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Measuring the orbital angular momentum of electron beams
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The recent demonstration of electron vortex beams has opened up the new possibility of studying orbital
angular momentum (OAM) in the interaction between electron beams and matter. To this aim, methods to
analyze the OAM of an electron beam are fundamentally important and a necessary next step. We demonstrate
the measurement of electron beam OAM through a variety of techniques. The use of forked holographic masks,
diffraction from geometric apertures, and diffraction from a knife edge and the application of an astigmatic
lens are all experimentally demonstrated. The viability and limitations of each are discussed with supporting
numerical simulations.
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Following the discovery that particles also possess wave
properties, electrons have been employed as a powerful
tool to study the microscopic and fundamental properties
of matter, being employed in a wide range of diffraction
techniques and spectroscopies. These techniques rely on the
determination of the energy or linear momentum of electrons.
The recent prediction [1] and realization [2–4] of electron
vortex beams, possessing orbital angular momentum (OAM),
has opened up the possibility of studying the role of OAM
in the interaction between electron beams and matter. This
brings new possibilities to study magnetism, nanoparticle
manipulation, and rotational friction in the TEM [3,5].

Electron vortex beams are paraxial beams with helical
wave fronts of the form A(r,z) exp(imφ), where m is the
topological charge. Electrons in such states possess an OAM of
m�. It is worth noting that the direct proportionality between
topological charge and OAM is only verified as long as the
intensity distribution is cylindrically symmetric around the
phase dislocation [6]. For simplicity we only consider this case
because the generalized case can be studied as superposition
of such states.

In order to explore the role of angular momentum in beam-
sample interaction it is important to have both control over
the OAM of the incident beam and the ability to quantify the
OAM of the outgoing wave.

This problem has been studied extensively for optical
vortices, and many solutions have been devised. A simple
interference with a reference wave creates unique patterns that
allow direct determination of the OAM. Other methods include
using multipoint interferometers [7], geometric transforma-
tions by phase manipulation [8,9], and the use of multiple
interferometers in a cascade setup [10].

While significant effort has been put into the generation of
electron vortex beams [2–4,11–14], little progress has been
made in measuring the OAM and the lower flexibility of
existing electron-optical components prevents the application
of the techniques mentioned above. In this Brief Report we
begin bridging this gap, demonstrating different methods to
detect and quantify the OAM of an electron vortex beam.

On the quantum mechanical level, the OAM of a paraxial
wave can be calculated integrating over the whole plane the
OAM density, defined as r × pϕ , where r is the position
operator and pϕ is the azimuthal component of the linear
momentum density operator. An ideal method should be able

to measure this quantity independently of the radial component
of p and without hypothesis on the shape of the wave. This
can be done, e.g., conformally mapping pϕ and pr into px

and py through ad hoc phase plates [8], but the limitations of
phase-plate technology for electrons prevent the use of this
method. As we will see, all the methods presented here fall
short of this strict requirement.

Previously, measurement of the OAM of electron beams has
been performed through the computer-generated holograms
(CGHs) that have been used for the production of vortex beams
[3,15]. These CGHs are gratings with a dislocation, calculated
numerically interfering a vortex beam with a reference plane
wave. An incoming plane wave is diffracted by the CGH into
a one-dimensional vortex array. The OAM of each diffraction
order is m = n�, where � is the dislocation order and n the
diffraction order. The intensity of the various spots depends
on the bar-with/slit-width ratio that determines the single-slit
envelope of the intensities [16].

Illuminating the mask with a vortex beam of OAM mi

[see Fig. 1(a)], the OAM in the diffracted spots changes to
m = mi + n�, while the relative intensities of the different
diffraction spots are, to a good approximation, unaltered
[15,17]. The phase discontinuity is not present in the m = 0
beam, and so it does not acquire the characteristic doughnut
intensity profile [18].

We experimentally verified this by placing an � = 1
fork aperture in the illumination system of the X-Ant-EM
microscope [19] operating at 200 kV, and using the resulting
vortex beams to illuminate a second � = 1 fork aperture placed
in the projection system. Switching the magnetic-lens system
to diffraction-mode projects the far-field diffraction of the
aperture onto a CCD camera. The OAM of the input beam can
be deduced observing which diffraction order does not possess
a doughnut intensity profile, thus satisfying mi + n� = 0, as
illustrated in Fig. 1(b).

