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We show that with adiabatic passage, one can reliably drive two-photon optical transitions between the ground
states and interacting Rydberg states in a pair of atoms. For finite Rydberg-interaction strengths an adiabatic
pathway towards the doubly Rydberg excited state is identified when a constant detuning is applied with respect
to an intermediate optically excited level. The Rydberg interaction among the excited atoms provides a phase
that may be used to implement quantum gate operations on atomic ground-state qubits.
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The interaction between atoms excited to high-lying
Rydberg states make cold atoms, trapped in tweezer arrays or
optical lattices, promising candidates for the implementation
of quantum computing [1] and for the study of complex
many-body and light-matter problems [2]. In Ref. [1] it was
shown that controlled phase operations between two neutral
atoms can be performed either when the atoms experience
very strong or very weak dipole-dipole (Rydberg) interactions.
In the former, so-called Rydberg blockade regime, one excited
atom causes a sufficiently large energy shift of Rydberg
states in a neighboring atom to effectively detune it away
from resonance and block its excitation by a laser field. In
the weak interaction regime, both atoms can be excited to
Rydberg states and attain a phase due to the weak Rydberg
interaction. Two-qubit gates and generation of entanglement
have been demonstrated experimentally in the blockade
regime [3–5], and the two-atom gate proposals have been
followed by a variety of schemes for fast quantum gates with
atomic ensembles [6–9], entangled state preparation [10,11],
quantum algorithms [12,13], quantum simulators [14], and
quantum repeaters [15]. Other schemes using, e.g., the
interaction in an antiblockade regime [16] and in conjunction
with strong dissipation [17,18], have been proposed.

In this work, we propose a protocol that applies for Rydberg
interaction strengths that are too weak to yield the blockade
mechanism, yet too strong to be ignored when the atoms are
excited with resonant laser fields. This intermediate regime ap-
plies to atoms beyond nearest neighbor separation in multiatom
architectures [19], and two-qubit gates between such atoms are
a prerequisite for effective implementation of algorithms on
multiqubit registers. The key ingredient in interaction-based
gates is the possibility to reliably excite two atoms to the
Rydberg states, and we apply adiabatic passage [20], which
is a widely used technique for robust transfer of population
between states in atomic and molecular systems [21–23].

We introduce the adiabatic dark states of coherently driven
three-level atoms and discuss how they are affected by the
interaction between the excited states. We then determine
adiabatic eigenstates of the two-atom Hamiltonian and show
how a constant detuning of the driving fields can be used
to obtain an adiabatic pathway towards the doubly Rydberg
excited state. Finally, we include dissipation and atomic
motion to estimate gate fidelities and optimal parameters for
the gate operation.

We consider atoms with two ground hyperfine states, |0〉
and |1〉, and a Rydberg state, |r〉, which can be excited via the

intermediate state |p〉; see Fig. 1. The atoms experience an
energy shift VR , when both atoms occupy the Rydberg state
|r〉. The transition Rabi frequencies between states |1〉 and
|p〉 and between |p〉 and |r〉 are denoted �1(t) and �2(t),
respectively, and a detuning � may be applied with respect
to the intermediate level |p〉. The Rydberg and optically
excited states decay by spontaneous emission of radiation,
and we assume that the Rydberg state lifetime is much longer
than the optical state lifetime γr � γp. The total Hamiltonian
describing the interacting Rydberg atoms is

H (t) = H1 ⊗ I + I ⊗ H2 + VR|rr〉〈rr|, (1)

with single-atom Hamiltonian operators (� = 1),

Hj = �|p〉jj 〈p| + (�1(t)|1〉jj 〈p| + �2(t)|p〉jj 〈r| + H.c.),

(2)

(j = 1,2). For concreteness, we consider the following time-
dependent Rabi frequencies (0 � t � 2τ ):

�1(t) = � sin

(
π

2τ
t

)
�2(t) = �

∣∣∣∣ cos

(
π

2τ
t

)∣∣∣∣. (3)

The atoms initially populate the ground atomic states
and as long as the adiabatic condition �τ � 1 is fulfilled,
when VR = 0, the |1〉 component of both atoms follows
the dark state (zero eigenvalue state at any time t), |D〉 ≡
cos θ |1〉 − sin θ |r〉, tan θ = �1(t)/�2(t). All the population
in the product state |11〉 is thus transferred to the doubly
excited Rydberg state |rr〉 and back without populating the
intermediate level |p〉 of either of the atoms.

