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Coherence trapping and information backflow in dephasing qubits
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We study the interplay between coherence trapping, information backflow and the form of the reservoir
spectral density for dephasing qubits. We show that stationary coherence is maximized when the qubit undergoes
non-Markovian dynamics, and we elucidate the different roles played by the low- and high-frequency parts
of the environmental spectrum. We show that the low frequencies fully determine the presence or absence of
information backflow while the high frequencies dictate the maximal amount of coherence trapping.
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The ability to manipulate coherently qubit systems both
individually and collectively is one of the key prerequisites of
quantum technologies. This has been achieved in a number
of physical systems including laser-cooled trapped ions,
atoms in optical lattices, and nitrogen-vacancy centers in
diamonds and quantum dots [1–4]. Generally, due to the
interaction with the environment, the qubits will be subjected
to decoherence and dissipation phenomena whose specific
time scales and characteristics strongly depend on the physical
context considered. In all of the systems above, there is a clear
distinction between the decoherence (dephasing) time scale T2

and the dissipation (heating) time scale T1, the latter one being
considerably longer than the former one. This means that the
major limiting source of environmental noise in such systems
can be described, for times t � T1, as pure dephasing.

Long-lasting electronic coherences in biological surround-
ings and the formation of steady-state entanglement in
coherently coupled dimer systems have been shown to be
crucially linked to the presence of non-Markovian noise [5,6].
Moreover, non-Markovian environments have been found to
be an important resource in fundamental quantum processes
such as quantum metrology [7], quantum key distribution [8],
teleportation [9], and quantum communication [10].

In this paper we investigate dephasing dynamics and
explore the interplay between the ability of a single qubit
to partly retain coherences in the long time limit, that is,
the phenomenon of coherence trapping, and the presence of
information backflow due to reservoir memory effects. In
the spirit of reservoir engineering we consider the following
questions: What are the conditions that optimize stationary
coherence of a dephasing qubit? Are memory effects able
to improve the robustness of the qubits to environmental
noise? How does the form of the reservoir spectral density
affect such robustness? Our aim is to better understand the
physical mechanisms leading to coherence trapping in a
paradigmatic open quantum system model [11–13], by linking
this phenomenon to properties such as reservoir memory and
the form of the spectral density function. As the latter quantity
is experimentally modifiable (see, e.g., Refs. [11–16]), this
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study holds significance in the design of noise-robust quantum-
enhanced devices.

The model. Let us consider an exactly solvable model of
pure dephasing (setting � = 1) [17]:

H = ω0σz +
∑

k

ωka
†
kak +

∑
k

σz(gkak + g∗
k a

†
k),

where ω0 is the qubit frequency, ωk is the frequency of the
reservoir modes, ak (a†

k) is the annihilation (creation) operator,
and gk is the coupling constant between each reservoir
mode and the qubit. In the continuum limit

∑
k |gk|2 →∫

dωJ (ω)δ(ωk − ω), where J (ω) is the reservoir spectral
density. It is worth noticing that the interaction Hamiltonian
commutes with the qubit Hamiltonian but not with the field
Hamiltonian. Hence, due to the finite interaction energy, the
state of the field evolves even if initially it was at zero temper-
ature. This in turn causes the (pure) decoherence of the qubit.

The evolution of the coherence of a single qubit is given
by ρij (t) = e−�(t)ρij (0), i �= j , while the diagonal elements
remain invariant under the effect of the environmental noise
[11–13]. The dephasing factor is

�(t) = 2
∫ ∞

0
dω g(ω,T )[1 − cos(ωt)],

where

g(ω,T ) = J (ω)

ω2
coth

(
ω

2kBT

)
, (1)

where T is the temperature of the environment which is
assumed to be in a thermal state. Note that the g(ω,T ) func-
tions, in the limiting cases of zero temperature and high tem-
peratures, are connected through the relation g(ω,high-T ) =
2kBT g(ω,0)/ω.

