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Isotropic vortex tangles in trapped atomic Bose-Einstein condensates via laser stirring
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The generation of isotropic vortex configurations in trapped atomic Bose-Einstein condensates offers a
platform to elucidate quantum turbulence on mesoscopic scales. We demonstrate that a laser-induced obstacle
moving in a figure-8 path within the condensate provides a simple and effective means to generate an isotropic
three-dimensional vortex tangle due to its minimal net transfer of angular momentum to the condensate. Our
characterization of vortex structures and their isotropy is based on projected vortex lengths and velocity statistics
obtained numerically via the Gross-Pitaevskii equation. Our methodology provides a possible experimental route
for generating and characterizing vortex tangles and quantum turbulence in atomic Bose-Einstein condensates.
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Vortices in ordinary (classical) fluids, as well as quantum
fluids, characterize turbulent flow [1,2]. Turbulence in classical
fluids has been intensely studied in many branches of physics
and engineering over a prolonged period. Characterizing
turbulence and understanding its dynamics is one of the key
goals of these fields. Homogeneous, isotropic turbulence is
the benchmark to understand vortex dynamics away from
boundaries. Quantum fluids, such as superfluid He and atomic
Bose-Einstein condensates (BECs), where the circulation is
quantized and viscosity is absent, open up the possibility
of a context in which to study turbulence which is simpler
than in ordinary fluids. Large vortex tangles have been
created experimentally in superfluid He for this purpose. The
investigation of the properties of such systems has revealed,
for certain parameter regimes, the emergence of classical-like
behavior (such as the Kolmogorov scaling [3–5] of the energy
spectrum for homogeneous isotropic turbulence) from the
dynamics of elementary quantum vortices.

Usually terms such as “turbulence” and “vortex tangles”
refer to disordered fluid systems containing vortices and
eddies in which a huge range of length scales and time
scales are excited; scaling laws therefore can be identified.
Unlike ordinary fluids and superfluid helium, atomic BECs
are relatively small, in the sense that there is not a large
separation of length scales between the vortex core size, the
average intervortex separation, and the system size [6]. An
important question which should be addressed in this context,
is whether a relatively small vortex configuration exhibits
turbulent properties, or it is simply chaotic. A first step in
addressing this question is to demonstrate a technique for
generating a few interacting vortices [see Fig. 1 (left)] that
give isotropic flow statistics [see Fig. 1 (right)], which is the
main result of this Brief Report.

The experimental realization of BECs [7–9] has opened up
the possibility of experimentally generating a turbulent tangle
of vortices in a highly controllable system. Vortex lattices
[10–15] and collections of vortex dipoles [16], as well as mul-
tiply charged [17] and multicomponent [18–20] vortices can be
created, and their two-dimensional (2D) column distributions
can even be imaged in real time [21]. With regard to quantum
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turbulence, a landmark experiment recently generated a small
tangle of vortices in a trapped weakly interacting BEC
through the combination of rotation and an external oscillating
perturbation [22–24]. Several theoretical works have studied
the statistical properties of vortex tangles in three-dimensional
(3D) superfluid systems [25–28]. Another proposed method to
generate a vortex tangle combines rotations about two different
axes [29].

Atomic BECs are typically inhomogeneous because of
the harmonic potentials which are used to confine them
(although there are ongoing efforts to minimize the effects
of inhomogeneity via the creation of “boxlike” condensates
[30]); because of the small number of vortices generated, the
prevailing vortex configuration is unlikely to be isotropic if it
contains only a few vortices. A summary of the features and
main unresolved issues in such systems can be found in [6].