In the limit of strong interaction, i.e., VR > � � 1/τ , the
dark-state dynamics is destroyed, resulting in optical excitation
and spontaneous decay [22]. At the end of the pulse sequence
(3) there is an equal probability of finding either of the atoms in
the Rydberg state, while the other atom may have experienced
several spontaneous emission events and the coherence and
entanglement between the atoms is lost.

In the opposite limit of weak interaction, i.e., VR � �, the
interaction term in Eq. (1) causes a perturbative energy shift
given by the constant VR multiplied by the |rr〉 population
of the time-dependent dark state |DD〉, Prr (t) = sin4 θ . The
dark state thus accumulates the corresponding time-dependent
phase

φ(t) = VR

∫ t

0
Prr (t ′)dt ′. (4)
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FIG. 1. (Color online) Energy-level diagram of atoms driven by
two-photon laser transitions with Rabi frequencies �1(t),�2(t)
between ground |1〉 and Rydberg states |r〉. The pair of Rydberg states
experience the interaction VR . The right-hand side of the figure shows
the counterintuitive pulse sequence for the Rabi fields �1(t),�2(t),
driving the atoms from |1〉 to |r〉 and back. This process yields a phase
gate on the ground qubit states |0〉, |1〉.

In a single cycle of the Rabi frequency evolution (3), the
product state |11〉 attains a phase 3τVR/8 after time 2τ , while
all other states |10〉,|01〉,|00〉 do not get this phase as they do
not populate the doubly excited state |rr〉. Thus one achieves
a controlled phase gate Uφ = I + (eiφ − 1)|11〉〈11| and for
τ = 8π

3VR
we achieve the maximally entangling π -phase gate

for two atoms. Since VR � �, this gate is slow and thus subject
to Rydberg state dephasing and decay.

We are now interested in the intermediate regime,
VR ∼ �. Here, the interaction term constitutes a non-
negligible detuning for the transition to the state |rr〉, and
the atoms populate undesired state components, including the
short lived intermediate state, resulting in a loss of gate fidelity.
We first analyze the dynamics of the system by solving the
unitary dynamics generated by the Hamiltonian given in Eq.
(1). This is followed by a master equation analysis of the effects
of dissipation.

In Fig. 2 we show the |rr〉 population, Prr (t) as a function
of time t ∈ [0,τ ] for VR = �/2. The lower, blue (gray) curve
in the figure shows the results for a vanishing detuning,
� = 0, with respect to the intermediate state, and we see that
the excitation of two Rydberg atoms is almost completely
suppressed. The reason for this can be understood by a closer
examination of the adiabatic eigenstates of the Hamiltonian.
|11〉 and |rr〉 are, indeed, eigenstates at times t = 0 and t = τ ,
respectively, but, they are not adiabatically connected: For
� = 0, the former state evolves along the interacting two-atom
dark state [10]

|ψ(θ )〉 = 1√
cos4 θ + 2 sin4 θ

[(cos2 θ − sin2 θ )|11〉

− cos θ sin θ (|1r〉 + |r1〉) + sin2 θ |pp〉]. (5)

Adiabatic following of this state does not populate the doubly
excited Rydberg state at t = τ (θ = π/2), but it populates the
|p〉 state and suffers from spontaneous emission. At t = τ ,
the state |rr〉 is instead one of the other eigenstates of the
time-dependent Hamiltonian, which adiabatically correlates
with a state that populates the doubly excited Rydberg state
with a probability of 0.5 for times t = 0,2τ . In Fig. 3(a), for
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FIG. 2. (Color online) The population of the doubly excited
Rydberg state Prr (τ ) is shown as a function of time for fixed VR =
�/2 and pulse length τ = 0.25 μs. The different curves correspond
to different values of the intermediate state detuning �. In the inset
we show for different values of � how Prr (t = τ ) varies as a function
of the Rydberg interaction strength VR . Both atoms are initially
in their ground states, |ψ(0)〉 = |11〉, and all calculations assume
�/2π = 50 MHz.

the same parameters as in Fig. 2, we show the eigenenergies
of the time-dependent Hamiltonian. The middle (blue [gray])
and the upper (red [gray]) dashed curves show the energies for
the two-atom dark state and for the state attaining |rr〉 at t = τ ,
respectively. The curves approach each other, and the small
population of |rr〉 in Fig. 2 (lower, blue [gray] curve) is due to
nonadiabatic transitions between the adiabatic eigenstates.

