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Benjamin Vial,* Frédéric Zolla, André Nicolet, and Mireille Commandré
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A quasimodal expansion method (QMEM) is developed to model and understand the scattering properties of
arbitrary shaped two-dimensional open structures. In contrast with the bounded case which has only a discrete
spectrum (real in the lossless media case), open resonators show a continuous spectrum composed of radiation
modes and may also be characterized by resonances associated to complex eigenvalues (quasimodes). The use
of a complex change of coordinates to build perfectly matched layers allows the numerical computation of those
quasimodes and of approximate radiation modes. Unfortunately, the transformed operator at stake is no longer
self-adjoint, and classical modal expansion fails. To cope with this issue, we consider an adjoint eigenvalue
problem whose eigenvectors are biorthogonal to the eigenvectors of the initial problem. The scattered field is
expanded on this complete set of modes leading to a reduced order model of the initial problem. The different
contributions of the eigenmodes to the scattered field unambiguously appears through the modal coefficients,
allowing us to analyze how a given mode is excited when changing incidence parameters. This gives physical
insights to the spectral properties of different open structures such as nanoparticles and diffraction gratings.
Moreover, the QMEM proves to be extremely efficient for the computation of local density of states.
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I. INTRODUCTION

Resonance is a central phenomenon in every field of wave
physics and is related to what is commonly called a spectral
problem (the eigenfrequencies and eigenmodes solutions of
source free governing equations). These spectral elements
can be understood as privileged vibrational states and are
thus an intrinsic characteristic of the system. Closed cavities
with perfect conducting walls have real eigenvalues and
normal modes, but for open electromagnetic systems, even
for materials without losses, eigenfrequencies ω are in general
complex, the real part ω′ > 0 giving the resonant frequency
and the imaginary part ω′′ < 0 the linewidth of the resonance.
The associated leaky modes [1] (also known as resonant
states [2,3], quasimodes [4], quasinormal modes [5,6], and
quasiguided modes [7] in the literature) are proportional to
cos[ω′(t − r/v)] exp[ω′′(t − r/v)] so they are no longer of
finite energy and even grow exponentially in space at infinity
while possessing finite lifetime. Physically, this exponential
divergence corresponds to a wavefront excited at past times
and propagating away from the system, and the infinite energy
can be understood as the accumulation of the energy radiated
from the open resonator to the rest of the universe.

The study of resonant properties of open optical systems
is of fundamental interest in various domains of application
such as biophotonics [8,9] for single molecule fluorescence
detection, antennas [10,11], photonic crystals [12,13], mi-
crostructured optical fibers [14], diffraction gratings [15–17],
and subwavelength aperture arrays [18,19], for example,
for filtering applications [20–23], quantum electrodynamics
(QED) cavity experiments [24–27], etc. Finding eigenmodes
of open structures with nontrivial geometries is thus of great
theoretical and practical interest.

It is well known that the eigenfrequencies of an open
system correspond to the poles of its scattering matrix or
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of Fresnel coefficients [28]. The numerical computation of
these poles remains a challenging task and several approaches
have been used. First, one has to compute the S-matrix
coefficients, which can be done by numerous numerical
methods: the rigorous coupled wave method [29,30], also
known as Fourier modal method [31,32], the differential
method [33], the integral method [34], the finite difference
time domain method [35,36], the finite element method (FEM
[37–40]), the method of fictitious sources [41], etc. Secondly,
one must find the poles of the S matrix, and several approaches
have been developed to do so: computing the poles of its
determinant [42], the poles of its maximum eigenvalue [43],
other techniques based on the linearization of its inverse [44],
or more recently an iterative method [45]. In spite of numerous
ways of improving the convergence of these methods, the
dimension of the S matrix has to be very large in general to
guarantee a sufficient precision of the results, which can lead
to numerical instabilities. Note that another method based on
the computation of Cauchy path integrals of S-matrix valued
functions of a complex variable can be used to find an arbitrary
number of poles in a given region of the complex plane [43,46].

For a given problem, one can define an associated
Maxwell’s operator that depends on geometry, material prop-
erties, and boundary conditions. We are interested here in
operators associated with functional spaces with elements
defined on an unbounded domain. In that case, it turns out
that the spectrum of this operator (the generalized set of
eigenvalues) has to be considered to fully characterize the
resonant properties of the problem at stake. Particularly, in
addition to quasimodes associated with discrete complex
eigenfrequencies, the spectrum of such an operator shows a
real continuous part associated with radiation modes express-
ing the propagation of energy from the structure towards the
infinite space.

We use a finite element spectral method to study the
resonant properties of open optical systems. Thanks to its
versatility it can handle complex geometries and arbitrary
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materials, which is necessary in most practical applications.
Moreover, the method naturally leads to a linear eigenvalue
problem in matrix form after discretization because the
basis functions are frequency independent, in contrast to
other methods such as the boundary element method, where
the equations are projected on frequency dependent Green
functions. The FEM has already been used to compute leaky
modes in different cases [14,47,48]; however, it is of prime
importance to use adequate absorbing boundary conditions
to correctly handle the divergent behaviors of fields. The
solution is to use perfectly matched layers (PMLs [49])
damping the fields in free space [50–52]. Through an ad hoc
complex change of coordinates, PMLs provide the suitable
non-Hermitian extension of Maxwell’s operator that makes
possible the computation of leaky and radiation modes. It is
worth noting that the geometrical transformation introduced
to define PMLs is virtually exact and its effect is not only to
turn the continuous spectrum into complex values but also to
allow the computation of complex frequencies associated with
quasimodes. The continuous spectrum is finally approximated
by a discrete set of eigenvalues because of the discretization
of the problem by the FEM and the effect of the truncation of
PMLs at a finite distance.

Once the eigenmodes of the open system have been found,
one expects a resonant behavior of the diffracted field when
shining light with frequency close to the real part of a
given eigenfrequency. In other words, the electromagnetic
spectrum shows rapid variations with incident parameters
(frequency and angle) around the resonant frequency, the
rate of variation being related to the imaginary part of the
eigenfrequency, accounting for the leakage of the mode. This
crucial information is at the heart of the diffractive properties
of open resonators. An interesting question is how to recover a
diffracted field with the modes as building blocks. This can be
done by expanding any diffracted field on the complete basis
of the eigenmodes.

The question of the spectral representation of waves in
open systems has extensively been studied [53–55] but is
still not fully addressed for the general case (with nontrivial
geometries and material properties), thus making quasimodal
expansion techniques not well suited for practical applications.
More recently, an approach similar (by the use of PML to
treat an approximated closed problem) to the one reported
here has been proposed [56–58]. Another method called
resonant state expansion [59–61] consists in treating the
system as a perturbation of a canonical problem whose
spectral elements are known in closed form. The idea is
to compute these perturbed modes and to use them in the
modal decomposition. Finally, a recent approach based on
quasinormal mode expansion has been developed to define
mode volumes and revisit the Purcell factor in nanophotonic
resonators [62].

