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Accelerating beam propagation in refractive-index potentials
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We study the dynamics of spatially accelerating beams impinging on refractive-index potentials. We concentrate
our attention to the particular case of Airy-type optical waves that are reflected and transmitted by two generic
classes of potentials. These are (a) localized potentials whose index contrast reduces to zero outside a specific
region and (b) smooth-interface sigmoid-type potentials that take different constant values outside a bounded
region. We find analytic expressions for the beam dynamics for particular types of potentials which are in excellent
agreement with the numerical simulations. Our results show that, in general, the parabolic trajectory of the Airy
wave is not maintained by the transmitted and reflected waves. An exception is made in the case of reflection from
piecewise linear potentials, where the reflected wave follows a parabolic trajectory that is, in general, different
from the incident.
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I. INTRODUCTION

The study of curved and accelerated waves has attracted
a lot of attention over the past years [1]. This interest was
first triggered by the theoretical [2] and experimental [3] study
on Airy beams, where it was demonstrated that exponentially
truncated Airy beams can be constructed by applying a Fourier
transform to a Gaussian beam with a cubic phase. Within
the context of quantum mechanics, the Airy wave was first
found to be a solution of the potential free Schrödinger
equation [4]. The Airy function can be considered as a basic
prototype in catastrophe theory that describes the fold-type
catastrophe [5]. It is worth pointing out that the Airy wave
is the only diffraction-free localized solution of the 1 + 1-
dimensional (1 + 1D) Schrödinger equation. Furthermore,
its trajectory bends and follows a parabola. Curved beams
are not limited to following parabolic trajectories but can
also follow arbitrary convex trajectories, by “sacrificing” their
diffraction-free properties [6–8].

Since 2007, several different configurations and applica-
tions have been found for such curved beams. These include
filamentation [9], particle manipulation [10,11], microma-
chining [12], and Airy plasmons [13–15]. In higher dimen-
sions paraxial accelerating beams have also been studied.
In particular 2 + 1D curved diffraction-free beams can
exist as superposition of Airy waves [2,3] or in the form
of parabolic beams [16]. Abruptly autofocusing waves are
radially symmetric Airy beams whose maximum intensity
profile exhibits an abrupt peak at the focus [17]. Such beams
have been utilized for ablation [18], particle manipulation
[11], and filamentation [19]. Spatiotemporal curved beams
have been contracted in the form of optical light bullets [20].
Nonparaxial configurations have also been studied and have
the advantage that the transverse acceleration of the beams
can be significantly increased [21–23]. In addition, light can
follow curved trajectories in periodic array configurations by
utilizing the Floquet structure of the system [24–27]. Besides
optics, curved and accelerated waves have been considered
in different settings such as in electron beams [28], in matter
waves [29], and in antenna arrays [30].
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Up to now most of the studies on Airy wave have been
limited to uniform media. Considering nonuniform index
configurations it is known that when an Airy wave propagates
in a medium with a transversely linear index gradient (x
direction) which varies with the propagation distance z

[i.e., V = xf (z)], then the dyanamics are exact solvable.
Specifically, the Airy wave can follow trajectories that are
different from the parabolic, depending on the particular choice
of f (z) [4,31]. Furthermore, and in connection to this study,
reflection and refraction of Airy beams at the interface between
two dielectric media was investigated in [32]. The nonlinear
problem was also studied numerically by solving the nonlinear
Helmholtz equation [33]. However, in these works [32,33] the
study is limited to abrupt interfaces between two different
media.

In this paper, we study the scattering problem of an Airy
beam impinging on refractive index potentials. In particular,
we investigate two different generic classes of potentials,
which are (a) spatially localized potentials whose index
contrast goes to zero outside a bounded region and (b) sigmoid
potentials that have different constant indices outside an
intermediate region where the index changes smoothly. We
show that in contrast to the case of abrupt dielectric interfaces
[32], where the reflected and refracted waves have the same
structure as the incident Airy wave, for smoothly varying
potentials the dynamics are more complicated. In particular,
we find that, in general, both the reflected and refracted beams
do not follow parabolic trajectories and thus do not have the
functional form of an Airy wave. An exception is the case of a
piecewise linear potential where the reflected beam maintains
the structure of the Airy wave but with reduced acceleration
(and thus larger width). Interestingly enough, in this latter case
the trajectory of the reflected Airy wave can be controlled by
tuning the index gradient.