It is well known that an obstacle moving through a
superfluid will nucleate vortices above a critical speed [31].
In a BEC such an obstacle can be generated via an incident
blue-detuned laser beam, which induces a localized repulsive
potential through the optical dipole force. Deflection of the

FIG. 1. (Color online) Tangle of few interacting vortices (left)
exhibiting isotropic non-Gaussian flow statistics (right). Left: Density
isosurface generated by stirring a spherically symmetric condensate
along one plane in a figure-8 path (at time t ≈ tstir = 17.1ω−1 when
the stirrer has just been removed after approximately two oscillations),
with the vortex cores visualized by the dark blue dots. Right: PDFs of
velocity components vx , vy , and vz (black, red, and blue overlapping
solid lines respectively) at time t ≈ tstir. The non-Gaussian nature of
the turbulent velocity field is made apparent by the large deviation
of the PDFs from the corresponding GPDFs, calculated by Eq. (3)
(dashed lines).
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laser beam can then be performed to move the obstacle over
time. This technique, termed “laser stirring” [15,32–34], has
proven to be an efficient way of generating large numbers of
vortices both experimentally [15,16,33,34] and theoretically
[32,35–37]. In particular, laser stirring in a circular path has
led to the formation of vortex lattice states [15] due to its
imparting of angular momentum to the condensate (the ground
state of a superfluid with sufficient angular momentum being
a vortex lattice [34,38,39]).

In this Brief Report we show that laser stirring in a
figure-8 pattern in a two-dimensional plane can be used to
generate a fully three-dimensional isotropic vortex tangle in a
trapped BEC, a vortex configuration suitable to study quantum
turbulence. While this stirring is an efficient means of gen-
erating vortices it imparts minimal angular momentum to the
condensate, thus favoring the generation of a tangle of vortices
rather than a vortex lattice. Following cessation of the stirring,
the tangle decays isotropically. Since velocity statistics [40]
and vortex length [38] are routinely used to measure tangle
dynamics in He experiments of quantum turbulence, we apply
these measures to characterize the vortex dynamics.

Our analysis is based on numerical simulations of the 3D
Gross-Pitaevskii equation [39,41]:

i�
∂φ(r,t)

∂t
=

(
− �

2

2m
∇2 + V (r,t) + g|φ(r,t)|2 − μ

)
φ(r,t),

(1)

an accurate model for vortical structures in the limit of
zero temperature and weak interactions, which describes the
condensate by a macroscopic wave function φ(r,t). This
equation is commonly expressed hydrodynamically using a
transformation of the form φ(r,t) = |φ(r,t)|eiθ(r,t), where
θ (r,t) is the phase and the superfluid velocity is identified
as v(r,t) = (�/m)∇θ (r,t). The interatomic interactions are
parametrized by g = 4π�

2as/m, where as is the s-wave
scattering length and μ is the condensate chemical potential.
The external potential acting on the BEC is of the form
V (r,t) = mω2r2/2 + Vl(x,y,t). The first term represents a
spherically symmetric harmonic trap, of frequency ω, used
to confine the gas. The second term represents a Gaussian
time-dependent laser-induced potential, uniform along z:

Vl(x,y,t) = V0 exp

[
− [x − xl(t)]2 + [y + yl(t)]2

d2

]
. (2)

The amplitude V0 is proportional to the intensity of the stirring
laser beam [39,42], xl(t) and yl(t) are the positions of the
center of the stirrer at time t , and d is the beam’s width.
For a figure-8 stirring path, the time-dependent coordinates
of the obstacle are given by (xl(t),yl(t)) = [x0cos(νlt)[1 −
sin(νlt)],y0cos(νlt)sin(νlt)], where x0 = y0 = 4l⊥ and νl =
0.74(ω/2π ) is the angular frequency of the moving obstacle.
We solve Eq. (1) on a 3003 grid [43] with g = 16 000l⊥�ω,
where l⊥ = √

�/mω is the harmonic oscillator length, and
μ = 30�ω. For a trapping frequency of ω = 2π × 150 Hz this
corresponds to approximately 21 000 87Rb atoms. All results
presented in this Brief Report will be expressed in these units.
We choose an obstacle with fixed width (d = l⊥/2) and slowly
increase its amplitude V0 linearly with time (V0 = 1.5t) until
it reaches a maximum value at the time where it is removed; in

this way disruptive shock waves are minimized. The total stir
time is tstir = 17.1ω−1, by which point the beam has undergone
almost two full oscillations of the figure-8 path [see the left
inset of Fig. 3 (bottom)] and V0 has reached its maximum value
of ≈25.7�ω.

