage from the MBPT to LCCSD, and after that
they decrease at the CCSD level. The uncertainties in our
calculations are estimated by taking the difference between the
CCSD and CCSDpT methods and from the incompleteness in

TABLE I. Results of α in ea3
0 , η = 1020 × η, and ζ = 1017 × ζ

for the ground state of Xe using different many-body methods. The
estimated uncertainties to the CCSDpT calculations are given as �.

Method of
This work Others

Evaluation α η ζ α η ζ Ref.

DF 26.918 0.447 0.288 0.45 0.29 [25]
MBPT(2) 23.388 0.405 0.266
MBPT(3) 18.693 0.515 0.339 0.52 [28]
CPHF 26.987 0.562 0.375 0.57 0.38 [25]

27.7 0.564 [29]
LCCSD 27.484 0.608 0.417
CCSD 27.744 0.501 0.336
CCSDpT 27.782 0.501 0.337
� 0.050 0.002 0.004
Experiment 27.815(27) [27]

TABLE II. Explicit contributions to the α in ea3
0 , η = 1020 × η,

and ζ = 1017 × ζ values from various CCSDpT terms.

Term α η ζ

DT
(1)

1 + c.c. 26.246 0.506 0.338

T
(0)†

1 DT
(1)

2 + c.c. 0.008 ∼0 ∼0

T
(0)†

2 DT
(1)

2 + c.c. 1.395 −0.005 −0.001

Extra 0.095 ∼0 −0.001

the basis functions which are given as � in Table I. We estimate
the contributions from the negative energy states using the
Uehling potential [30], which is the lowest-order modified
nuclear potential due to a virtual electron-positron pair. These
contributions change η from 0.501 to 0.503 and ζ from 0.337
to 0.338 at the CCSDpT level.

The results of calculations by others for α, η, and
ζ [25,28,29] as well as the methods used to calculate them
are also given in Table I. As can be seen in that table,
we have successfully reproduced the results of the previous
calculations at the same level of approximation and we have
gone beyond these approximations for obtaining accurate
results. We present our results by performing the calculations
using the MBPT(3), LCCSD, CCSD, and CCSDpT methods
in Table I. These results provide useful insights into the role
of different types of correlation effects. From the MBPT(3)
calculations, we find that certain non-CPHF-type diagrams, for
example, the diagrams shown in Fig. 1, contribute substantially
with opposite signs to those of the DF values in all the
above quantities, leading to large cancellations in the final
results. Indeed, this is the main reason why the CPHF method
overestimates the EDM enhancement factors compared to the
CCSDpT method. In fact, many of these MBPT(3) diagrams
correspond to the nonlinear terms of the CCSDpT method,
hence their contributions are absent in the LCCSD method.
Therefore, the LCCSD method also overestimates these results
even though they account for some of the lower-order non-
CPHF contributions.

We present the contributions from the individual CCSDpT
terms in Table II to highlight the importance of various
correlation effects. It can be seen in this table that by far

p a

D

Ω
(1)

FIG. 2. Diagram involving effective one-body dipole operator
D and the perturbed wave operator �(1) that accounts for the
contributions from the singly excited configurations.
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TABLE III. Contributions from various matrix elements and from various angular momentum symmetry groups at the DF, lowest-order
CPHF [denoted by MBPT(l-CPHF)], CPHF, and CCSDpT methods to the α in ea3

0 , η = 1020 × η, and ζ = 1017 × ζ values. Here the summation
indices n and m represent for the occupied and unoccupied orbitals, respectively.