II. CURVED BEAMS IMPINGING ON INDEX POTENTIALS

We start our analysis by using a differential approach based
on the normalized paraxial equation,

iψz + (1/2)ψxx − V (x,z)ψ = 0, (1)
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where ψ is the amplitude of the optical wave, x is the transverse
and z is the propagation coordinate, and the potential V (x,z)
is inversely proportional to the refractive-index modulations.
In addition, we define as ξ the transverse spatial coordinate x

at the input plane z = 0. We decompose the optical wave into
amplitude and phase ψ = ρ1/2eiφ leading to

∂ρ

∂z
+ ∂(ρu)

∂x
= 0,

∂u

∂z
+ u

∂u

∂x
= −∂V

∂x
, (2)

where u = φx , and we have ignored the so-called “quantum
pressure term” (∂x[(2ρxxρ − ρ2

x )/(8ρ2)]) from the right-hand
side of the second part of Eqs. (2) that accounts for diffraction.
Thus Eqs. (2) provide the ray optics approximation of the
paraxial equation. If the potential is z invariant, then the second
part in Eqs. (2) can be reduced to dx/dz = u along with the
conservation law

E(ξ ) = V (x) + u2

2
(3)

that can be considered as the sum of the “potential energy”
V (x) and “kinetic energy” u2/2. Equation (3) represents
the conservation of the momentum along the propagation
coordinate. In addition, the first part of Eqs. (2) (conservation
of power) reduces to dzρ = −ρ∂xu.

We can utilize different, but equivalent, approaches to
obtain the beam trajectories. For example, by taking the partial
derivative of the second part of Eqs. (2) with respect to
x we obtain a Riccati type equation for ux(x(z),z) which
can be linearized via ux(x(z),z) = g′(z)/g(z) to give g′′ +
Vxx(x(z),z)g = 0. Solving for initial conditions that satisfy
g′(0; ξ ) = g(0; ξ )ux(ξ ) we can determine the caustic distance
zc(ξ ) from the requirement g(zc,ξ ) = 0. Interestingly enough
for a medium with a linear transverse index modulation,
i.e., V (x,z) = xG(z), we have that Vxx = 0 and thus the
caustic distance zc remains unaffected by the presence of the
potential. Such a potential can be eliminated from the paraxial
equation via a simple transformation. Thus solutions of the
potential-free paraxial equations are mapped into solutions
of the paraxial equation with a z-dependent linear index
potential. This mapping in the case of the Airy function has
been discussed in the literature [4,31]. An alternative method
for the derivation of the caustics is to utilize the implicit
function theorem and set Fξ (x,z,ξ ) = 0, where F (x,z,ξ ) = 0
represents the ray equation.

The dynamics of rays and caustics in the presence of
potentials can be derived by integrating dx/dz = u using the
conservation law of Eq. (3) that leads to

z =
∫ x

ξ

dx

u(x; ξ )
, (4)

where u(x; ξ ) = √
2[E(ξ ) − V (x)] is the transverse spatial

velocity of the ray and ξ is the initial transverse coordinate.
In the case of reflection, we can determine the transverse
coordinate where each ray is going to get reflected xr (ξ ) by
solving the algebraic equation

E(ξ ) = V (xr ).

The dynamics of the reflected rays are then given by

z =
∫ xr

ξ

dx

u(x)
+

∫ xr

x

dx

u(x)
, x < xr . (5)

The case of a curved beam propagating in a homogeneous
medium has been well examined [6–8]. Specifically, for a
power-law input phase,

φ(z = 0) = − (−γ ξ )b

γ b
, (6)

we have that u(z = 0) = (−γ ξ )b−1 for ξ < 0 where, for a
power-law trajectory, 1 < b < 2. Substituting Eq. (6) to Eq. (4)
and after some algebraic calculations, we can derive the beam
trajectory

xc = (2 − b)[γ (b − 1)]
b−1
2−b z

1
2−b
c , (7)

where, for clarity, we use the notation xc,zc for the caustic
coordinates. When b = 3/2 the resulting solution takes the
form of the Airy beam [2], which is the only localized
diffraction-free solution of the paraxial equation in one dimen-
sion. The trajectory of the Airy beam is parabolic x = γ (z/2)2

and its amplitude profile decays as ρ1/2 ∼ (−ξ )−1/2.

III. LOCALIZED POTENTIALS

In this section, we are going to consider the dynamics of
Airy beams impinging on transversely localized, z-invariant
potentials such that V (x) = 0 as x → ±∞. Without loss
of generality, we assume that the beam initially moves
from the left to the right. We can distinguish two different
cases according to which (1) the ray has enough transverse
momentum to be transmitted E > max V and (2) the ray gets
reflected by the potential 0 < E < max V .