The major difficulty relies on the fact that the modes in
open systems cannot be normalized in a standard fashion by
integrating their square modulus. Instead, we must consider
an adjoint eigenproblem with Hermitian conjugate material
properties, the modes of which are biorthogonal to the modes
of the initial problem. Equipped with this set of modes, the
spectral representation of any diffracted field can be obtained.
The coefficients in the expansion express the coupling between

the sources (particularly a plane wave) and a given mode,
revealing the conditions of excitation of this mode when
varying incident parameters. With this quasimodal expansion
method (QMEM), we obtain a reduced order model with a few
modes that can accurately describe the diffractive behavior of
open structures. In addition, the source point case makes the
computation of Green functions and LDOS straightforward
once the eigenmodes of the systems have been found.

The paper is organized as follows. We first expose our FEM
formulation of the diffraction of a plane wave by an arbitrary
number of scatterers of possibly complex shape buried in
a multilayer stack for both fundamental polarizations. The
materials can be inhomogeneous, dispersive, and anisotropic
and the formulation can handle monoperiodic gratings. We
detail the equivalent radiation problem, the use of PML, and the
computational parameters related to the FEM. In Sec. III, we
develop the formulation of the spectral problem, with emphasis
on the structure of the spectrum of Maxwell’s operator and its
modifications with the use of PML. Section IV is devoted to
the setup of the QMEM through the treatment of an adjoint
spectral problem. Finally, we give examples of application
in Sec. V showing the strength of the methods developed by
providing a meticulous modal analysis of scattering properties
of open resonators. We first study a triangular rod in a vacuum
and show how the angle dependent excitation of resonances
in the absorption cross section can be explained by the
QMEM coefficients. The modal reconstruction of diffracted
field, absorption cross section, and LDOS are also provided.
The second example is that of a lamellar diffraction grating,
for which the transmission and reflection coefficients show a
complex spectral behavior that is fully explained and faithfully
reproduced by the QMEM.

II. SCATTERING PROBLEM

A. Setup of the problem

The formulation used here is the one described in
Refs. [63,64]. It relies on the fact that the diffraction problem
can be rigorously treated as an equivalent radiation problem
with sources inside the diffractive object. We denote by x, y,
and z the unit vectors of an orthogonal Cartesian coordinate
system Oxyz. We deal with time-harmonic fields, so that the
electric and magnetic fields are represented by complex vector
fields E and H with a time dependence in exp(−iωt), which
will be dropped in the notation in the sequel. Moreover, we
denote k0 = ω/c.

To remain as general as possible (in particular to handle
PML), we may consider z-anisotropic material, so the tensor
fields of relative permittivity ε and relative permeability μ are
of the following form:

ε =
⎛⎝εxx εa 0

εa εyy 0
0 0 εzz

⎞⎠ , μ =
⎛⎝μxx μa 0

μa μyy 0
0 0 μzz

⎞⎠ , (1)

where the coefficients εxx,εaa, . . . ,μzz are (possibly) complex-
valued functions of x and y, and where ε̄a (μ̄a) is the complex
conjugate of εa (μa).
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FIG. 1. (Color online) Sketch of the studied structures and
notations.

The studied structures are invariant along Oz. They are
composed of N homogeneous layers of relative permittivity
εj and relative permeability μj , j = 1, . . . ,N (see Fig. 1).
These layers may contain one or several inhomogeneities.
For the sake of clarity, we only consider one scatterer
[See Fig. 1(a)] or one infinitely d-periodic chain of scatter-
ers [see Fig. 1(b)] of isotropic and homogeneous material
with relative permittivity εg′ and relative permeability μg′ .
These restrictions are assumed to simplify the theoretical
developments, but our methods can treat additional diffractive
objects buried inside different layers possibly made of z-
anisotropic materials without increasing the computational
cost. The substrate (−) and superstrate (+) are homogeneous
and isotropic with relative permittivity ε− and ε+ and relative
permeability μ− and μ+. The structure is illuminated by
an incident plane wave of wave vector defined by the
angle θ0: k+ = αx + β y = k+(sinθ0x − cos θ0 y). Its electric
(magnetic) field is linearly polarized along the z axis; this is the
so-called transverse electric or s-polarization case (transverse
magnetic or p-polarization case). Under the aforementioned
assumptions, the diffraction problem in a nonconical mounting
can be separated in two fundamental scalar cases TE and TM.
Thus we search for a z-linearly polarized electric (magnetic)
field E = e(x,y)z [H = h(x,y)z]. We denote ε̃ and μ̃ the
2 × 2 matrices extracted from ε and μ:

ε̃ =
(

εxx εa

εa εyy

)
, μ̃ =

(
μxx μa

μa μyy

)
. (2)

We use the following notation to treat the two polarization
cases in a single framework:

u = e, ξ = μ̃T/det(μ̃), χ = εzz for the TE case,

u = h, ξ = ε̃T/det(̃ε), χ = μzz for the TM case.

The functions e and h are the solution of similar differential
equations:

Lξ ,χ (u) := ∇·(ξ∇u) + k2
0χu = 0, (3)

such that the diffracted field ud := u − u0 satisfies an outgoing
wave condition (OWC), and where u0 is the restriction of the
incident field to the superstrate.

Under this form, the problem is not adapted to a resolution
by a numerical method because of infinite issues: the sources
of the plane wave are infinitely far, the geometric domain is
unbounded, and in the periodic case the scattering structure
is itself infinite. To circumvent these issues, we compute
only the diffracted field solution of an equivalent radiation
problem with sources inside the scatterers, we use PMLs to
truncate the unbounded domain at a finite distance, and we
use quasiperiodicity conditions to model a single period in the
grating case.

B. Equivalent radiation problem

Denoting ξ1 and χ1 the tensor field and the scalar function
describing the multilayer problem, the function u1 is defined
as the unique solution of

Lξ1,χ1 (u1) = 0, (4)

such that ud
1 := u1 − u0 satisfies an OWC. The expression

of this function can be calculated with a matrix transfer
formalism. The unknown function ud

2 is thus given by

ud
2 = u − u1 = ud − ud

1 . (5)

The scattering problem (3) can be rewritten as

Lξ ,χ

(
ud

2

) = −Lξ ,χ (u1) := S1. (6)

The term on the right-hand side can be seen as a source term
that can be written as

S1 := −Lξ ,χ (u1) = −Lξ ,χ (u1) + Lξ1,χ1 (u1)︸ ︷︷ ︸
=0

= Lξ1−ξ ,χ1−χ (u1).