The details of the qubit dynamics are fully dictated
by the spectral density function characterizing the system-
environment interaction. Depending of the physical realization
of the purely dephasing model the spectral density function can
take several different forms, and its specific structure can, in
some cases, be modified by reservoir engineering techniques
[18]. This implies a way to control the dynamical features of
the qubit in a way that does not involve direct interaction with
the qubit, like one would do if using, for example, dynamical
decoupling or bang-bang control techniques [19,20]. In the
following we study how different properties of the spectral
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density function are related to dynamical features such as
coherence trapping and backflow of information.

The spectral density. A common class of spectral density
functions extensively used in the literature is the family of
Ohmic spectra [21],

J (ω) = ωs

ωs−1
c

f (ω,ωc), (2)

parametrized by a real positive number, s. By changing the
s parameter in Eq. (2), it is possible to go from sub-Ohmic
reservoirs (s < 1) to Ohmic (s = 1) and super-Ohmic (s > 1)
reservoirs, respectively, by controlling the strength of interac-
tion of the low-frequency part of the spectrum. We stress that
such engineering of the Ohmicity of the spectrum is possible,
e.g., when simulating the dephasing model in trapped ultracold
atoms, as demonstrated in Ref. [16]. The high-frequency
part of the spectrum, instead, is controlled by the cutoff
function f (ω,ωc), with ωc being the cutoff frequency [21]. By
definition, the cutoff function does not affect the low-frequency
part of the spectrum, i.e., J (ω) � ωs/ωs−1

c , for ω/ωc � 1,
but it suppresses the high-frequency contribution such that
J (ω) � 0 for ω/ωc � 1.

For the sake of concreteness we compare two types of
functions, both of exponential form but featuring a softer or
harder cutoff with respect to one another. Such softer and
harder cutoff functions are typical, e.g., of dephasing quantum
dots [15], and they take the forms

fsoft(ω,ωc) = e−ω/ωc and fhard(ω,ωc) = e−(ω/ωc)2
, (3)

respectively. A comparison between the two will elucidate the
role of the high-frequency modes in the qubit dynamics; for a
given cutoff frequency ωc, the harder cutoff function strongly
suppresses the high-frequency modes in comparison to the
softer cutoff function.

Coherence trapping. Markovian models of dephasing are
characterized by exponential decay of the qubit coherences,
i.e., ρij (t) = e−λtρij (0), where λ is a constant decay factor,
hence predicting vanishing coherences in the long time limit.
The situation is different, however, for the exact dephasing
model here considered. Depending on the specific form of
the spectral density, the decoherence factor �(t) can either
diverge asymptotically or reach a positive nonzero value. In
the former case no coherences survive, while in the latter case
qubit dephasing will stop after a finite time, therefore leading
to coherence trapping.

The asymptotic divergence of the decoherence factor �(t)
depends only on the value of ωg(ω,T ) in the limit ω → 0 [22].
More precisely, for t → ∞, �(t) diverges when ωg(ω,T )
diverges in the origin. On the contrary �(t) has a finite
asymptotic value when ωg(ω,T ) vanishes in the origin [23].
This behavior is independent of the specific form of the cutoff
function, provided that it is finite at ω = 0 and it is sufficiently
well behaved. To appreciate this point, it is useful to look at
the properties of the dephasing rate γ (t), defined as the time
derivative of �(t):

γ (t) =
∫

dωJ (ω) coth[ω/2kBT ] sin(ωt)/ω. (4)

With the Ohmic class of spectral density functions it is
straightforward to check that, for any temperature T , ωg(ω,T )

FIG. 1. (Color online) Temperature dependence T̃ of (a) sopt and
(b) the stationary coherences ρ̃ij (∞) for the softer (blue solid line)
and harder (red dotted line) cutoff functions. Here, T̃ = 2kBT /ωc is
a dimensionless temperature.

diverges in the origin for s � 1 and that the dephasing rate has
a finite limit, limt→∞ γ (t) = λ > 0. In this limit the dephasing
is effectively Markovian and all coherence is lost.