For the transmitted rays we can directly integrate Eq. (4) for
all z > 0. Furthermore, assuming that the potential is compact
[V (x) = 0 outside some bounded region x1 < x < x2] or that
V (x) is small enough and fast decaying outside (x1,x2), then
we can quantify the effect of the potential to the beam trajectory
for x > x2. In particular, for x < x1 the ray equation is x =
ξ + u0(ξ )z [where we define u0(ξ ) = u(ξ,z = 0)], whereas for
x > x2 we obtain

x = ξ + F (ξ ) + u0(ξ )z, (8)

where

F [E(ξ ); V ] =
∫ ∞

−∞

[
1 − u0(ξ )

u(x; ξ )

]
dx. (9)

In the above integral we have extended the limits of integration
to the real line. We see that F is a function of E(ξ ) but is also
a functional of the index potential V (x). We also note that the
transverse spatial velocity of each ray outside the potential is
the same. Thus before and after the potential each ray is parallel
to itself and is shifted by F (ξ ). Specifically, if the potential
V (x) is positive (the index contrast is negative) the velocity
of the ray u(x; ξ ) decreases as it passes through the potential
and thus F is negative. On the other hand, if V (x) � 0 then
F � 0. An alternative form for the transmitted ray trajectories
is

x = x2 + u0(ξ )[z − z2(ξ )], z > z2(z), (10)
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where z2 = (x2 − ξ )/u0(ξ ) − F/u0(ξ ) is the sum of the
propagation length required for the ray to move from ξ to
x2 with transverse spatial velocity u0(ξ ) plus the difference in
the propagation length due to the potential. As a consequence
of the potential mediated ray shifting the trajectory of the
transmitted beam is going to be modified as compared to the
case without potential. The general expression for the beam
trajectory for x > x2 is then given by

zc = −F ′(ξ ) + 1

u′
0(ξ )

, xc = ξ + F (ξ ) − u0(ξ )[1 + F ′(ξ )]

u′
0(ξ )

,

(11)

where, for an Airy incident, u0/u
′
0 = 2ξ .

The trajectory of the reflected rays can be determined by
integrating Eq. (5). In particular, we have

x = 2x1 − ξ + F (ξ ) − u0(ξ )z,

where

F [ξ ; V ] =
∫ xr (ξ )

x1

2u0(ξ )dx

u(x; ξ )
.

We can also write the above equation as

x = x1 − u0(ξ )[z − z2(ξ )], z > z2(ξ ),

where

z2(ξ ) = x1 − ξ

u0(ξ )
+ F (ξ )

u0(ξ )

is the propagation length required for the beam to go from ξ

to xr , and reflect back to x1.
We are now going to consider the particular case of the

following squared hyperbolic secant potential:

V (x) = α sech2 x − x0

β
, (12)

which is centered at x = x0, has amplitude α, and width
proportional to β. For convenience we introduce the transverse
coordinates

y = (x − x0)/β, η = (ξ − x0)/β. (13)

By direct integration we find that the rays that get transmitted
satisfy

y = arcsinh

{
A sinh

[
arcsinh

sinh η

A
+

√
2E(ξ )z

β

]}
, (14)

where the above equation holds for all z > 0, and

A(ξ ) =
(

1 − α

E(ξ )

)1/2

. (15)

For Airy waves and assuming that the index contrast is
almost zero at the initial transverse coordinate ξ we have
that E(ξ ) = −γ ξ/2. Furthermore, from Eq. (9) we can find
that F [E(ξ ); V ] = 2β log A, where log denotes the natural
logarithm. Thus for x > x2 ≈ x0 + 2β and z > z2 ≈ (x2 −
ξ )/

√
2E(ξ ) − 2β log A/

√
2E(ξ ), we can simplify Eq. (14)

to take the form

x = ξ +
√

2E(ξ )z + 2β log A. (16)

The transmitted beam trajectory can be computed analyt-
ically from Eq. (14); however, the full expressions are rather
complicated and we prefer not to present them. Instead, the
caustic formulas are significantly simplified for the transmitted
rays z � z2, in which case we can utilize the asymptotic ray
Eq. (16) to find

zc = 2

√
−ξ

γ

(
1 − 2αβ

ξ (γ ξ + 2α)

)
, (17)

along with

xc = −ξ + 4αβ

γ ξ + 2α
+ β log

(
1 + 2α

γ ξ

)
. (18)

In Eqs. (17) and (18), the first terms on the right-hand side
describe the Airy beam trajectory, while the remaining terms
are due to the distortion caused by the hyperbolic secant
potential. Thus the transmitted beam trajectory is not parabolic
and cannot be described by an Airy function. We note that in
Eqs. (17) and (18) the parabolic trajectory is recovered only
if the conditions E(ξ ) � α and E(ξ ) � √

αβ/γ are satisfied.
However, this is a trivial reduction that describes the case
where the potential is weak as compared to the transverse
momentum of the ray.

