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Vortex lattices in dipolar two-component Bose-Einstein condensates
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We consider a rapidly rotating two-component Bose-Einstein condensate with short-range s-wave interactions
as well as dipolar coupling. We calculate the phase diagram of vortex lattice structures as a function of the
intercomponent s-wave interaction and the strength of the dipolar interaction. We find that the long-range
interactions cause new vortex lattice structures to be stable and lead to a richer phase diagram. Our results
reduce to the previously found lattice structures for short-range interactions and single-component dipolar gases
in the corresponding limits.
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Cold-atom experiments provide the opportunity to study
many-particle systems in a highly controlled manner. One of
the novel regimes that have gained importance is the study
of systems where the particles are interacting significantly
through long-range dipolar forces [1–5]. The realization of
the quantum degenerate gas of dipolar bosons and fermions
[6–10] has given impetus to theoretical study of these systems
in various parameter regimes [2–5].

The response of Bose-Einstein-condensed gases to rotation
or an artificial magnetic field has been extensively investigated
[11–20]. It has been well established that the ground state
of a Bose-Einstein condensate (BEC) under rotation is a
vortex lattice [11–19], and such lattices containing hundreds of
vortices have been observed in experiments [21,22]. While the
lattice structure for a single-component BEC with short-range
interaction is always a triangular lattice, lattice structures of
different symmetry can be obtained either by increasing the
number of components in BECs or by introducing long-range
interactions. The phase diagrams of the vortex lattice structures
have been calculated for two-component [12] and spin-1 BECs
[20]. Similarly, the effect of the long-range dipolar interactions
on the vortex lattice structure of a single-component BEC has
been investigated [13,16,23]. It is, thus, natural to ask how
the long-range interactions modify the phase diagram of the
two-component Bose condensates. In this Brief Report, we
calculate the phase diagram of the vortex lattice structures as
a function of both the s-wave interactions and the dipolar in-
teractions. We determine the vortex lattice structures using the
method developed in Ref. [12] for two-component condensates
and generalized to dipolar interactions in Ref. [13].

We consider a disk-shaped rapidly rotating two-component
Bose-Einstein condensate with contact and dipolar interac-
tions. Each component can be considered a hyperfine state of
the same atom. The orientation of the dipoles are assumed to
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be fixed by the external field forming the trapping potential.
The trap geometry is important in determining the nature
of the interaction. For the disk-shaped condensates with the
dipoles oriented along the symmetry axis, the interaction
between atoms is predominantly repulsive. The extent of the
cloud along the symmetry axis forms the effective cutoff for
the short-range part of the dipolar interaction and can be
utilized as a control over the dipolar forces. Similarly, the
s-wave interaction strengths can be adjusted by Feshbach
resonances, potentially creating a large phase space to explore.
As our main aim is to understand the effects of long-range
interactions on the vortex lattice structure of two-component
condensates, we concentrate on a symmetric system where the
two components have the same mass, the same density, and
the same rotation frequency. The dipolar interactions are also
assumed to be independent of the component. We calculate
the equilibrium vortex lattice structures as a function of the
strengths of the short-range intercomponent interaction and
the component-independent dipolar interaction.

For a two-dimensional Bose-Einstein condensate confined
in an isotropic harmonic trap with a frequency of ω and
rotating at angular frequency � around the z axis, the
single-particle Hamiltonian is H = P 2

2M
+ 1

2Mω2r2 − �Lz.
Here r2 = x2 + y2, M is the mass of the particle, and Lz

is the total angular momentum in the z direction. For such a
system, Emn = �(ω + �)n + �(ω − �)m + �ω are the energy
eigenvalues, and the corresponding eigenfunctions are φnm ∝
er2/2a2

(∂x + i∂y)n(∂x − i∂y)m(e−r2/a2
), where n � 0 and

m � 0, and a =
√

�

mω
. As shown in Ref. [11], when � is large

enough, i.e., ω − � is very small, the system fills the n = 0
level or the lowest Landau level, known as the mean-field
quantum Hall regime. The wave function in this regime, for
an assembly of cold identical bosons rotating at frequency
�, can be written as a linear combination of single-particle

eigenfunctions, � = f (z)e
−r2

2a . Here f (z) is an analytical
function of z = x + iy. Thus, the zeros of f are the positions of
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the vortices, which are assumed to form an infinite lattice. For
a finite condensate, the vortex positions show small deviations
from the regular lattice, resulting in a Thomas-Fermi density
profile rather than a Gaussian [24]. As we are concerned with
the changes in the structure of the lattice, we neglect these
finite-size effects.