It depends on the contrast of material properties ξ1 − ξ and
χ1 − χ and has support in the diffractive objects because this
contrast is zero outside the inhomogeneities. Furthermore, it
is known in closed form (see Appendix A for the detailed
expression).

C. Perfectly matched layers

Transformation optics has recently unified various tech-
niques in computational electromagnetics such as the treat-
ment of open problems, helicoidal geometries, or the design
of invisibility cloaks [65]. These apparently different problems
share the same concept of geometrical transformation, leading
to equivalent material properties [66,67]. A very simple and
practical rule can be set up [46]: when changing the coordinate
system, all you have to do is replace the initial material
properties ε and μ by equivalent material properties εs and
μs given by the following rule:

εs = J−1ε J−Tdet( J), μs = J−1μJ−Tdet( J), (7)
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where J is the Jacobian matrix of the coordinate transforma-
tion consisting of the partial derivatives of the new coordinates
with respect to the original ones ( J−T is the transposed of its
inverse). In this framework, the most natural way to define
PMLs is to consider them as maps on a complex space �,
whose coordinate change leads to equivalent permittivity and
permeability tensors. The associated complex-valued change
of coordinates is given by

η′(η) =
∫ η

0
sη(
)d
, (8)

where η is a complex coordinate such that Re(η′) = η is
the original coordinate (corresponding to the initial physical
coordinate system). The function sη is a complex-valued
function depending on a real variable. In practice, the change of
coordinates is chosen to be the identity in the region of interest
(where the fields have therefore directly their untransformed
values) and the complex stretch is limited to a surrounding
layer. In this paper we use cylindrical or Cartesian PML
with constant stretching coefficient sη = σeiφ with σ > 0 and
0 < φ < π/2.

D. Quasiperiodicity

Let �l and �r be the two parallel boundaries orthogonal to the
direction of periodicity x and separated by d. Bloch theorem
implies

ud
2 (x + d) = ud

2 (x)eiαd . (9)

In practice, we consider ud
2 as unknown on �l (which is done by

applying Dirichlet homogeneous conditions) and we impose
the value of one point on �d to be equal to the value of the
corresponding point on �l multiplied by the dephasing eiαd .

E. FEM formulation

The radiation problem defined by Eq. (6) is then solved
by the FEM, using PMLs to truncate the infinite regions
and by setting convenient boundary conditions (BC) on the
outermost limits of the domain, depending on the problem.
For monoperiodic structures, we apply Bloch quasiperiodicity
conditions with coefficient α on the two parallel boundaries
orthogonal to the grating direction of periodicity. In the
periodic and nonperiodic case, we set either homogeneous
Neumann or Dirichlet boundary conditions on the outward
boundary of the PMLs. The choice between these two types
of BC must be indifferent if the PMLs are set up correctly:
since the field vanishes in the PML, applying Neumann BC
allows one to check the efficiency of the absorbing layer
by viewing the value of the field on the outward boundary.
This value is very weak if the PML is well designed so that
in practice Dirichlet BC is verified too. The computational
cell is meshed using second-order Lagrange elements. In
the numerical examples in the sequel, the maximum element
size is set to λ/[Nm

√|Re(ε)|], where Nm is an integer. This
ensures a discretization with Nm elements per period of a field
spatially oscillating at λ in free space and λ/

√
ε in another

medium with μ = 1. The choice of Nm is empirical and results
in a compromise between precision and computational cost

(between 6 and 10 is usually a good choice). The final algebraic
system is solved using a direct solver (PARDISO [68]).

III. SPECTRAL PROBLEM

Generally speaking, the diffractive properties of open
systems can be studied at a more fundamental level by looking
for both the generalized eigenfunctions and eigenvalues of
Maxwell’s operator Mξ associated with the problem. The
definition and classification of the spectrum of an operator is
quite a delicate mathematical question and is out of the scope
of this paper (nevertheless, we give in Appendix C some basic
definitions).

The eigenproblem we are dealing with consists in finding
the solutions of source free Maxwell’s equations, i.e., finding
eigenvalues �n = (ωn/c)2 and nonzero eigenvectors vn such
that

Mξ (vn) := −∇·(ξ∇vn) = �nχvn, (10)

where vn satisfies an OWC. We consider here nondispersive
materials, so that the eigenvalue problem (10) is linear.
Note that, in the periodic case, we search for Bloch-Floquet
eigenmodes so the operator is parametrized by the real
quasiperiodicity coefficient α.

For bounded problems with lossless and reciprocal mate-
rials (with permittivity and permeability tensors represented
by Hermitian operators), the operator Mξ is self-adjoint so
its eigenvalues are real, positive, and discrete. For Hermitian
open problems, the spectrum of the associated operator is real
[69] and composed of two parts [70] as follows.

(i) The discrete spectrum associated with proper eigenfunc-
tions known as trapped modes (also called bounded or guided
modes) exponentially decreasing at infinity, particularly the
“ideal” surface plasmon modes when the structure contains
materials with Re(ε) < 0.

(ii) The continuous spectrum associated with improper
eigenfunctions composed of propagative or evanescent radi-
ation modes.

In addition, another type of solution can be defined and
is very useful to characterize the diffractive properties of
unbounded structures: the so-called leaky modes. These modes
are an intrinsic feature of open waveguides. The associated
eigenfrequencies are complex solutions of the dispersion
relation of the problem but are not eigenfrequencies of (10). A
leaky mode represents the analytical continuation of the proper
discrete mode below its cutoff frequency [70].

PMLs have proven to be a very convenient tool to compute
leaky modes in various configurations [47,50,51,71]. Indeed
they mimic efficiently the infinite space provided a suitable
choice of their parameters. We may define a transformed
operator with infinite PMLs, namely Mξ s , with equivalent
material properties defined by Eq. (7). The associated spectral
problem is

Mξ s

(
vs

n

)
:= −∇·(ξ s∇vs

n

) = �s
nχ

svs
n. (11)

Figure 2 shows how the spectrum of the considered operator
is affected by applying a complex stretch in the nonperiodic
case (see Appendix B for more details). The introduction of
infinite PMLs rotates the continuous spectrum in the complex
plane (since the operator Mξ s involved in the problem is now a
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FIG. 2. (Color online) Guided modes, continuous spectrum, and
leaky modes in an open waveguide.

non-self-adjoint extension of the original self-adjoint operator
Mξ ). The effect is not only to turn the continuous spectrum
into complex values but it also unveils the leaky modes is the
region swept by the rotation of this essential spectrum [72].
It is important to note that leaky modes do not depend on the
choice of a particular complex stretching: adding the infinite
PMLs is only a way to discover them. The angle of rotation of
the continuous spectrum in C is the opposite of the argument φ
of the constant complex stretching coefficient sη. By increasing
this parameter we discover more and more leaky modes with
now exponential decay at infinity in the PML regions, and so
the associated norms become finite.