Excitation(s)
DF MBPT(l-CPHF) CPHF CCSDpT

(a → p) α η ζ α η ζ α η ζ α η ζ

5p1/2 − 7s 0.248 0.030 0.007 0.336 0.056 0.016 0.380 0.062 0.016 0.352 0.050 0.014
5p1/2 − 8s 0.517 0.090 0.022 0.690 0.159 0.045 0.769 0.172 0.045 0.733 0.145 0.039
5p1/2 − 9s 0.237 0.106 0.025 0.284 0.166 0.044 0.301 0.174 0.044 0.309 0.157 0.041
5p3/2 − 7s 0.844 ∼0 0.015 1.136 0.005 0.036 1.314 0.007 0.036 1.202 0.001 0.031
5p3/2 − 8s 1.558 ∼0 0.043 2.056 0.014 0.093 2.351 0.018 0.093 2.261 0.024 0.082
5p3/2 − 9s 0.583 ∼0 0.044 0.678 0.012 0.081 0.745 0.015 0.081 0.809 0.017 0.076
5p1/2 − 7d3/2 2.267 ∼0 ∼0 2.200 −0.003 −0.008 2.407 −0.006 −0.008 2.259 −0.011 −0.008
5p1/2 − 8d3/2 3.454 ∼0 ∼0 2.595 −0.013 −0.020 2.882 −0.022 −0.020 2.925 −0.028 −0.018
5p3/2 − 7d5/2 5.667 ∼0 ∼0 5.747 −0.027 −0.018 6.365 −0.039 −0.018 5.827 −0.031 −0.018
5p3/2 − 8d5/2 7.054 ∼0 ∼0 5.749 −0.048 −0.037 6.267 −0.071 −0.037 6.207 −0.057 −0.035∑

n,m(ns − mp1/2) 0.013 0.121 0.029 0.049 0.142 0.036 0.046 0.144 0.036 0.046 0.152 0.038∑
n,m(ns − mp3/2) 0.010 ∼0 0.036 0.025 0.003 0.042 0.018 0.003 0.042 0.037 0.004 0.048∑
n,m(np1/2 − ms) 1.064 0.326 0.078 1.382 0.500 0.136 1.532 0.529 0.136 1.474 0.466 0.122∑
n,m(np3/2 − ms) 3.183 ∼0 0.144 4.111 0.036 0.265 4.696 0.046 0.265 4.536 0.057 0.241∑
n,m(np1/2 − md3/2) 6.293 ∼0 −0.001 4.993 −0.022 −0.033 5.582 −0.038 −0.033 5.539 −0.047 −0.031∑
n,m(np3/2 − md3/2) 1.545 ∼0 ∼0 1.326 −0.003 −0.006 1.501 0.003 −0.006 1.375 −0.006 −0.007∑
n,m(np3/2 − md5/2) 13.860 ∼0 ∼0 11.887 −0.082 −0.064 13.428 −0.125 −0.064 12.871 −0.099 −0.060

the most important contributions come from the DT
(1)

1 term

followed by T
(0)†

2 DT
(1)

2 , where D is the effective one-body

term of
︷︸︸︷
D and the contributions from the other terms

are almost negligible. To carry out an analysis similar to
the one given in Ref. [29], we find the contributions from
various orbitals that correspond to various singly excited
intermediate configurations for different properties, which
are given in Table III. These results are evaluated using the
diagram shown in Fig. 2 with the corresponding �(1) operator
from the DF, MBPT(2) containing diagrams that correspond
only to the lowest-order CPHF [denoted by MBPT(l-CPHF)],
CPHF, and CCSDpT methods. We also present the sum
of contributions from the orbitals belonging to a particular
category of angular momentum excitations to demonstrate
their importance in obtaining the properties that have been
calculated. The information provided in all the three tables
together clearly expounds the reasons for the different trends
in the correlation effects in the calculations of α, η and ζ .

By combining our CCSDpT results for η and ζ with the
available experimental limit for 129Xe EDM, da(129Xe) <

4.1 × 10−27e cm, we get the limits CT < 1.6 × 10−6 and S <

1.2 × 10−9e fm3. These are not superior to the limits extracted
from 199Hg [25,31], which are about three orders of magnitude
lower. However, the experiments on 129Xe [13,21,22] that are
underway have the potential to improve the current sensitivity
by about three to four orders of magnitude. It therefore seems
very likely that the best limits for both CT and S could be
obtained by combining our calculated values presented in this
work and the results of the new generation of experiments
for 129Xe when they come to fruition. This limit for S, in
conjunction with the recent nuclear structure calculations [32]
and quantum chromodynamics (QCD), would yield new
limits for θQCD and CP-violating coupling constants involving
chromo EDMs of quarks.
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under Project no. IA/INSA-JSPS Project/2013-2016/February
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