As vortex beams possess a central intensity minimum
whose width scales with

√|m|, a pinhole placed in the position
of the diffracted beam can discriminate between a vortex or a
nonvortex beam, analogous to the use of a single-mode fiber
in light optics [20].

This method is inefficient as the absorption from the mask
and the further subdivision of intensity between different
beams leaves only 10% of the initial intensity in the first-order
diffracted beam and even less in higher orders. Additionally,
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FIG. 1. (Color online) OAM measurement with a fork grating.
(a) Schematic of the setup. (b) Experimental images of the diffraction
pattern produced by the fork for the values of incident OAM
m = {−2,−1,0,1}. Each column represents a recorded pattern; the
diffraction order of each beam is indicated on the left. (c) Simulation
of a signal collected by a pinhole positioned on the first diffracted
order, as a function of the pinhole width and for different illuminating
beams, and selectivity of the pinhole for dichroic signal defined as
(I−1 − I1)/(I−1 + I1). The pinhole size is normalized to the full width
at half maximum (FWHM) of an m = 0 beam.

the discrimination is more accurate for a smaller pinhole, with
the result that most of the beam’s intensity is lost.

In order to estimate the discrimination efficiency of this
technique we simulated the intensity collected by a pinhole.
We simulated the diffraction pattern produced by an ideal fork
mask when illuminated with vortex beams with m = {−1,0,1},
then we integrated the intensity scattered within a circular
aperture centered on the n = 1 diffraction order and plotted
the intensity as a function of the radius of the aperture for the
different values of incident OAM. The intensity is normalized
to the incident intensity in the single m = {−1,0,1} beam, and
the pinhole size is normalized to the FWHM width of an m = 0
beam. The selectivity, defined as (I−1 − I1)/(I−1 + I1), where
In is the intensity collected from the incoming component with
m = n, is also shown.

We found that if a high selectivity is required, the signal
is extremely low. With a normalized pinhole diameter of 1,
the selectivity is ∼0.97 and the intensity as low as 5% of the
incident intensity. With a pinhole diameter of 2.5 the collected

intensity is increased to 8.5% but the selectivity decreases
already to ∼0.27.

For higher-order beams the detection efficiency is even
lower due to the weaker intensities of the Bragg spots.

It should be noted that the applicability of this simulation
is limited because the radial shape of the diffracted beams,
and therefore the detection efficiency, depends on the radial
intensity distribution of the beam incident on the mask. In the
extreme case, where the radial distribution is entirely unknown,
the OAM selectivity is achieved only in the very center of the
diffracted spot.

The previous case shows how the phase singularity of
a vortex beam determines the diffraction pattern it pro-
duces. One might wonder whether replacing the CGH with
a different binary aperture would allow identification of
the OAM while conserving a greater fraction of the in-
coming intensity. Indeed, using geometrically shaped aper-
tures can produce characteristic diffraction patterns that
allow the identification of the topological charge of the
incident beam [21–25]. Among the various examples the
triangular aperture is particularly interesting due to its
simple analysis.

The diffraction of a vortex beam by a triangular aperture
produces a triangular lattice in the far field, which is deter-
mined by the input topological charge. The origin of this
pattern can be understood recalling that the diffraction of a
wave by an aperture is formed by the interference between the
edge waves. The extra phase in an incident vortex beam shifts
the edge waves, forming a triangular pattern. The magnitude
of the shift and thus the size of the pattern is determined
by the value of |m|. The handedness of the OAM relates the
orientations of pattern and aperture [22].

This method has been shown to hold also for vortex beams
with noninteger topological charge, and the rotation the pattern
acquires upon changing the sign of the OAM has been linked
to the Gouy phase [26]. Therefore, recording the diffraction
pattern and analyzing arrangement and number of intensity
maxima makes it possible to retrieve both the value and the
sign of the OAM [22,26].

We verified this by placing a triangular aperture in a Philips
CM30 TEM at 300 kV. The vortex beams were created by a
forked hologram in the illumination system of the microscope
and used to illuminate the triangle, recording the diffraction
pattern with a CCD camera [see Fig. 2(a)].