Finally, the PMLs can safely be truncated at finite distance
which results in an operator Mξ t having only discrete
spectrum, which leads to the spectral problem:

Mξ t

(
vt

n

)
:= −∇·(ξ t∇vt

n

) = �t
nχ

tvt
n. (12)

This formulation in the form of an equivalent transformed
closed problem allows the numerical computation with the
FEM of approximate leaky, guided, and radiation modes
(also termed as PML modes or Bérenger modes). This last
set of modes is due to the discretization of the continuous
spectrum by finite PMLs [73] with constant stretch and by
the spatial discretization of the domain with a mesh in the
framework of the FEM. The discretization of the continuous
spectrum is finer when either the thickness of the PMLs or the
modulus σ of the complex stretching coefficient sη increase.
The boundary conditions and the FEM setup are analogous to
that described in Sec. II E. Note that Neumann or Dirichlet
boundary conditions applied in the outward boundaries of
the PMLs result in a different set of approximate radiation
modes. Obviously, leaky modes do not depend on all those
PML-related parameters.

The final algebraic system can be written in a matrix form
as a generalized eigenvalue problem Av = �Bv. Finding the
eigenvalues closest to an arbitrarily given spectral shift �0

(a point in the complex plane around which we search for
eigenvalues) boils down to computing the largest eigenvalues
of matrix C = (A − �0B)−1B [74]. For this purpose, the
eigenvalue solver uses ARPACK FORTRAN libraries adapted
to large scale and sparse matrices [75]. This code is based on

a variant of the Arnoldi algorithm called implicitly restarted
Arnoldi method.

In the sequel we will drop the exponent t for convenience,
but one shall bear in mind that the effective problem we are
dealing with is the complex stretched and bounded version (12)
of the original problem (10) defined on a whole real Cartesian
and unbounded space.

IV. QUASIMODAL EXPANSION METHOD

A. Inner product and adjoint eigenproblem

For Hermitian problems, eigenvectors form a complete set
of L2(�) and every solution of the problem with sources can
be expanded on this basis. But in the general case, the problem
may be non-self-adjoint, and we lack the nice properties of
Hermitian systems. Nevertheless, we describe here a procedure
to obtain an expansion basis of the solution space. For this we
use the classical inner product of two functions f and g of
L2(�):

〈f |g〉 :=
∫

�

f (r)ḡ(r)d r. (13)

Unlike self-adjoint problems, 〈χvn|vm〉 �= δnm; in other words,
the eigenmodes vn are not orthogonal with respect to this
standard definition. This is the reason why we consider an
adjoint spectral problem with eigenvalues �n = (ωn/c)2 and
eigenvectors wn. The adjoint operator M†

ξ is defined by

〈Mξ (v)|w〉 = 〈v|M†
ξ (w)〉, (14)

with complex conjugate coefficients for the boundary con-
ditions in comparison with the direct spectral problem [76]
and is such that M†

ξ = Mξ � (see Appendix D for the proof),
where A� = ĀT is the conjugate transpose of matrix A.
The associated adjoint problem that we shall solve is
(cf. Appendix D)

M†
ξ (wn) = Mξ � (wn) = −∇·(ξ �∇wn) = �nχ̄wn. (15)

We know from spectral theory that the eigenvectors vn are
biorthogonal to their adjoint counterparts wn [70],

〈χvn|wm〉 =
∫

�

χ (r)vn(r)wm(r)d r = Knδnm, (16)

where the complex-valued normalization coefficient Kn is
defined as

Kn := 〈χvn|wm〉 =
∫

�

χ (r)vn(r)wn(r)d r. (17)

B. Quasimodal expansion of the diffracted field

Relation (16) provides a complete [77] biorthogonal set to
expand every field solution of Eq. (6) propagating in the open
waveguide as

ud
2 (r,ω) =

+∞∑
n=1

Pn(ω)vn(r) +
∫

�c

Pν(ω)vν(r)dν, (18)

where �c is the continuous spectrum (a curve, with possibly
a denumerable set of branches in the complex plane). The
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discrete coefficients Pn and the continuous density Pν are given
by similar expressions:

Pj (ω) = 1

Kj

〈
χud

2

∣∣wj

〉 = Jj (ω)

ω2 − ω2
j

, j = {n,ν}, (19)

with

Jj (ω) = c2

Kj

〈S1|wj 〉 = c2

Kj

∫
�g′

S1(r,ω)wj (r)d r, (20)

where the integration is only performed on the inhomogeneities
�g′ since the source term S1 is zero elsewhere. Note that
the last integral has to be taken in the distributional meaning
which leads to a surface term on ∂�g′ because of the spatial
derivatives in S1.

We are thus able to know how a given mode is excited
when changing the incident field. This modal expansion can be
approximated by a discrete sum since the spectrum of the final
operator we solve for involves only discrete eigenfrequencies,
and in practice only a finite number M of modes is retained in
the expansion, so that we can write

ud
2 (r,ω) �

M∑
m=1

Pm(ω)vm(r). (21)

This leads to a reduced modal representation of the field
which is well adapted when studying the resonant properties
of the open structure, as illustrated in the sequel.

Equation (19) indicates that the complex eigenfrequency
ωn is a pole [78] of the coupling coefficient Pn and thus
leads to a singularity of the diffracted field. But, in practice,
the frequency of the incident plane wave is real, and the
resonant behavior may happen in the vicinity of ω′

n = Re(ωn).
Consequently, the value of Pn is finite, and the linewidth of the
resonance is given by ω′′

n = Im(ωn). This is the main strength
of the QMEM: it unambiguously reveals not only that a mode
is excited but it indicates also the intensity of this excitation.
According to Eq. (18), one can see that the diffracted field
for a given incident frequency is due to the concomitant
contributions of an infinity of eigenmodes. However, for
a given incident field, there is often a mode that plays a
leading role in the decomposition. In other words, its coupling
coefficient is much larger in module than those associated with
other modes, and so a resonance of the diffracted field may be
attributed mainly to the excitation of this mode.