Rays that do not have enough transverse momentum [α >

E(ξ )] are reflected by the potential. Integrating Eq. (4) we find
that before the reflection (z < zr ) the ray equation satisfies

y = −arcsinh

{
A cosh

[
arccosh

− sinh η

A
−

√
2E(ξ )z

β

]}
,

(19)

where

A(ξ ) =
(

α

E(ξ )
− 1

)1/2

, (20)

and the reflection coordinates are given by

yr = −arcsinhA, (21)

zr = β√
2E(ξ )

arccosh
− sinh η

A
. (22)

Furthermore, the reflected rays (z > zr ) satisfy

y = −arcsinh

{
A cosh

[√
2E(ξ )(z − zr )

β

]}
. (23)

In Fig. 1 we see typical dynamics of an Airy beam
impinging on a squared hyperbolic secant potential as given by
Eq. (12). We note that all our numerical simulations on Eq. (1)
were performed using a fourth-order split-step Fourier method
for the diffraction and the potential terms. In Figs. 1(a) and
1(b) the potential is negative (α < 0) meaning that the index
is increased towards the center of the potential. As a result the
rays and the beam trajectory accelerate as they approach the
center of the potential and then they decelerate to recover their
initial velocity. Thus the beam trajectory is shifted to the right
as compared to the potential-free dynamics of an Airy beam. In
Figs. 1(c) and 1(d) the refractive index decreases towards the
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FIG. 1. (Color online) Dynamics of Airy beams impinging to a
squared hyperbolic secant index profile given by Eq. (12). On the
left we see the asymptotic ray dynamics (blue lines) and the caustic
trajectories (thick red lines). On the right we see the corresponding
direct simulations and the caustic lines in green. The parameters are
as follows: in the top row α = −8, β = 1, and x0 = 4, in the middle
row α = 5, β = 1, and x0 = 4, and in the bottom row α = 20, β = 1,
and x0 = 0.

center of the potential (α > 0). Thus the rays decelerate as they
approach the index minimum, and only those that have enough
transverse momentum will get transmitted. The trajectory of
the transmitted beam (fold caustic) is shifted to the left as
compared to the potential-free Airy beam trajectory, consists
of both transmitted and reflected rays, and is given by Eqs. (17)
and (18) for x > x2. The reflected rays form an additional
caustic which is of the cusp type. It is interesting to point out
that the same rays that get reflected contribute to both the fold
and the cusp caustics. In Figs. 1(e) and 1(f) we have chosen the
potential height α and the extent of the Airy beam such that
the whole beam gets reflected. The caustic structure reveals
the creation of a second cusp (the lower one), as compared to
Figs. 1(c) and 1(d). The left branch of the lower cusp is gen-
erated from rays that are reflected before they form a caustic.

We have also tested different types of potentials with similar
results. For example, we can create a localized potential by
using piecewise linear functions. The reflection properties of
these potentials are identical to those discussed in the next

section. The transmitted beam also gets deformed as compared
to the incident parabolic trajectory.

IV. SIGMOID POTENTIALS

The second class of potential that we are going to analyze
has the form of sigmoid functions (functions that take different
constant values as x → ±∞ and in between they have a
smooth enough and monotonic profile). It is instructive to
consider such a generic potential V (x) which is constant
outside (x1,x2) with V (x) = V1 for x < x1 and V (x) = V2 for
x > x2. In between we can assume that V (x) is a continuous
and monotonic function that connects the two states. From the
conservation law given by Eq. (3) we find that the transmitted
wave has spatial velocity

u2(ξ ) =
√

u2
0(ξ ) + 2(V1 − V2), x > x2.

By integration of Eq. (4) we obtain the ray equation

x = x2 − u2(ξ )

u0(ξ )
(x2 − ξ ) + F (ξ ; V ) + u2(ξ )z, (24)

where

F [ξ ; V ] =
∫ x2

x1

u2(ξ )[u(x; ξ ) − u0(ξ )]

u0(ξ )u(x; ξ )
dx.

Note that we can also write Eq. (24) in the form

x = x2 + u2(ξ )[z − z2(ξ )],

where

z2(ξ ) = x2 − ξ

u0(ξ )
− F (ξ ; V )

u2(ξ )
.

The transmitted beam trajectory (for z > z2) is then given by

zc = z2 + u2z
′
2

u′
2

, xc = x2 + u2
2z

′
2

u′
2

.

In many relevant cases the potential does not become exactly
V1 and V2 outside a bounded region (x1,x2) but asymptotically
reaches these values at ±∞. In these cases, we can still utilize
the above expressions by choosing approximate values for x1

and x2 and modifying the functional form F to

F =
∫ ∞

−∞

(
u2(ξ )

u(x; ξ )
− H (x2 − x)u2(ξ )

u0(ξ )
− H (x − x2)

)
dx.

On the other hand, for the reflected rays we can follow the
exact same analysis as in previous section.