Our figure-8 stirring path minimizes the net transfer of
angular momentum to the condensate, in comparison to the
circular path which imparts angular momentum around the
stirring axis and results in an ordered array of vortices arranged
in a lattice configuration [10,11,13,15]. An added advantage to
the figure-8 path is that the obstacle generates a range of vortex
lengths through the whole extent of the condensate (across
varying axial width), allowing for more bending and tangling
of vortex lines than the simpler circular stirring. During the
stirring, vortices are nucleated by the obstacle and form a
wake behind it. When the obstacle is removed at time t = tstir,
what is left is a tangle of reconnecting vortices, as shown in
Fig. 1 (left) [44]. The surface of the condensate (spherical
when unperturbed) is made uneven by large density waves
created by the obstacle and by the motion and reconnections
of vortices [45].

It is difficult to determine by visual inspection how isotropic
a vortex tangle is [28]. To measure it precisely, we compute
the probability density function (normalized histogram, or
PDF for short) of the velocity components vx , vy , and vz.
The velocity is computed directly from the definition v(r) =
(φ∗∇φ − φ∇φ∗)(2i|φ|2).

Figure 1 (right) shows such PDFs just after the stirrer
has been removed. The good overlap of these velocity PDFs
confirms the isotropy of the turbulent velocity field. Moreover,
the high degree of symmetry for the PDFs about v = 0
confirms that negligible linear momentum is imparted in all
directions. For comparison, we also include the Gaussian PDF
(GPDF) of each velocity component (correspondingly colored
dashed lines), given by

GPDF(vi) = 1

σi

√
2π

exp

(−(vi − μ̃i)2

2σ 2
i

)
, (3)

where σi and μ̃i are the standard deviation and the mean.
Figure 1 (right) thus also confirms the non-Gaussian (hence
nonclassical) nature of the velocity PDFs due to the quantised
nature of the vortices [5,28,40,46].

FIG. 2. (Color online) PDFs of velocity components vx , vy , and
vz (black, red, and blue overlapping solid lines respectively, as in
Fig.1) of a single vortex line oriented in the y-z direction (left) and
a vortex ring in the x-y plane (right). Insets show corresponding
isosurfaces of the condensate density.
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FIG. 3. (Color online) Top: Density images of the condensate at
z = 0 and x,y = [−8,8] l⊥ at times ωt = 9.1 (A) and 17.1 (B) and
24.9 (C) [also marked on the lower graph where (B) refers to the
snapshot from Fig. 1 at time t = tstir]. Regions of high (brown/red) and
low (blue) density are apparent as indicated by the color bar. Density is
measured in units of l−3

⊥ . The figure-8 path of the obstacle is shown by
the white dashed line in (A). Middle: Corresponding phase snapshots.
Singly charged vortices correspond to 2π phase singularities. To avoid
phase artifacts at very low density, the phase is truncated beyond RTF.
Bottom: Measured projected vortex lengths Li , vs. time in the x (black
solid), y (red solid with hollow circles), and z (blue dashed) directions.
Inset (left): Trajectory of laser in the x direction, xl , up to time tstir.
Inset (right): The displaced density 	 vs time, where the displaced
density is the difference in the norm between a condensate containing
no vortices, φ1, and the stirred condensate, φ2, i.e., 	 = ∫

V |φ1|2dV −∫
V |φ2|2dV , where V = (4π/3)R3

cut, with Rcut = 0.78RTF.

We have also considered (see Fig. 2) the velocity PDFs for a
straight vortex (left) as well as a vortex ring (right). In addition
to the non-Gaussian nature, these reveal nonisotropic velocity
PDFs, hence substantiating our claim about the importance of
the isotropy of our generated tangle in Fig. 1 (left). Although
the tangle shown in Fig. 1 contains relatively few vortices, the
resulting velocity distribution shown in Fig. 1 (right) resembles
the isotropic velocity distributions of a dense vortex tangle in
superfluid helium [47].

A further measure to assess isotropy (also routinely used
in turbulent superfluid He systems) [38] is based on projected
line lengths Lx, Ly , and Lz in the x, y, and z directions.