C. Green function and local density of states

We have focused our attention on a plane-wave source, but
the method is also applicable for other types of excitation.
Indeed, if we assume a point source located at r ′, namely
S1(r) = δ(r − r ′), we have from Eq. (20)

Jn = c2

Kn

wn(r ′),

so we obtain immediately the Green-function expansion in
terms of quasimodes and adjoint quasimodes as

g(ω,r,r ′) =
∑
m

c2

Km

vm(r)wm(r ′)
ω2 − ω2

m

. (22)

The local density of states (LDOS) defined as

l(ω,r) = − 2ω

πc2
Im{g(ω,r,r)}

can thus be expanded as

l(ω,r) = −2ω

π

∑
m

Im

{
vm(r)wm(r)

Km

(
ω2 − ω2

m

)} . (23)

The LDOS is thus related to local values of eigenvectors and
adjoint eigenvector conjugates. Note that the QMEM is in this
case highly computationally efficient, since it only requires
one to solve two spectral problems with the FEM to obtain the
LDOS in a given region of space, without the need to compute
numerically the integrals in Eq. (20). Once the eigenmodes
of the system and their adjoints have been computed, the
calculation of the LDOS at any point in the computational
domain and at any frequency is trivial. This has to be compared
with the resolution of a large number of direct FEM problems
where the source point position and the frequency vary.

V. NUMERICAL EXAMPLES

A. Triangular rod in vacuum

The first example is the case of a dielectric rod (εg′ =
13 − 0.2i and μg′ = 1) of infinite extension along the z axis
embedded in vacuum [see Fig. 4(a)]. Its cross section is a
triangle defined by the three apexes A (−1; 3), B (−1; −2),
and C (3,−1). We chose the inner radius of the PML to
be Rin = 1.01 × max(OA,OB,OC), i.e., to put the PML as
close as possible to the diffractive object to avoid numerical
pollution of the results as reported by previous studies [79].
The depth of the PML annulus is Rout − Rin = 15 μm, and
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FIG. 3. (Color online) Loci of the eigenfrequencies in the com-
plex ω plane. Theoretical continuous spectrum (blue dashed line)
is well approximated by discrete eigenvalues corresponding to
PML modes (blue circles). The leaky modes unveiled by shifting
the continuous spectrum in the complex plane have frequencies
represented by red squares.
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(a) Geometry and mesh

−2 −1 0 1 2 3

ω1 = 1.77 × 1014 − 6.36 × 1012 i rad s−1

(b) Mode 1

−4 −2 0 2 4

ω2 = 1.90 × 1014 − 1.01 × 1013 i rad s−1

(c) Mode 2

−3 −2 −1 0 1 2 3

ω1 = 1.57 × 1014 − 1.29 × 1014 i rad s−1

(d) Mode 3

FIG. 4. (Color online) Geometry and mesh of the structure (a) and field maps Re(Ez) for the eigenmodes 1 (b), 2 (c), and 3 (d).

the absorption coefficient is sr = 1 + i [cf. Eq. (8)]. We solve
the eigenproblem in TE polarization, and the position of the
300 eigenfrequencies with lowest real parts in the complex
plane is shown in Fig. 3. The original continuous spectrum
(for the problem without PML) is R+. It is rotated of an angle
φ = −arg(sr ) = −π/4 from the real axis when using PML
(blue dotted curve). The truncation of PML at a finite distance
results in a discrete approximation of this continuous spectrum
(blue circles).

The field of the associate quasiradiation modes is concen-
trated mainly in the PML region, as can be seen from the field
map of mode 3 plotted in Fig. 4(d). Eigenvalues corresponding
to leaky modes are situated closest to the real axis (red squares),
and the field profiles of the associated modes are confined in
the region of physical interest r < Rin [see Figs. 4(b) and 4(c)
for leaky modes 1 and 2, respectively].

We focus on two leaky modes labeled 1 and 2 for which
associated eigenfrequencies are respectively ω1 = (1.77 ×
1013 − 6.36 × 1011i) rad s−1 (resonant wavelength λ1 =
10.61 μm) and ω2 = (1.90 × 1013 − 1.01 × 1012i) rad s−1

(λ2 = 9.89 μm). In order to understand how these eigenmodes
are excited, we compute the modal coefficients Pn for varying
incident wavelength λ and angle θ0. The maps of the modulus

of Pn (n = 1,2) for λ between 9 and 11 μm and θ0 between
0◦ and 360◦ are plotted in Fig. 5. The coupling coefficients
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FIG. 5. (Color online) Coupling coefficients Pn as a function of
λ and θ0 for the modes 1 (top) and 2 (bottom). Horizontal dashed
lines indicate the resonant wavelength.
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FIG. 6. (Color online) Absorption cross section as a function of
λ for different incident angles θ0.

Pn behave as 1/(ω2 − ω2
n), which yields a resonant behavior

when ω is near Re(ωn) (cf. the horizontal dashed lines in
Fig. 5). We observe that the value of |Pn| strongly depends on
θ0, indicating that the considered mode will be more or less
excited depending on the incidence angle.

To check our previsions, we computed the absorption
cross section by the method presented in Sec. II at different
incidences. In the first case where θ0 = 352◦, the value of
|P1(λ1)| is high, whereas the value of |P2(λ2)| is much lower,
which means that the mode 1 will be principally excited. This
is what can be seen on Fig. 6 (blue solid curve), where the
resonant peak of the absorption cross-section curve occurs
near λ1, whereas no significant resonant behavior is found
near λ2. Similar conclusions can be made for the second case
with θ0 = 306◦ by interchanging the roles of modes 1 and 2
(see dashed green curve on Fig. 6). Note that the resonant
peak in the second case is broader since Im(ω2) > Im(ω1);
in other words, the mode 2 leaks more than the mode 1.
In addition, the value of the absorption cross section at the
resonance is correlated to the value of the coupling coefficient
Pn for the corresponding excited eigenmode: the peak value
in the first case is greater because the mode is more excited
compared to the second case. Another interesting example is
when the two modes have comparable weight in the modal
expansion. This is the case for θ0 = 143◦, so that both modes
are excited. In our case, the two resonant peaks in the
absorption cross-section curve merge into a single broad one
(see the red curve with circles in Fig. 6). Finally, for θ0 = 55◦,
both modes show weak-coupling coefficients, which results
in a relatively flat behavior of the absorption cross section
(cyan curve with squares in Fig. 6). In fact, another mode
dominates in this case with resonant wavelength slightly lower
than 9 μm.