Let us now consider the particular example of a piecewise
linear potential of the form

V (x) =

⎧⎪⎨
⎪⎩

−α, x − x0 < −β,

α(x − x0)/β, −β < x − x0 < β,

α, x − x0 > β,

(25)

where 2β > 0 is the extent of the potential, α is the potential
contrast, and x0 is the center of the potential. Using the
normalized coordinates of Eqs. (13) we can express the
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potential as

V (y) =

⎧⎪⎨
⎪⎩

−α, y < −1,

αy, −1 < y < 1,

α, y > 1.

Up to y = −1 (or x = x1 = x0 − β) the rays are not
affected by the presence of the potential and thus y = η +√−γ ξz/β. Setting y = −1, we find that the aforementioned
equations hold up to z = z1, where

z1 = (x0 − ξ − β)/
√

−γ ξ. (26)

At z = z1 the rays enter the area with the linear index gradient
that is causing a parabolic bending of the rays,

y = x − x0

β
= −1 +

√−γ ξ (z − z1)

β
− α(z − z1)2

2β2
. (27)

At this point we have to distinguish two different scenarios
depending on the initial transverse momentum of the ray.
In particular, if the transverse momentum is large enough
[E(ξ ) > V (∞) or −γ ξ − 4α > 0] the rays get transmitted.

Thus Eq. (27) holds up to y = 1 and z = z2, where

z2 = z1 + β

α
[
√

−γ ξ −
√

−γ ξ − 4α]. (28)

Finally, for z > z2 the ray equation becomes linear again,

y = 1 +
√−γ ξ − 4α(z − z2)

β
. (29)

On the other hand, if the rays do not have enough momentum
to get transmitted through the potential, then they follow a
parabolic trajectory and eventually they return to y = −1 at

z2 = z1 + 2β
√−γ ξ

α
.

For z > z2 the ray equation is given by

y = −1 −
√−γ ξ (z − z2)

β
. (30)

The next step is to determine the beam trajectory of an
incident Airy-type wave. For z < z1 the beam trajectory is
parabolic with xc = γ z2

c/4. Then, inside the constant index
gradient medium (−1 < y < 1 and z1 < z < z2) its trajectory
[xc(ξ ),zc(ξ )] is determined by the equations

zc = αx2
1 − ξ 2(α + 2βγ )√−γ ξ [α(ξ + x1) + βγ ξ ]

, (31)

xc = βγ ξ
[
2α

(
x2

1 − ξ 2
) − 2βγ ξ 2

] + α(ξ + x1)2(βγ ξ + 2αx1)

2[α(ξ + x1) + βγ ξ ]2
. (32)

For the rays that get transmitted y > 1 (and z > z2), we have that

zc = 2{2α2(x1 + ξ ) + αγ ξ 2 + βγ ξ [
√

γ ξ (4α + γ ξ ) + γ ξ + 2α]}
α(−γ ξ )3/2

, (33)

xc = 5β + x0 + βγ ξ

α
−

(
4α + γ ξ

γ ξ

)3/2
α(ξ + x1) + βγ ξ

α
. (34)

Finally, for the reflected rays (y < −1 and z > z2) the beam
trajectory is explicitly given by

xc = 2(x0 − β) − αγ z2
c

4(α + 2βγ )
. (35)

It is interesting to point out that the reflected beam maintains
the form of an Airy wave, since its trajectory is parabolic. The
direction of the Airy beam is the opposite from the incident,
and it is shifted by 2(x0 − β). Furthermore, the coefficient of
the parabolic term differs from the incident one by a factor
of σ = 1/[1 + (2βγ/α)] such that 0 < σ < 1 (α,β,γ > 0).
Thus an incident Airy wave through reflection is transformed
to another Airy wave which is slower and wider [the width of
the reflected Airy wave is given by 1/(γ σ )1/3]. By inspection
of σ , we see that for a steep enough potential α � 2βγ the
reflected Airy wave becomes identical to the incident. This
limiting case is in agreement with [32] where the interface
dynamics of Airy beams were studied. In the other limit case
where the index gradient is relatively small 2βγ � α, the
coefficient of the parabolic term of the trajectory becomes

α/(8β) and is independent of γ . Thus, for the same potential,
the reflected Airy beam will be almost identical independent
of the width of the incident Airy beam as long as the above
inequality holds.