The picture changes when we apply a finite detuning from
the middle level. This breaks the degeneracy of the states in
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FIG. 3. (Color online) Three energy eigenvalues are shown for
the time-dependent Hamiltonian (1): (a) for vanishing � (solid lines)
and for � = � = 2VR (dashed lines) and (b) for �/2 = � = 2VR

(solid lines) and for � = � = VR (dashed lines). The values of �

and τ are the same as those used in Fig. 1.
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Eq. (5), and if the detuning is chosen to be comparable to VR

and �, new adiabatic eigenstates are formed with significantly
modified character. The solid lines in Fig. 3(a) show the
eigenenergies of the time-dependent Hamiltonian for the case
� = � = 2VR and now, indeed, the state |11〉 is adiabatically
connected to |rr〉 along the middle (blue [gray]) solid line.
The time-dependent population of the the state |rr〉 during
the time evolution with � = � = 2VR is shown as the upper,
black curve in Fig. 2, and indeed, it reaches a value near unity
at t = τ .

Let us now address the conditions for high-fidelity phase
gate performance with �,�, and VR of comparable magni-
tudes. Our request for a finite VR to yield the desired phase
evolution is fulfilled if we take � ∼ VR and � ∼ �. The
detuning should not be taken much larger, since that would
cause nonadiabatic transfer towards the low-energy eigenstate
[lower, violet (gray) solid line in Fig. 3(b)], while making VR

much larger than � will cause nonadiabatic transfer towards
the high-energy eigenstate [upper, brown (dark gray) dashed
line in Fig. 3(b)].

Our calculations show that it is possible to rapidly transfer
atoms from |11〉 to |rr〉 and back. To ensure adiabaticity, the
total time must be long enough, �τ � 1. This constraint is
similar to the conventional single-atom adiabaticity condition,
which must anyway be fulfilled such that the qubit product
states |01(10)〉 evolve adiabatically along |0D(D0)〉.

Due to the Rydberg interaction and the detuning the
adiabatic state leading to the double excitation of the Rydberg
state will have a nonzero population in |p〉 which is subject to
the effect of spontaneous emission and decay, and the Rydberg
state is also subject to decoherence and decay. To evaluate
the dynamics in the presence of these dissipative effects we
therefore solve the master equation

∂tρ = i[Heff,ρ] +
∑
j,k

C(j )†

k ρC(j )
k , (6)

where Heff = H − i
2

∑
j,k C

(j )†

k C(j )
k , and C(j )

k are Lindblad
operators, which describe the decay processes of the j th atom
by spontaneous emission of light, C(j )

0 = √
γ0|0〉jj 〈p|,C(j )

1 =√
γ1|1〉jj 〈p| (γp = γ0 + γ1). Rydberg state decay is described

by similar terms, e.g., C(j )
r = √

γr |p〉jj 〈r|, but it is a much
slower process, and we also consider the dephasing of the
Rydberg state C(j )

rd = √
γrd (I − 2|r〉〈r|).

In Fig. 4, we show results where we have solved the
master equation for systems starting in a product state
1
2 (|0〉 + |1〉)(|0〉 + |1〉). We applied � = � = 2π × 50 MHz,
and for different values of VR/� we adjusted τ to obtain
the desired π phase shift. The curve in the figure shows the
final-state fidelity when the decay rates are taken as γp/2π =
6 MHz, γr/2π = 1 kHz, γrd/2π = 10 kHz, corresponding to
realistic parameters for Rb atoms with |p〉 = |5P3/2〉 and |r〉
having principal quantum number n = 97 [24]. The fidelity is
deteriorated for small values of VR due to dephasing and decay
of the Rydberg states (as τ ∼ 1/VR), while for large values of
VR nonadiabatic processes are important (as τ ∼ 1/�). In the
inset we show how the population of the state |rr〉 at the time τ

varies as a function of the duration of the adiabatic process. The
lower curve is obtained with the same parameters as the main
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FIG. 4. (Color online) The optimal final-state fidelity for the
π -phase gate, Fπ ≡ Tr[Uπρ(0)U †

πρ(2τ )], applied to atoms initialized
in ρ(0) = |ψ〉〈ψ |, where |ψ〉 = 1√

2
[|1〉 + |0〉], is shown as a function

of the Rydberg interaction strength VR . The decay rates applied in the
simulations are γp/2π = 6 MHz, γr/2π = 1 kHz, γrd/2π = 10 kHz.
In the inset we show the double excitation probability at the end of
half cycle (starting in |11〉), Prr (τ ), as a function of τ for γp/2π =
1.01 MHz (red [gray] dashed line) and γp/2π = 6 MHz (green [gray]
circles). The strength of the interaction and the single-photon Rabi
frequency are chosen to be VR/2π = 25 MHz and �/2π = 50 MHz.