Another powerful feature of our approach is that we are
able to reconstruct the field with a few eigenmodes. From this
reduced modal expansion we calculate the absorption cross
section for θ0 = 143◦. The M modes used are those with
highest mean value of the modal coefficient on the whole
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FIG. 7. (Color online) Absorption cross-section curves com-
puted with QMEM as a function of λ for θ0 = 143◦, for different
values of the number M of modes retained in the expansion. The
thick red curve corresponds to the reference values computed by
solving the diffraction problem.

wavelength range. Results are reported in Fig. 7 and compared
with the reference values obtained by solving Eq. (6). For
M = 5, we have already captured evolution of the absorption
cross section with frequency. The agreement is better for M =
10 except for weak wavelengths. Retaining M = 50 modes in
the modal expansion results in an accurate approximation of
the absorption cross section. We plot in Fig. 8 the field maps
obtained by solving the diffraction problem and the modal
method approximation with 50 modes, at λ = 10.2 μm and
θ0 = 143◦. As can be seen, the two methods are in good
agreement, with only local discrepancies occurring at the
interface air/PML and within the PML. Note that this reduced
order model is computationally efficient when a large range
of incident parameters is investigated. Indeed, there is only
one FEM problem solved for (because in that case the adjoint
modes wn are simply the conjugate of the eigenmodes vn;
see Appendix D for the proof); the rest of the calculation is

−1 −0.5 0 0.5

(a) Re(Ez), diffraction
problem.

−1 −0.5 0 0.5

(b) Re(Ez), QMEM.

FIG. 8. (Color online) Electric field at λ = 10.2 μm and
θ0 = 143◦ calculated by solving the diffraction problem (a) and by
the QMEM (b) with 50 modes.
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FIG. 9. (Color online) Local density of states at λ = 10.2 μm
calculated by solving the diffraction problem (a) and by the QMEM
(b) with M = 500 modes.

only numerical integration of smooth functions and algebraic
operations.

Finally, we computed a map of the LDOS at λ = 10.2 μm
on a regular grid with 50 × 50 points into the spatial
window [−2,4] μm × [−3,4] μm around the dielectric rod.
The results of the QMEM using Eq. (23) with M = 500
[see Fig. 9(b)], that involves the resolution of a single FEM
spectral problem, is in excellent agreement with the results
obtained by 2500 direct FEM problems where the position
of the source varies on the nodes of the 50 × 50 grid [see
Fig. 9(a)]. In that example, the spectral problem consisting of
11753 degrees of freedom was solved in 17 min on a laptop
with two 2.8 GHz processors and 8 Go of RAM. On the one
hand, the computation of the modes is the limiting step but
afterward the LDOS are calculated in approximately 1 s. On
the other hand, the computation of the LDOS on the 50 × 50
grid with the direct problem takes more than 1 h. Moreover,
the LDOS can be calculated at other wavelengths without any
need of additional time consuming FEM simulations: for 50
wavelengths the direct problem would take more than 2 days,
whereas it takes less than 1 min with the QMEM (once the
modes have been computed). This example shows clearly
the numerical efficiency of the QMEM compared to direct
simulations.

B. Lamellar diffraction grating

We focus in this section on the periodic case. Let us
consider a monoperiodic diffraction grating (see Fig. 10)
constituted of slits of width w engraved in a germanium layer of
permittivity εg′ = 16 and of thickness hg = 3 μm. The grating
is deposited on a ZnS substrate of permittivity ε− = 4.84
and the superstrate is air (ε+ = 1). The computational cell
is limited to a strip of width d with quasiperiodicity conditions
on the lateral boundaries of coefficient α. The substrate and
superstrate are truncated by PML and their thicknesses are
h± = λref/10, with λref = 14 μm. Top and bottom are PML
terminated by Neumann homogeneous boundary conditions
and have stretching coefficient are ζ+ = ζ− = ei π

4 .
We computed the first 801 eigenfrequencies (with lowest

real parts) of this grating for α = 0 and 105 rad m−1, as well as
their associated adjoints. The position of the eigenfrequencies
in the complex plane as well as the theoretical curves of
the continuous spectrum for α = 0 rad m−1 are plotted in
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εg = 16

ε− = 4.84

(a)

h+
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hg

h−

h−

d

w
2

w
2

z x

y

PML top

ε+, μ+

PML bottom

ε−, μ−

(b)

FIG. 10. (Color online) Setup of the problem for the lamellar
grating. (a) Sketch of the studied diffraction grating. Parameters
are w = 0.1 μm, hg = 3 μm, εg′ = 16, ε− = 4.84, ε+ = 1, and
d = 3 μm; all materials are nonmagnetic (μ = 1.) (b) Computa-
tional cell for the FEM calculations. Top and bottom PML have
stretching coefficient ζ+ = ζ− = ei π

4 and their thicknesses are
ĥ± = λref/

√
ε±. The thicknesses of the substrate and superstrate

are h± = λref/10, with λref = 14 μm. We apply quasiperiodic-
ity conditions on the lateral boundaries with α = 0 rad m−1 or
α = 105 rad m−1 and Neumann homogeneous boundary conditions
on the outward boundaries of the PML. Maximum mesh element size
is set to be λmesh/[20

√|Re(ε)|], where λmesh = 11 μm.

Fig. 11. The deviation of the approximate radiation mode
eigenfrequencies are due to the large grating-PML distance
required to obtain an accurate result on the diffraction
efficiencies, as we will see in the sequel. We focus on six leaky

FIG. 11. (Color online) Spectrum of the problem and leaky
modes for α = 0 rad m−1. Top: eigenfrequencies in the complex plane
(blue crosses) and theoretical curves of the continuous spectrum
(dashed red and black curves for the substrate and the superstrate,
respectively). The inset shows the position of the eigenvalues
corresponding to the six leaky modes studied. Bottom: real part of
Hz for these six leaky modes.

023829-9
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TABLE I. Resonant wavelengths λn and quality factors Qn of the
modes for α = 0 and 105 rad m−1.

α = 0 rad m−1 α = 105 rad m−1

n λn (μm) Qn λn (μm) Qn

1 11.06 3.56 11.05 3.55
2 10.59 7.01 × 109 10.88 2.20 × 102

3 10.28 8.51 × 101 10.02 1.35 × 102

4 8.65 3.25 × 1010 8.71 4.99 × 102

5 7.85 5.93 × 101 7.81 6.55 × 101

6 7.67 5.69 7.66 5.71

modes the resonant wavelength of which are in the far-infrared
spectral region 8–14 μm, corresponding to a transparency
window of the atmosphere (see the inset in Fig. 11). The field
maps of those modes for α = 0 are plotted in Fig. 11. The
corresponding resonant wavelength λn = 2πc/ω′

n and quality
factors Qn = ω′

n/(2ω′′
n) are reported in Table I.

The modes labeled 1 and 6 have in both cases weak
Q factors, which means that the associated resonance is
broad. This is confirmed by the observation of the diffraction
efficiencies [Figs. 13(a) and 13(b)], where a wide resonant peak

is found around λ1 and λ6. For both values of α, the resonant
parameters of these low-Q modes are almost unchanged.