In Fig. 2 we show typical dynamics of an Airy wave im-
pinging on a piecewise linear sigmoid potential. In particular,
in Figs. 2(a) and 2(b), α > 0 and thus the rays that do not
have enough momentum are going to be reflected. We note
the generation of a fold “transmitted” beam as well as a
cusp caustic. The reflected rays contribute to both of these
caustics. In particular, initially they generate the lower part
of the fold, they get reflected, and finally they generate the
cusp. The trajectory of the transmitted beam is described by
Eqs. (31)–(34), whereas the trajectory of the reflected beam is
given by Eqs. (31), (32), and (35). Specifically, the upper part
of the left branch of the cusp (which satisfies the condition
x < 0) has a parabolic structure and is given by Eq. (35). The
remaining part of the cusp and the lower part of the fold (which
satisfy 0 < x < 4) are given by Eqs. (31) and (32). Finally,
the right part of the fold (x > 4) is given by Eqs. (33) and (34).
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FIG. 2. (Color online) Dynamics of Airy beams propagating in
a medium with a piecewise linear sigmoid potential as given by
Eq. (12). On the left we see the ray dynamics (blue curves) as well
as the caustic trajectories (thick red lines). On the right we see the
corresponding direct numerical simulations and the caustic lines in
green. In the top row (α = 2, β = 2, γ = 1, and x0 = 4) the index
is decreased from left to right, whereas in the bottom row (α = −2,
β = 2, and x0 = 4) the index is increased from left to right.

In Figs. 2(c) and 2(d) α < 0 and thus the rays accelerate due
to the presence of the potential forming a single transmitted
beam.

V. CONCLUSIONS

In conclusion, we have studied the reflection and trans-
mission dynamics of curved Airy beams in the presence of
different classes of potentials. These include localized index
potentials whose contrast goes to zero outside a bounded
region, as well as sigmoid potentials whose index asymp-
totically takes different constant value outside a bounded
region. We studied the general properties of such systems and
found analytic expressions for the ray and beam dynamics for
particular classes of potentials. We showed that the trajectory
and thus the structure of an Airy wave is modified by the
potential. An exception is the case of reflection from a medium
with a linear index gradient. Our analytical results are in
agreement with the numerical simulations.

ACKNOWLEDGMENTS

Supported by the action “ARISTEIA” in the context of the
Operational Programme “Education and Lifelong Learning”
that is cofunded by the European Social Fund and National Re-
sources and by the Research Project ANEMOS cofinanced by
the European Union (European Social Fund—ESF) and Greek
national funds through the Operational Program “Education
and Lifelong Learning” of the National Strategic Reference
Framework (NSRF).

[1] Y. Hu, G. Siviloglou, P. Zhang, N. Efremidis, D. Christodoulides,
and Z. Chen, in Nonlinear Photonics and Novel Optical
Phenomena, Springer Series in Optical Sciences Vol. 170, edited
by Z. Chen and R. Morandotti (Springer, New York, 2012),
pp. 1–46.

[2] G. A. Siviloglou and D. N. Christodoulides, Opt. Lett. 32, 979
(2007).

[3] G. A. Siviloglou, J. Broky, A. Dogariu, and D. N.
Christodoulides, Phys. Rev. Lett. 99, 213901 (2007).

[4] M. V. Berry and N. L. Balazs, Am. J. Phys. 47, 264 (1979).
[5] Y. A. Kravtsov and Y. I. Orlov, Caustics, Catastrophes and Wave

Fields (Springer, Berlin, 1999).
[6] E. Greenfield, M. Segev, W. Walasik, and O. Raz, Phys. Rev.

Lett. 106, 213902 (2011).
[7] I. Chremmos, N. K. Efremidis, and D. N. Christodoulides, Opt.

Lett. 36, 1890 (2011).
[8] L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R.

Giust, P. A. Lacourt, and J. M. Dudley, Opt. Express 19, 16455
(2011).

[9] P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou,
and D. N. Christodoulides, Science 324, 229 (2009),
http://www.sciencemag.org/content/324/5924/229.full.pdf.

[10] J. Baumgartl, M. Mazilu, and K. Dholakia, Nat. Photon. 2, 675
(2008).

[11] P. Zhang, J. Prakash, Z. Zhang, M. S. Mills, N. K. Efremidis,
D. N. Christodoulides, and Z. Chen, Opt. Lett. 36, 2883
(2011).

[12] A. Mathis, F. Courvoisier, L. Froehly, L. Furfaro, M. Jacquot,
P. Lacourt, and J. Dudley, Appl. Phys. Lett. 101 (2012).

[13] A. Salandrino and D. N. Christodoulides, Opt. Lett. 35, 2082
(2010).

[14] P. Zhang, S. Wang, Y. Liu, X. Yin, C. Lu, Z. Chen, and X. Zhang,
Opt. Lett. 36, 3191 (2011).

[15] A. Minovich, A. E. Klein, N. Janunts, T. Pertsch, D. N. Neshev,
and Y. S. Kivshar, Phys. Rev. Lett. 107, 116802 (2011).