An isotropic vortex configuration will have Lx/L ≈ Ly/L ≈
Lz/L where the total line length is L. To determine the vortex
length, we find all grid cells where the density has a minimum
and the phase around that grid point changes by 2π . We restrict
the calculation to within 78% of the Thomas-Fermi radius
RTF = √

2μ l⊥ to avoid artifacts arising from the low density
edge of the condensate.

Figure 3 (top and middle) give condensate density and phase
slices (at z = 0) during the stirring [t < tstir, (A)], just after
removing the stirrer [t ≈ tstir, (B)] and at a much later time
(C). Singularities in the phase plot indicate the presence of a
vortex; the charge of a vortex can be inferred from the direction
of the phase winding with both positive and negatively charged
vortices present in these images. Additionally, these phase
plots indicate the presence of nonlinear waves in this system,
confirming that this stirring mechanism produces a highly
disturbed velocity field. In C, the tangle is less dense than
in A and B as most of the vortices have decayed to the
edge of the condensate. The bottom part of the figure shows
the corresponding projected vortex lengths. Following a near
uniform increase of L during stirring (t < tstir), all vortex
lengths Lx, Ly , and Lz decay together after the stirrer has been
removed (t > tstir), indicating that the vortex configuration
maintains a high degree of isotropy during its decay. This
is further confirmed by inspection of the velocity PDFs at later
times (see Fig. 4).

Figure 3 also shows that during the decay of L, all three
directional projections oscillate. This is an artifact of the
method for calculating the vortex length, which measures it
within a fixed spherical volume, (4π/3)R3

cut, where Rcut =
0.78RTF. The entire condensate undergoes volume oscillations
[28], and vortices move in and out of the region where the
length is determined. The dominant frequency of this line
length oscillation is approximately 2.2ω, which is close to
the frequency of the monopole mode (ωosc = √

5ω in the TF
approximation [48]) of a harmonically trapped BEC [39,41]. It
is worth remarking that the widths of the condensate in all three
directions oscillate in phase with each other, in agreement with
the excitation of this mode [49]. Further analysis shows that
the magnitude of these oscillations increases with stir time.

In order to relate vortex line length to an experimentally
observable quantity, such as volume, we also measure the
norm in the measurement volume (4π/3)R3

cut and compare
this to a condensate of the same total atom number containing

FIG. 4. (Color online) Left: Density isosurface at time ωt = 25.7
(as in Fig. 1) showing a few remaining vortices during the decay of
the dense vortex tangle. Right: Corresponding velocity PDFs for
components vx , vy , and vz (black, red, and blue overlapping solid
lines respectively, as in Fig. 1).
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no vortices [see the right inset of Fig. 3 (bottom)]. During
the stirring, we find that as the line length increases, the
displaced density also increases, with both decreasing when
the stirrer is removed. The displaced density additionally
undergoes oscillations and these are found to be of the
same frequency as those of the vortex length. Since the total
atom number remains constant, we infer that the volume of
the condensate increases to accommodate the vortices. This
effect is visible experimentally [50] and can be monitored
by measuring the atom number within a specified radius of
the BEC [51].

In conclusion, we have proposed a stirring protocol in
ultracold atomic gases, aimed at generating an isotropic vortex
tangle. Unlike the usual circular path of stirring (which
eventually leads to an ordered vortex lattice), and linear

sweeping (which generates vortex dipoles and can be expected
to heavily excite the condensate dipole mode), stirring a
spherical condensate along a planar figure-8 path, via a
laser-induced obstacle aligned along a given axis, results in
the generation of an isotropic vortex tangle. Cessation of
the stirring leads to the subsequent isotropic decay of the
tangle. As such, this stirring protocol represents an efficient
route to experimentally generate dense isotropic vortex tangles
in trapped Bose-Einstein condensates and is a further step
towards efficient generation of quantum turbulence in these
systems.
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discussions. A.J.A., N.P.P., and C.F.B. acknowledge funding
from the EPSRC (Grant No. EP/I019413/1).
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