The coupling coefficients Pn for the six leaky modes as
a function of λ were computed and are reported in Fig. 12.
One clearly sees a resonant peak of the modulus of Pn [see
Figs. 12(a) and 12(b)] and a phase jump [see Figs. 12(c) and
12(d)] around the resonant wavelength λn. As expected, the
variations are all the more curt that the imaginary part of
the eigenvalue is weak. These curves also show the relative
contribution of the eigenmodes to the overall diffraction
process. The two modes labeled 3 and 5 with high quality
factors provoke sharp resonances in the transmission and
reflection spectra [see Figs. 13(a) and 13(b)]. The high value
of the modulus of their coupling coefficient Pn clearly betrays
their role in these resonances [see red and magenta curves
on Figs. 12(a) and 12(b)]. On the contrary, modes 2 and
4, which have a huge Q factor for α = 0 rad m−1 (which
means they are “quasinormal” modes) are very weakly excited
in comparison to other modes on the whole spectral band
except at the corresponding resonant wavelength [see cyan
and green curves on Fig. 12(a), where the modulus of the
coupling coefficients is very weak]. These findings explain
why we do not observe significant resonances on the diffraction
efficiencies around λ2 and λ4 [see Fig. 13(a)]: the associated
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FIG. 12. (Color online) Coupling coefficients Pn as a function of the incident wavelength λ (each curve is labeled by the corresponding
mode index). The dashed vertical lines correspond to the position of the resonant wavelength λn associated with each leaky mode.
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FIG. 13. (Color online) Comparison between direct problem and QMEM. (a) and (b): reflection and transmission coefficients in the zeroth
order R0 (dashed blue curve) and T0 (solid red curve). (c) and (d): relative integrated error Er

int (dashed dotted black curve), absolute errors on
transmission Ea

T (solid red curve) and reflection Ea
R (dashed blue curve).

leaky modes are not sufficiently excited. Actually, since these
modes have extremely low leakage, they shall produce a
very narrow resonance. We have computed the diffraction
efficiencies around λ2 and λ4 with a finer wavelength step
and encountered effectively extremely sharp resonances but
with very weak variations of the reflection and transmission
coefficients (of the order of 10−6). For α = 105 rad m−1, the
resonant wavelength of these two modes slightly increases
comparing to the case α = 0 rad s−1, while their Q factors
dramatically collapse (cf. Table I). The coupling coefficients
are in this case of the same order of magnitude as the other
modes [see cyan and green curves in Fig. 12(b)], implying
sharp scattering resonances in the reflection and transmission
spectra [see Fig. 13(b)] around λ2 and λ4. One can observe
another sharp resonance at a wavelength slightly greater than
7 μm, which is not studied here.

The particular example presented here illustrates the po-
tential complexity of the diffractive process. For example, in
the case α = 0 rad s−1, there are two close resonances around
7.8 μm that give rise to a hybrid resonance of the diffraction
efficiencies due principally to a mixture of mode 6 (with low
Q factor, yielding a broad resonance) and mode 5 (with high
Q factor, sharp resonance). The computation of the complex
eigenvalues indicates the presence of these modes and their
associated resonant wavelength and linewidth, but the QMEM

allows us to go further by tracking the relative weight of these
modes in the scattering process.

In order to assess the precision of our method, we have
computed the absolute errors on the efficiencies calculated by
solving the diffraction problem (DP) and by the QMEM:

Ea
T = T DP

0 − T
QMEM

0 for transmission

and

Ea
R = RDP

0 − R
QMEM
0 for reflection.

We also calculated the integrated relative error on the compu-
tational cell � defined as

Er
int =
〈
u

d,DP
2 − u

d,QMEM
2

∣∣ud,DP
2 − u

d,QMEM
2

〉〈
u

d,DP
2

∣∣ud,DP
2

〉
=
∫
�

∣∣ud,DP
2 (r) − u

d,QMEM
2 (r)

∣∣2d r∫
�

∣∣ud,DP
2 (r)
∣∣2d r

.

These errors are plotted as a function of λ on Figs. 13(c) and
13(d). One can see that the integrated relative error remains
inferior to 10−5, and that the absolute errors on the diffraction
efficiencies are smaller in absolute value than 5 × 10−4, which
shows the accuracy of the QMEM. The main drawback is
that we have to take into account a sufficiently large number
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of modes (here 801) to reconstruct correctly the field and
hence the Fresnel coefficients. In comparison with the example
studied in Sec. V A, where only 50 modes reproduce the
absorption cross section well, we must reconstruct the field
very well in the substrate and superstrate to obtain a satisfying
accuracy on the transmission and reflection by taking into
account a large number of approximated radiation modes
(associated with the continuous spectrum). On the contrary,
the absorption being located into the diffractive object, a
smaller number of leaky mode is sufficient to obtain a good
approximation of the field inside the scatterer.

VI. CONCLUSION

The quasimodal expansion method (QMEM) has been
implemented and validated in planar and possibly periodic
open electromagnetic systems with arbitrary geometries.
The determination of eigenmodes and eigenvalues of those
structures, based on the treatment of an equivalent closed
problem with finite PML with the FEM, has been presented.
Once the spectrum of Maxwell’s operator has been computed,
the solution of the problem with arbitrary sources can be
expressed as a linear combination of eigenstates and the ex-
pansion coefficients can be calculated with the help of adjoint
eigenvectors. The method developed has been illustrated on
numerical examples, showing both its capacity to perform a
precise modal analysis and its accuracy. The first example of a
triangular rod provides the conditions of excitation of a given
mode by a plane wave by studying the coupling coefficients
as a function of angle and wavelength. A reduced order model
with a few modes is proven to well approximate the absorption
cross section. The computation of the LDOS on a two-
dimensional (2D) spatial grid around the nanoparticle at an
arbitrary wavelength is straightforward and computationally
very efficient once the eigenmodes and eigenvectors have
been calculated. The second numerical example of a lamellar
diffraction grating illustrates the ability of the method to
compute the eigenmodes of periodic media. The richness of the
transmission and reflection spectra with coupled resonances is
fully explained by the study of modal expansion coefficients.
The precision of the method is demonstrated in comparison
with a diffraction problem solved by the FEM. The extension
of the QMEM to three-dimensional structures, including
biperiodic grating, will be reported in future work.

APPENDIX A: EXPRESSION OF THE SOURCE TERM

The source term of the equivalent radiation problem (6) is
defined as

S1 := −Lξ ,χ (u1) = −Lξ ,χ (u1) + Lξ1,χ1 (u1)︸ ︷︷ ︸
=0

= Lξ1−ξ ,χ1−χ (u1).