plot, relevant for Rb atoms, while the upper curve is obtained
with a decay rate of γp/2π = 1.01 MHz corresponding to
Cs atoms, with |p〉 = |7P1/2〉, and Rydberg states with n =
100. The effect of nonadiabaticity can already be seen for
τ ∼ 0.1 μs, where the double excitation probability becomes
oscillatory as the energy difference between close adiabatic
eigenstates is of order 1/τ . The state transfer is better than 90%
for both sets of parameters, and inspection of the parameters
show that a duration as short as τ = 0.25 μs leads to the
desired π phase shift and a phase gate with acceptable fidelity.

Atoms excited to the Rydberg state during the gate experi-
ence a force that entangles their motion with the qubit degree
of freedom [25] and thus decreases the gate fidelity. We now
estimate this loss of fidelity for atoms separated by a distance
r , initialized in the ground states of tight harmonic traps with
trapping frequency ω0 and a position uncertainty r0. For the
C6/r6 van der Waals interaction, the atoms in |rr〉 experience
a force ∼ 6

r
VR . The amplitude for the harmonic motion to

become excited is estimated by first-order perturbation theory,
∼ 6r0

2r
VR

ω0
(1 − e−iω0τ ), where the factor 1

2 takes into account that
the force only applies for the |rr〉 component of the state,
with a population varying between zero and unity during the
gate. For 87Rb atoms separated by a distance ∼11.7 μm and
excited to the high-lying Rydberg state (n = 97) [24], the
Rydberg interaction energy yields VR/2π = 4 MHz. With the
single-photon Rabi frequency �/2π = 50 MHz, the duration
of the phase gate is 2τ ∼ 0.5 μs, and if the atoms are held in
optical tweezer traps with ω0/2π = 36 kHz and r0 = 390 nm,
the probability of excitation to the first excited motional states
during the gate time 2τ is then only ∼0.02. Using instead an
optical lattice to trap the atoms, the motional frequency is much
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higher and the ground state width is an order of magnitude
smaller, and the effects of motional excitation may be
ignored.

In conclusion, we have shown that atoms with intermediate
value Rydberg interaction strengths, incompatible with the
blockade mechanism but too strong to be dealt with by
perturbation theory, can be excited reliably by adiabatic
passage and accumulate a well-controlled phase, useful for
entangling quantum gates. The result may be important for
quantum computing architectures, where some but not all
atoms are within the blockade radius distance of each other
and where different variants of interaction gates may become
useful.

The interaction strength in our numerical example is typical
for highly excited atoms at intermediate to large separation,
and also for closer atoms excited to lower lying Rydberg
states. By comparison, it is possible to operate a blockade
gate if the Rabi coupling frequency is kept well below the
value of VR . On resonance with the intermediate level that
would, however, be subject to decay and a significantly lower
fidelity, while for a large detuning �, the requirements on laser
coupling strengths become severe. Our simulations assumed a
Rabi frequency stronger than VR , and we have investigated the
simple interaction gate for the same parameters, i.e., the direct
resonant excitation to |rr〉 with the strong fields. This process,
however, also suffers from fidelity loss due to decay from

the intermediate optically excited state. The rapid adiabatic
process in comparison seems to make optimum use of the
robust near-resonant state transfer and the (almost) dark state
character of the intermediate states.

If all two-qubit gates have infidelities at the few-percent
level, scalable fault-tolerant quantum computing is not pos-
sible. In our proposal, the minimal error is found by a
competition between nonadiabaticity and dephasing, favoring
long and short gate duration, respectively. By increasing the
Rabi frequencies one may therefore maintain adiabaticity with
a decreased gate time, and there is no fundamental reason that
Rabi frequencies higher than the 50 MHz assumed in our
calculations should not be available with new laser sources.
We further note that the interaction gate proposed here should
not replace the conventional high-fidelity blockade gate at
short distances. Work on distributed quantum computation,
e.g., Ref. [26], is suggestive that fault tolerance may indeed
be obtained with quantum information strategies that exploit a
combination of high-fidelity local gates and moderate-fidelity
gates over intermediate distances.
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Büchler, Nat. Phys. 6, 382 (2010); H. Weimer, M. Müller, H. P.
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