On the other hand, for s > 1, the integrand of the dephasing
rate is sufficiently regular to allow us to approximate the
long time behavior as γ (t → ∞) ≈ J (0) = 0, where we have
used the fact that limt→∞ sin(ωt)/ω = πδ(ω). This means that
the dephasing rate, for these values of s, converges to zero,
stopping dephasing and hence causing coherence trapping.
While the specific form of the cutoff function does not affect
the presence or absence of coherence trapping, as we will see
in the following, the weight of the high-frequency part of the
spectrum does influence the value of the stationary coherences
in the case when they are present.

We now explore the value of the Ohmicity parameter
leading to the maximum stationary coherences for s > 1(2)
in the zero (high)-T temperature regimes. Throughout, we
define stationary coherence in terms of the initial state, i.e.,
ρ̃ij (∞) = ρij (∞)/ρij (0). For the softer cutoff function the
stationary coherences take a simple analytical expression in
the zero-T and high-T limits, ρ̃ij (∞) = e−2
(s−1) (s � 1) and
ρ̃ij (∞) = e−2T̃ 
(s−2) (s � 2), respectively, with 
(x) being the
Euler Gamma function. Here we have defined a dimensionless
temperature, T̃ = 2kBT /ωc. From these expressions it is
easy to derive the values of the Ohmicity parameter sopt

maximizing the stationary coherences: sopt � 2.46 for zero
T and sopt � 3.46 for high T . On the other hand, for the harder
cutoff function, in the zero-T and high-T limits, ρ̃ij (∞) =
e−
( 1

2 (−1+s)) (s � 1) and ρ̃ij (∞) = e−T̃ 
(−1+ s
2 ) (s � 2). In this

case, sopt � 3.92 for zero T and sopt � 4.92 for high T . In
general both sopt and the maximum stationary coherence will
depend on temperature as shown in Figs. 1(a) and 1(b). As
temperature increases, there is a sharp increase in sopt as it
converges to a stationary value for high temperatures. In the
long time limit, the coherences are increasingly destroyed as
temperature is increased.

In Fig. 2 we compare the stationary coherences as a function
of s, in the zero-T case, for the softer and harder cutoffs.
The figure clearly shows that the harder cutoff function leads
to a more efficient coherence trapping as the values of the
stationary coherences are higher than those obtained for the
softer cutoff, for any value of s. This can be understood noting
that the qubit interacts with fewer reservoir modes in the harder
cutoff case, mitigating the overall effect of dephasing.
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FIG. 2. (Color online) The stationary coherences ρ̃ij (∞) as a
function of the Ohmicity parameter s for the softer (blue solid line)
and harder (red dotted line) cutoff functions. Here we consider the
system at zero temperature.

Information backflow. The dynamics of a qubit interacting
with a purely dephasing environment can be characterized
by looking at the nonmonotonic behavior of certain quantities
and defining the amount of accessible information on the qubit
when it is subjected to dephasing for a certain time interval, t .
A recently introduced quantifier of information backflow (i.e.,
information flowing from the environment back to the system)
is based on the time dependence of the quantum channel
capacity [10]. This quantity gives a bound on the maximum
rate at which quantum information can be reliably transmitted
along a noisy quantum channel, and it is therefore of key impor-
tance in quantum communication protocols. In the absence of
reservoir memory effects (Markovian dynamics) the quantum
channel capacity monotonically decreases in time due to the
presence of dephasing noise. However, reservoir memory
effects may lead to a nonmonotonic behavior of the quantum
channel capacity or, equivalently, of the accessible information
on the system. It is worth mentioning that, for the system
here considered, the non-Markovianity measured in terms of
partial increase of the quantum channel capacity coincides
with previously introduced measures of non-Markovianity
[24,25]. More precisely, while the numerical values may
change, the Markovian to non-Markovian crossover is the
same and coincides with the divisibility or nondivisibility of
the dynamical map. This is, in turn, reflected as monotonic or
nonmonotonic behavior of the decoherence factor �(t).