For a two-component Bose-Einstein condensate, each
component is described with a condensate wave function
�i , where i = 1,2. The short-range s-wave interactions and
the long-range dipole-dipole interactions are included in the
energy functional

E[�] =
∑
i=1,2

∫
d2r�∗

i H�i +
∑

i,j=1,2

gij

2

∫
d2r|�i |2|�j |2

+
∑
i=1,2

μ2
i

∫
d2r1d

2r2|�i(r1)|2V (r1 − r2)|�i(r2)|2

+μ1μ2

∫
d2r1d

2r2|�1(r1)|2V (r1 − r2)|�2(r2)|2,
(1)

where gii = gi = 4π�
2ai

M
and g12 = g21 = 4π�

2a12
M

are the s-
wave interaction constants between like and unlike atoms,
respectively, and μi’s are the magnitudes of the magnetic
dipole moment of each component. The magnetic dipole-
dipole interaction is V (r1 − r2) = μ0

4π
1

|r1−r2|3 . Here we assume
that the magnetic dipoles are parallel to each other, and
perpendicular to the line joining the centers of the two dipoles.
The densities of both components are considered to be equal.
We assume that for the s-wave interactions g1 = g2 �= g12, and
for the dipolar interactions μ1 = μ2 = μ. The wave function
of each component is normalized such that

∫
d2r|�i |2 = Ni .

For a two-component Bose gas in which both components
rotate with the same frequency, vortex lattices have the same
structure, but one is shifted with respect to another. The wave
functions for both components can be introduced by two basis
vectors and one relative displacement vector. We assume that
B1 and B2 are the basis vectors of the infinite lattice, and r0 =
cB1 + dB2 is the relative displacement of the vortex lattices in
two components. The area of the unit cell is defined to be vc =
|B1 × B2|. Since the condensate is in the mean-field quantum
Hall regime, the density |�(r)|2 can be written as a product of
a Gaussian and a function n(r) which is periodic under lattice

transformation |�(r)|2 = Ae
−r2

σ2 n(r) [11]. Here σ is related to
the number of the vortices and is given by 1

σ 2 = 1
a2 − π

vc
. The

periodic function n(r) is expanded as n(r) = 1
vc

∑
K nKeiK·r,

where Ki’s are the reciprocal lattice vectors.
The presence of |�|4 and |�1|2|�2|2 in the energy

functional leads us to define I = πσ 2
∫

d2r|�i |4 and
I12 = πσ

∫
d2r|�1|2|�2|2. In terms of Fourier coefficients,

they are given as

I =
∑
K,K′

ñKñK′e
−σ2 |K+K′ |2

4 , (2)

I12 =
∑
K,K′

ñKñK′e−iK·r0e
−σ2 |K+K′ |2

4 , (3)

ñK = nK∑
K′ nK′e

−σ2K′2
4

. (4)

In order to find the optimum vortex lattice structure, we express
nK’s in terms of the basis vectors. Introducing a complex
representation for the basis vectors, bi = (x̂ + iŷ) · Bi and
choosing B1 to lay on the x axis, the original basis vectors
can be written as B1 = b1x̂ and B2 = b1(ux̂ + vŷ), where
b2 = b1(u + iv), and the area of the unit cell becomes
vc = |B1 × B2| = b2

1v. The periodic part of the wave function
can be chosen as the Jacobi 	 function [25], which has
zeros forming a lattice, i.e., f (z) = 	(ζ,τ )eπz2/2vc , where
ζ = z/b1 and τ = b2/b1. Fourier coefficients of nK are easily

calculated as nK = (−1)m1+m2+m1m2e
−vc |K|2

8π

√
vc

2 , and vcK2 =
( 2π

v
)[(vm1)2 + (m2 − um1)2], for K = m1K1 + m2K2 with

K1 and K2 the basis vectors of the reciprocal lattice
(K1 = 2π

vc
B2 × ẑ, K2 = −2π

vc
B1 × ẑ), and m1 and m2 integers

[12]. For a large number of vortices, the expression
for I and I12 take the simple forms I = ∑