The resulting pattern shows the expected characteristics as
shown in Fig. 2(b). The number of maxima on the edge of
the triangle scales as |m| + 1 and the direction reverses upon
changing the sign, allowing easy identification of the OAM.
The first limitation of this approach lies in the fact that the
analysis is fundamentally more complicated than simple signal
counting, as in the previous case. Furthermore, the analysis
of such a pattern is simple only if the vortex beam is an
OAM eigenstate. A superposition of states produces diffraction
patterns that deviate from the triangular lattice pattern and are
harder to interpret. An incoherent superposition of two vortex
states generates a pattern consisting of the sum of the two
different patterns. When such a superposition is formed by
modes of different |m| the features of the lower-order mode
tend to be more prominent, as the intensity is concentrated on
a smaller area.
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FIG. 2. (Color online) OAM measurement with a triangular aper-
ture. (a) Schematic representation of the setup. (b) Experimental
images. The absolute OAM value can be deduced counting the spots
in the pattern because the triangle’s side will have |m| + 1 lobes.

Most of the techniques based on geometrical apertures
produce a pattern that needs to be recorded and analyzed in
order to obtain the OAM. However, a knife edge generates
a diffraction pattern that lends itself to the development of a
counting-based technique.

While we have already shown that a knife edge can be
used to reveal the handedness of an electron vortex beam [27],
the possibility for detecting the value of the OAM has only
indirectly been explored [28].

If we block half of a vortex beam with a knife edge at the
waist, thus obtaining a C-shaped beam, we can observe that
upon propagation the beam undergoes a deformation of the
intensity pattern and a characteristic rotation whose direction
depends on the sign of the angular momentum [27,29]. In
the far field we observe that for opposite values of OAM the
patterns are rotated by π radians with respect to each other
and possess an asymmetric intensity distribution. Another
way to interpret this phenomenon is that while the spiraling
current density of the vortex mode possesses an average zero
value of transverse momentum, blocking half of the beams
breaks this symmetry, and the resulting C-shaped beam has a
nonzero value of transverse momentum, leading to a shift in
the diffraction pattern.

We verified this experimentally in a Philips CM30 TEM. We
selected a single vortex beam generated by the fork mask using
a second aperture, then blocked half of this beam with the knife
edge [see Fig. 3(a)]. The resulting patterns, shown in Fig. 3(b),
present the expected asymmetry and mirror symmetry upon
changing the sign of the OAM. Additionally, the asymmetry
appears stronger for higher OAM.

In order to explore the feasibility of this method, we
performed numerical simulations studying the link between
the value of OAM and the asymmetry in the diffraction pattern.
For this we supposed a knife edge blocking half of a vortex
beam at its waist, then centering the resulting far-field pattern
on a detector. We imagined this detector as divided in two
parts with independent signal output of the impinging current,
as in Fig. 3(c). We then calculated the fraction of the intensity
collected by the right-hand side of the detector, shown in
Fig. 3(d). It was found that this signal depends on the OAM in
a nonlinear way, but appears to saturate at a maximum value

FIG. 3. (Color online) OAM measurement with a knife edge.
(a) Schematic of the setup. (b) Experimental images, the dashed line
indicates the direction of the knife edge. (c) Schematic representation
of a detector divided in two parts with the dividing line orthogonal
to the knife edge, and on which the beam has been centered. (d) The
fraction of the total current that will reach the right-hand side of the
detector as a function of the OAM.

of half the incident intensity (half of the intensity is blocked
by the knife edge).

This shows that this method can only be applied to low
values of OAM with reasonable accuracy. Moreover, if this
method is applied to analyze a superposition of states the
nonlinearity makes it impossible to uniquely obtain the average
OAM or the relative weight of each mode.

However, if the wave is known to be an incoherent
superposition of m = {−m0,0,m0}, a direct proportionality
between signal and m can be established, enabling OAM
measurement.

While the above methods all employ binary diffraction
techniques, in the optical case, the phase can be directly
manipulated to reveal the OAM [8]. Equivalent phase manip-
ulation techniques within the TEM, are currently not flexible
enough to enable a true OAM decomposition, while TEM
phase manipulation has been demonstrated in the production
of electron vortices [13,30]. There is, however, a phase
manipulation method of simple experimental realization that
allows simple measurement of the topological charge, a
method based on the mode-conversion process also used to
produce vortex beams.