[16] M. A. Bandres, Opt. Lett. 33, 1678 (2008).
[17] N. K. Efremidis and D. N. Christodoulides, Opt. Lett. 35, 4045

(2010).
[18] D. G. Papazoglou, N. K. Efremidis, D. N. Christodoulides, and

S. Tzortzakis, Opt. Lett. 36, 1842 (2011).
[19] P. Panagiotopoulos, D. Papazoglou, A. Couairon, and

S. Tzortzakis, Nat. Commun. 4, 2622 (2013).
[20] A. Chong, W. H. Renninger, D. N. Christodoulides, and F. W.

Wise, Nat. Photon. 4, 103 (2010).
[21] I. Kaminer, R. Bekenstein, J. Nemirovsky, and M. Segev, Phys.

Rev. Lett. 108, 163901 (2012).
[22] F. Courvoisier, A. Mathis, L. Froehly, R. Giust, L. Furfaro,

P. A. Lacourt, M. Jacquot, and J. M. Dudley, Opt. Lett. 37, 1736
(2012).

[23] P. Zhang, Y. Hu, D. Cannan, A. Salandrino, T. Li, R. Morandotti,
X. Zhang, and Z. Chen, Opt. Lett. 37, 2820 (2012).

[24] R. El-Ganainy, K. G. Makris, M. A. Miri, D. N. Christodoulides,
and Z. Chen, Phys. Rev. A 84, 023842 (2011).

[25] N. K. Efremidis and I. D. Chremmos, Opt. Lett. 37, 1277 (2012).

023841-6

http://dx.doi.org/10.1364/OL.32.000979
http://dx.doi.org/10.1364/OL.32.000979
http://dx.doi.org/10.1364/OL.32.000979
http://dx.doi.org/10.1364/OL.32.000979
http://dx.doi.org/10.1103/PhysRevLett.99.213901
http://dx.doi.org/10.1103/PhysRevLett.99.213901
http://dx.doi.org/10.1103/PhysRevLett.99.213901
http://dx.doi.org/10.1103/PhysRevLett.99.213901
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1119/1.11855
http://dx.doi.org/10.1103/PhysRevLett.106.213902
http://dx.doi.org/10.1103/PhysRevLett.106.213902
http://dx.doi.org/10.1103/PhysRevLett.106.213902
http://dx.doi.org/10.1103/PhysRevLett.106.213902
http://dx.doi.org/10.1364/OL.36.001890
http://dx.doi.org/10.1364/OL.36.001890
http://dx.doi.org/10.1364/OL.36.001890
http://dx.doi.org/10.1364/OL.36.001890
http://dx.doi.org/10.1364/OE.19.016455
http://dx.doi.org/10.1364/OE.19.016455
http://dx.doi.org/10.1364/OE.19.016455
http://dx.doi.org/10.1364/OE.19.016455
http://dx.doi.org/10.1126/science.1169544
http://dx.doi.org/10.1126/science.1169544
http://dx.doi.org/10.1126/science.1169544
http://dx.doi.org/10.1126/science.1169544
http://www.sciencemag.org/content/324/5924/229.full.pdf
http://dx.doi.org/10.1038/nphoton.2008.201
http://dx.doi.org/10.1038/nphoton.2008.201
http://dx.doi.org/10.1038/nphoton.2008.201
http://dx.doi.org/10.1038/nphoton.2008.201
http://dx.doi.org/10.1364/OL.36.002883
http://dx.doi.org/10.1364/OL.36.002883
http://dx.doi.org/10.1364/OL.36.002883
http://dx.doi.org/10.1364/OL.36.002883
http://dx.doi.org/10.1364/OL.35.002082
http://dx.doi.org/10.1364/OL.35.002082
http://dx.doi.org/10.1364/OL.35.002082
http://dx.doi.org/10.1364/OL.35.002082
http://dx.doi.org/10.1364/OL.36.003191
http://dx.doi.org/10.1364/OL.36.003191
http://dx.doi.org/10.1364/OL.36.003191
http://dx.doi.org/10.1364/OL.36.003191
http://dx.doi.org/10.1103/PhysRevLett.107.116802
http://dx.doi.org/10.1103/PhysRevLett.107.116802
http://dx.doi.org/10.1103/PhysRevLett.107.116802
http://dx.doi.org/10.1103/PhysRevLett.107.116802
http://dx.doi.org/10.1364/OL.33.001678
http://dx.doi.org/10.1364/OL.33.001678
http://dx.doi.org/10.1364/OL.33.001678
http://dx.doi.org/10.1364/OL.33.001678
http://dx.doi.org/10.1364/OL.35.004045
http://dx.doi.org/10.1364/OL.35.004045
http://dx.doi.org/10.1364/OL.35.004045
http://dx.doi.org/10.1364/OL.35.004045
http://dx.doi.org/10.1364/OL.36.001842
http://dx.doi.org/10.1364/OL.36.001842
http://dx.doi.org/10.1364/OL.36.001842
http://dx.doi.org/10.1364/OL.36.001842
http://dx.doi.org/10.1038/ncomms3622
http://dx.doi.org/10.1038/ncomms3622
http://dx.doi.org/10.1038/ncomms3622
http://dx.doi.org/10.1038/ncomms3622
http://dx.doi.org/10.1038/nphoton.2009.264
http://dx.doi.org/10.1038/nphoton.2009.264
http://dx.doi.org/10.1038/nphoton.2009.264
http://dx.doi.org/10.1038/nphoton.2009.264
http://dx.doi.org/10.1103/PhysRevLett.108.163901
http://dx.doi.org/10.1103/PhysRevLett.108.163901
http://dx.doi.org/10.1103/PhysRevLett.108.163901
http://dx.doi.org/10.1103/PhysRevLett.108.163901
http://dx.doi.org/10.1364/OL.37.001736
http://dx.doi.org/10.1364/OL.37.001736
http://dx.doi.org/10.1364/OL.37.001736
http://dx.doi.org/10.1364/OL.37.001736
http://dx.doi.org/10.1364/OL.37.002820
http://dx.doi.org/10.1364/OL.37.002820
http://dx.doi.org/10.1364/OL.37.002820
http://dx.doi.org/10.1364/OL.37.002820
http://dx.doi.org/10.1103/PhysRevA.84.023842
http://dx.doi.org/10.1103/PhysRevA.84.023842
http://dx.doi.org/10.1103/PhysRevA.84.023842
http://dx.doi.org/10.1103/PhysRevA.84.023842
http://dx.doi.org/10.1364/OL.37.001277
http://dx.doi.org/10.1364/OL.37.001277
http://dx.doi.org/10.1364/OL.37.001277
http://dx.doi.org/10.1364/OL.37.001277