K | nK
n0

|2 and

I12 = ∑
K | nK

n0
|2 cos K · r0. The s-wave interaction energy is

Es = gρ2

πσ 2

(
I + g12

g
I12

)
, (5)

with ρ as the average density.
By following similar steps for the dipolar part of the energy

expression, we write the dipole interaction energy in terms of
the relative displacement, r = r2 − r1, and the center of mass,
2R = r1 + r2, coordinates, and then integrate with respect to
R to obtain

Ed = ρ2μ0μ
2

4πσ 2

∑
K

∣∣∣∣nK

n0

∣∣∣∣
2

(1 + cos K · r0)

[
1



− K

]
. (6)

Here we define a cutoff, i.e., 
, which is related to the thickness
of the condensate, and regularize the system near the origin.
In the limit of a large number of vortices the full interaction
energy then can be written as

Eint = ρ2μ0μ
2

4πσ 2a
[αI + βI12 − D], (7)

where D = ∑
K | nK

n0
|2Ka(1 + cos K · r0), α = 4ga

μ0μ2 + a



, and

β = 4g12a

μ0μ2 + a



.
Since the dipole-dipole interaction is the same for like and

unlike atoms, in the energy expression Eq. (7) α and β can be
interpreted as the energy contribution from the intracomponent
and the intercomponent interactions, respectively. The coeffi-
cient α contains the short-range interaction parameter g and
it governs the internal behavior of the individual components.
The coefficient β contains intercomponent coupling and it
determines the lattice offset between the two components.
Because of the long-range nature of the dipolar interaction
and its angular dependence, a cutoff is needed to regularize the
interactions [13]. For the two-dimensional droplet harmonic
trap considered here, the cutoff parameter 
 can be taken as
the width of the cloud in the narrow (ẑ) direction.

We obtain the phase diagram of the system for different
values of α and β by minimizing the energy in Eq. (7)
(see Fig. 1). We obtain seven different lattice structures as
classified by their symmetry (see Fig. 2). In three of these
phases, the vortices of both components appear at the same
points; we call these structures the overlapped lattices. In
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FIG. 1. (Color online) Phase diagram showing the lattice struc-
tures for different values of the interaction terms α and β. Here, C
corresponds to the collapse region, and IR, IS, IO, IT, OR, OT, and OS
stand for interlaced rectangular, interlaced square, interlaced oblique,
interlaced triangle, overlapped rectangular, overlapped triangle, and
overlapped square, respectively. The inset indicates the region for
overlapped square lattices.

the remaining four phases the vortices of one component
appear at the density maxima of the other component, creating
interlaced lattices. As can be expected from our definition of
β, the parameter controlling the intercomponent interaction,
these two kinds of lattices are separated roughly by the line
β = 3. The dipolar interactions can cause the system to be

|τ|c+d
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OT

OR IO

|τ|

θ

FIG. 2. Lattice structures for dipolar two-component conden-
sates. Black and gray dots correspond to vortices in the two
condensates. Lattice structures are defined in terms of aspect ratio
|τ | and lattice angle θ ; c and d determine the relative displace-
ment between the two vortex lattices. The calculations are done
assuming c = d .

unstable, which we show as the collapse region in Fig. 1.
While all four interlaced lattices have been found for the
short-range-interacting systems, the overlapped rectangular
and overlapped square lattices are stabilized in a gas with
dipolar interactions.

The detailed analysis of the different aspects of the resulting
phase diagram is given in the following points:

(i) The attractive interaction causes the condensate to
collapse for α < 1.25. The condensate collapses even for large
β values, since it can not suppress internal fluctuations of each
component.

(ii) For α > 1.25 and β < 1.25, the intercomponent
attraction is strong enough to overcome the dipolar repulsion
between unlike atoms, which results in overlapped lattices. By
increasing α, the vortex structures undergo a structural phase
transition from overlapped rectangular to overlapped square
lattice and then to overlapped triangle lattices for higher α

values.
(iii) For 1.25 < α < 3.70 and 1.25 < β < 3.70, the ratio

of these two parameters determines the relative displacement
of the two lattices. In this region, when α < β, an interlaced
rectangular lattice is preferred. On the other hand, when
α > β, the minimum energy configuration is an overlapped
triangular lattice.