Typically a higher-order Hermite-Gaussian mode is con-
verted, applying successive astigmatic phase shifts, into a
higher-order Laguerre-Gaussian (LG) beam which carries a
phase vortex. This is achieved in light optics with cylindrical
lenses or in electron optics using the electron-optic stigmators
[31,32]. The order of an LG-like vortex mode can be measured
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FIG. 4. (Color online) OAM measurement by astigmatic phase.
(a) Schematic of the setup. (b) Experimental results.

by reversing this process; applying a quadratic phase plate
divides the doughnut intensity profile, into a number of linearly
arranged intensity lobes, where the number of lobes is equal
to |m| + 1. The orientation of the pattern with respect to the
phase plate (angled at π/4), reveals the sign of m [33,34].
As demonstrated in Fig. 4(b), the experimental results neatly
follow these predictions. This method is particularly easy to
employ within the TEM, requiring the manual adjustment of
only one parameter, which is freely tunable on any electron
microscope. Indeed, this technique can be an ideal way to
confirm the vortex beam order during the preparation of a
more complex experimental setup and then readjusted to an
astigmatism-free condition. However, impure modes would
lead to overlapping of the intensity lobes, so this technique
only works for pure vortex states, presenting in this the same
limitations as the triangular aperture. Furthermore, the charac-
teristic pattern can only be observed close to the beam’s waist.

We have presented and demonstrated several methods
for the measurement of OAM in electron beams. Two of
these demonstrations clarified the details and generalized the

scope of the methods shown in earlier publications [3,15,27],
while two additional methods (the triangular aperture and
the astigmatic phase) were demonstrated in TEM use for
the first time, introducing additional flexibility in this newly
developing field.

The methods employing the triangular aperture and the
astigmatic phase allow the measurement of any order of
topological charge, but require the characteristic pattern to be
recorded and analyzed. Alternatively, the knife edge and the
fork mask are more suitable for analysis of low-order vortex
beams, but potentially allow the measurement to be reduced
to a simple counting which could be automated. However,
the high versatility in this respect of the fork mask comes
at the expense of a very low detection efficiency, while if the
above-mentioned restrictions on the values to be measured can
be imposed, the knife edge grants a better efficiency.

The applicability of these methods is restricted to eigen-
states of OAM, or in some cases to incoherent superpositions
of these states, and does not translate well to arbitrary beams,
where the outcome, in general, depends not on the OAM alone
but also on the exact form of the beam [35]. While this sets
a target for future development of the detection methods, the
applications can already benefit from these results. A variety
of phenomena can already be studied within these restrictions,
such as the electron magnetic circular dichroism effect or the
generation of vortex beams by magnetic monopoles [14]. We
believe that the availability of methods for detecting the OAM
will lead to new and interesting developments because the role
of OAM is considered in phenomena such as diffraction [36] or
elastic propagation of electron beams through matter [37,38].
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[13] L. Clark, A. Béché, G. Guzzinati, A. Lubk, M. Mazilu, R. Van
Boxem, and J. Verbeeck, Phys. Rev. Lett. 111, 064801 (2013).
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[23] Y. Liu, J. Pu, and B. Lü, Appl. Opt. 50, 4844 (2011).
[24] Y. Liu and J. Pu, Opt. Commun. 284, 2424 (2011).
[25] L. Yongxin, T. Hua, P. Jixiong, and L. Baida, Opt. Laser Technol.

43, 1233 (2011).
[26] A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, and E. M.

Wright, Opt. Express 19, 5760 (2011).
[27] G. Guzzinati, P. Schattschneider, K. Y. Bliokh, F. Nori, and

J. Verbeeck, Phys. Rev. Lett. 110, 093601 (2013).
[28] P. Schattschneider, B. Schaffer, I. Ennen, and J. Verbeeck,

Phys. Rev. B 85, 134422 (2012).

[29] J. Arlt, J. Mod. Opt. 50, 1573 (2003).
[30] T. C. Petersen, M. Weyland, D. M. Paganin, T. P. Simula,

S. A. Eastwood, and M. J. Morgan, Phys. Rev. Lett. 110, 033901
(2013).

[31] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P.
Woerdman, Phys. Rev. A 45, 8185 (1992).

[32] P. Schattschneider, M. Stöger-Pollach, and J. Verbeeck,
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