ACCELERATING BEAM PROPAGATION IN REFRACTIVE- . . . PHYSICAL REVIEW A 89, 023841 (2014)

[26] I. D. Chremmos and N. K. Efremidis, Phys. Rev. A 85, 063830
(2012).

[27] I. Kaminer, J. Nemirovsky, K. G. Makris, and M. Segev, Opt.
Express 21, 8886 (2013).

[28] N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, and A. Arie,
Nature (London) 494, 331 (2013).

[29] N. K. Efremidis, V. Paltoglou, and W. von Klitzing, Phys. Rev.
A 87, 043637 (2013).

[30] I. Chremmos, G. Fikioris, and N. Efremidis, Antennas Propag.,
IEEE Trans. 61, 5048 (2013).

[31] N. K. Efremidis, Opt. Lett. 36, 3006
(2011).

[32] I. D. Chremmos and N. K. Efremidis, J. Opt. Soc. Am. A 29,
861 (2012).

[33] P. Chamorro-Posada, J. Sánchez-Curto, A. B. Aceves, and G. S.
McDonald, arXiv:1310.1038 [physics.optics].

023841-7

http://dx.doi.org/10.1103/PhysRevA.85.063830
http://dx.doi.org/10.1103/PhysRevA.85.063830
http://dx.doi.org/10.1103/PhysRevA.85.063830
http://dx.doi.org/10.1103/PhysRevA.85.063830
http://dx.doi.org/10.1364/OE.21.008886
http://dx.doi.org/10.1364/OE.21.008886
http://dx.doi.org/10.1364/OE.21.008886
http://dx.doi.org/10.1364/OE.21.008886
http://dx.doi.org/10.1038/nature11840
http://dx.doi.org/10.1038/nature11840
http://dx.doi.org/10.1038/nature11840
http://dx.doi.org/10.1038/nature11840
http://dx.doi.org/10.1103/PhysRevA.87.043637
http://dx.doi.org/10.1103/PhysRevA.87.043637
http://dx.doi.org/10.1103/PhysRevA.87.043637
http://dx.doi.org/10.1103/PhysRevA.87.043637
http://dx.doi.org/10.1109/TAP.2013.2274261
http://dx.doi.org/10.1109/TAP.2013.2274261
http://dx.doi.org/10.1109/TAP.2013.2274261
http://dx.doi.org/10.1109/TAP.2013.2274261
http://dx.doi.org/10.1364/OL.36.003006
http://dx.doi.org/10.1364/OL.36.003006
http://dx.doi.org/10.1364/OL.36.003006
http://dx.doi.org/10.1364/OL.36.003006
http://dx.doi.org/10.1364/JOSAA.29.000861
http://dx.doi.org/10.1364/JOSAA.29.000861
http://dx.doi.org/10.1364/JOSAA.29.000861
http://dx.doi.org/10.1364/JOSAA.29.000861
http://arxiv.org/abs/arXiv:1310.1038