(iv) When α � 3.70 and β � 3.70, only interlaced lattices
exist in the phase diagram, since the intercomponent inter-
action is not attractive in this regime. The repulsive forces
between two different species cause the density minima of
one component to move to the density maxima of the other
component. In this region, upon increasing α the structure of
the lattice changes from interlaced rectangular to interlaced
square, oblique, and finally interlaced triangular.

Adjusting the strength of the parameters α and β also
enables us to control the switching between the regime of
dominantly dipolar condensates and the regime of ordinary
two-component condensates. One can easily conclude from
Eq. (7) that for small values of α and β, the dipole-dipole
interaction is dominant, and for large values of α and β, the
contact interaction is more prominent. For large α and β, the
last term D can be ignored and lattice structures are determined
by the ratio α/β. Thus, the work reduces to the minimization
of the term J = I + β/αI12. In the case of a dipole-dominant
regime, when g = g12, a two-component gas behaves like a
single-component gas. Thus, the problem reduces exactly to
the system studied in Ref. [13] as Eint = n2μ0μ

2

2πσ 2a
[αI − D].

To demonstrate the correspondence with Refs. [12] and
[13], the phase diagrams along two different lines on the αβ

plane are shown in Fig. 3. Figure 3(a) gives the phase diagram
for fixed α and changing β that corresponds to two-component
condensate with only the short-range interactions as in [12].
Figure 3(b) shows the phase diagram along an α = β line
which corresponds to a single-component condensate with the
short-range and dipolar interactions as in Ref. [13].

For α = β, we observe the same vortex lattices obtained
for the single-component Bose gas with dipolar interactions
[see Fig. 3(b)]. However, the correspondence is not straight-
forward and requires careful examination:

(a) In the region α > 4.54, the triangular vortex lattice
is observed when the two components are considered to-
gether. The individual components separately form rectangular
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FIG. 3. The parameters indicating the type of lattice structures
as a function of interaction coefficients α and β. (a) The limit for
an ordinary two-component condensate, where α = 20. (b) The limit
for a dipolar single-component condensate, i.e., α = β. Here |τ | and
θ are the lattice parameters and c indicates the displacement of the
lattice structure of one species with respect to the other.

lattices but they are interlaced such that the combined lattice is
triangular. It is easy to observe this in Fig. 2 for IR (interlaced
rectangular) lattices.

(b) In the region 4.1 < α < 4.54, the vortices of the
two-component condensate form interlaced square lattices,
but the combined lattice is again square with a smaller lattice
constant.

(c) In the region 3.73 < α < 4.1, the two-component
gas forms interlaced oblique lattices but the combined lat-
tice is rectangular, regardless of the angle of the oblique
lattices.

(d) In the region 1.12 < α < 3.73, the two components
form overlapped lattices which both are identical to the

combined lattice. The combined lattice goes through structural
phase transitions in accordance with Ref. [13].

(e) In the region α < 1.12, the condensate collapses.
Compared to the short-range-interacting gas, two new

lattice structures, overlapped square and overlapped rectan-
gular, are stabilized as a result of dipolar interactions. As the
correspondence to the single-component dipolar gas reveals,
these structures are preferred as they maximize the attractive
interaction at higher Fourier components of the real space
density. A two-component gas with short-range interactions
can take advantage of the fourfold rotational symmetry only
when the two components repel each other, while the long-
range dipolar interaction stabilizes the square lattice even for
a single-component gas. The phase diagram shows that these
two paths of lowering the energy barrier to fourfold symmetry
are not mutually exclusive and square vortex lattices can exist
for which the two components are locally attractive. Still, the
overlapped square phase is very fragile and covers a relatively
small area in the phase diagram.

In this Brief Report, we calculated the phase diagram of
vortex lattice structures for a two-component BEC in the
presence of dipolar interactions. Our results reduce to the
ordinary two-component and dipolar single-component vortex
lattices in the appropriate limits. Two more lattice structures,
the overlapped square and overlapped rectangular lattices, are
obtained as a result of dipolar interactions. Experimental ob-
servation of these two lattice types would be a clear indication
of dominant dipolar interactions in a cold atomic gas.
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