FIG. 3. (Color online) The non-Markovianity measure NQ

(green solid line) compared with the stationary coherences ρ̃ij (∞)
for (a) the softer cutoff function (blue dotted line) and (b) the
harder cutoff function (red dotted line) as a function of the Ohmicity
parameter s. Note that both quantities are normalized to unity for
easier comparison.

To formally quantify the memory effects associated with the
quantum channel capacity Q(φt ), we calculate the following
integral:

NQ =
∫

dQ(φt )
dt

>0

dQ(φt )

dt
dt. (5)

With knowledge of the optimal qubit state and further
simplifications the measure is analytical, encompassing the
intervals t ∈ (ai,bi) of information backflow:

NQ =
∑

i

Q(bi) − Q(ai), (6)

where

Q(t) = 1 − H2

(
1 + e−�(t)

2

)
, (7)

with H2(·) being the binary Shannon entropy. Moreover, it
is straightforward to find the times t ∈ (ai,bi) encapsulating
nonmonotonic intervals of �(t), i.e., times when d�(t)

dt
= 0.

The necessary and sufficient conditions on the form of the
spectrum to induce non-Markovian dynamics in the qubit,
derived in Ref. [22] for the exponential softer cutoff, are
independent of the form of the cutoff function as long as
it is monotonically decaying for ω → ∞. To understand
this we recall that, for the Ohmic class, the necessary and
sufficient condition for non-Markovianity coincides with the
nonconvexity of g(ω,T ). It is easy to study the change of
convexity in the two limiting cases of zero and high T . In the
zero-T case, e.g., g(ω) ∝ ωs−2f (ω,ωc). It can be immediately
noticed that a change of convexity in this case happens when
passing from s < 2, for which g(ω) diverges in the origin, to
s > 2, for which g(ω) vanishes in the origin, independently
of the specific form of the monotonically decaying f (ω,ωc).
Exactly the same reasoning holds for the high-T case, with
the critical value now being s = 3. Finally, the generic-T case
interpolates between the two. Hence we can conclude that the
information backflow depends on both s and T but not on the
form of the cutoff function (see Fig. 3). Stated another way, it
is the low-frequency part of the spectrum that influences the
presence or absence of information backflow.

Conclusions. We have examined the dependence of the
stationary coherences and the occurrence of information
backflow on the specific form of the spectral density function
associated with the environment. The low-frequency part of the
spectrum rules both the occurrence of information backflow
and the occurrence of coherence trapping, independently of
the form of the cutoff function. On the other hand, the
high-frequency part of the spectrum, i.e., the form of the cutoff
function (softer vs harder) rules the final value of the stationary
coherences, when they exist.

For the dephasing model considered in this article, we
demonstrate two important features of non-Markovian dy-
namics. On one hand we show the existence of stationary
coherences originating from the vanishing of ωg(ω) in the
limit ω → 0 when s > 1, and on the other hand, we show
the information backflow associated with the nonconvexity of
g(ω) when s > 2. Stationary coherences are not dependent
on information backflow but rather are associated with the
failure of the Markov approximation which predicts vanishing
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coherences for long times. As coherence trapping is not
consistent with a simple Markovian dynamical description,
we can classify it as a non-Markovian phenomenon. The
maximum stationary coherence is achieved for s > 2, i.e.,
in the non-Markovian region associated with a reversal of

information from the environment to the system. Further, one
can see from Fig. 2, that only when s > 2 do the values of the
stationary coherences for the softer and harder cutoff depart
from each other as a result of entering into the non-Markovian
regime.
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