Since, on the one hand, ξ and ξ1, and, on the other hand, χ and
χ1 are equal everywhere but into the inhomogeneity, one can
see that the support of the sources is bounded by this diffractive
element. Let us now detail the expression of this source term.
Classical transfer matrix calculus used in thin-film optics (see,
for example, Ref. [80]) is employed to obtain a closed form

for u1:

u1(x,y) = u0(x,y) + exp(iαx)

×
⎧⎨⎩r exp(−iβ+y) for y > 0,

vc
n + v

p
n for yn < y < yn−1,

t exp(iβ+y) for y < yN,

(A1)

for 1 < n < N , where

vp
n = up

n exp[−iβn(y − yn)],

vc
n = uc

nexp[iβn(y − yn)], (A2)

with β2
n = k2

n − α2. This transfer-matrix formalism provides
the complex coefficient u

p
n and uc

n together with the complex
transmission and reflection coefficient t and r of the multilayer
stack. Exponents p and c indicate the propagative or counter-
propagative nature of the plane waves v

p
n and vc

n. Knowing the
expression of u1 in the groove region (with index g) and the
linearity of the operator Lξ ,χ , the source term can be split into
two contributions:

S1 = Sp

1 + Sc
1 , (A3)

where

Sp

1 = Lξ1−ξ ,χ1−χ

(
vp

g

)
(A4)

and

Sc
1 = Lξ1−ξ ,χ1−χ

(
vc

g

)
. (A5)

Finally, we can obtain these terms under a more explicit
form:

Sp

1 = up
g

{
i∇·[(ξ g − ξ g′

)kg,pexp(ikg,p · r)]

+ k2
0(χg − χg′

)exp(ikg,p · r)
}

(A6)

and

Sc
1 = uc

g

{
i∇·[(ξ g − ξ g′

)kg,cexp(ikg,c · r)]

+ k2
0(χg − χg′

)exp(ikg,c · r)
}
, (A7)

where kg,p (kg,c) is the wave vector associated with the
propagative (counterpropagative) wave in layer g as defined
by Eqs. (A1) and (A2).

APPENDIX B: LOCATION OF THE TRANSFORMED
CONTINUOUS SPECTRUM

We derive here the location of the continuous spectrum
when adding infinite PMLs with constant coordinate stretch-
ing. Let us first consider a closed problem of a Fabry-Pérot
cavity of length h with perfect conducting walls embedded in
a homogeneous, lossless, and isotropic medium of permittivity
ε and permeability μ, the 1D eigenproblem of which is

M(vn) := −d2vn

dy2
= ω2

n

c2
εμvn, ∀y ∈ [0,h],

vn(0) = vn(h) = 0.

The eigenvalues ωn = nπc/(
√

εμh), ∀n ∈ N�, are real and
positive and form a discrete set as the problem is closed and
self-adjoint. Now if the problem is open (h = +∞), one can
see that the discrete set of eigenvalues ωn tends to a continuous
spectrum which proves to beR+. This result can be generalized
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to a class of problems known as singular Sturm-Liouville
problems [70].

1. Nonperiodic case with cylindrical PMLs

In cylindrical coordinates (ρ,ψ), we seek a separation
of variable solution v(ρ,ψ) = R(ρ)�(ψ). The Helmholtz
spectral equation for the variable ρ reads the so-called radial
Bessel equation:

− 1

ρ

d

dρ

(
ρ

dR(ρ)

dρ

)
+
(

m2

ρ2
− εμk2

)
R(ρ) = 0, (B1)

where m is the azimuthal number of the mode. It has the
form of the eigenvalue problem (L − �)R = 0 with M =
− 1

ρ
d
dρ

(ρ d
dρ

) + m2

ρ2 and � = εμk2 and the continuous spectrum
of the operator L is the real axis.

The transformation to obtain cylindrical PML only acts
on the radial variable and is given by ρ̃ = sρρ, with s = σeiφ .
Substituting ρ̃ into Eq. (B1), we obtain a similar spectral prob-
lem (M − �̃)R̃ = 0, with �̃ = �/s2

ρ . Since sρ is complex, one
can see that the effect of adding infinite cylindrical PML rotates
the real positive continuous spectrum in the complex plane
of an angle −φ which is now the half-line with parametric
equation

ω(�) = c

sρ

√
�

εμ
,

with � ∈ R+.

2. Monoperiodic case with Cartesian PMLs

The periodicity along (Ox) imposes seeking for solutions
v verifying Bloch decomposition:

v(x,y) =
∑
m∈Z

vd
ym(y)eiαmx, (B2)

with αm = α + 2π
d

m. Inserting this decomposition in Eq. (10)
reads

−d2vym

dy2
= �mvym, (B3)

with

�m = ω2/c2εμ − α2
m. (B4)

The problem then boils down to the spectral study of the
canonical operator M = − d2

dy2 , whose continuous spectrum
is R+. For the grating problem, the continuous spectrum
is thus composed of several half-lines on the real axis,
corresponding to different diffraction orders in the substrate
and the superstrate, and given by the parametric equations

ω(�) = D±
m(�) = c±

√
α2

m + �, � ∈ R+, ∀m ∈ Z,

(B5)

with c± = c/
√

ε±μ± the speed of light in the considered
medium, i.e., the half-lines [c±αm,+∞[.

The Cartesian PMLs used in the periodic case only act
on the y variable, the change of coordinates being given by
ỹ = s±

y y. Inserting ỹ in Eq. (B3) leads to the family of spectral

problems (M − �̃m)ũym = 0, with �̃m = �m/s±
y . The con-

tinuous spectrum of the transformed operator is thus composed
of several branches given by the parametric equations

ω(�) = c±
√

α2
m + �

s±
y

2 , � ∈ R+, ∀m ∈ Z. (B6)

APPENDIX C: BRIEF VOCABULARY
OF SPECTRAL ANALYSIS

The localization and classification of the spectrum of an
operator M is based on a derived operator, the so-called resol-
vent operator. Let us consider an operator M : H1 −→ H2,
where H1 and H2 are two Hilbert spaces. The resolvent
operator R�(M) is defined as [46]

R�(M) = (M − �I)−1, (C1)

where I is the identity operator. The resolvent set we denote
ρ(M) is the set of complex numbers which satisfy the
following conditions.

(1) R�(M) exists.
(2) R�(M) is bounded.
(3) R�(M) is dense in H2.
(i) If condition (1) is not fulfilled, we say that � is an

eigenvalue of M or that � forms the point spectrum of M
which we denote σp(M).

(ii) If conditions (1) and (3) but not condition (2) are
fulfilled, we say that � forms the continuous spectrum of
M which we denote σc(M).

(iii) If conditions (1) and (2) but not condition (3) are
fulfilled, we say that � forms the residual spectrum of M
which we denote σr (M).

The total spectrum σ (M) is the complement in C of the
resolvent set; we then have

σ (M) = C\ρ(M) = σp(M) ∪ σc(M) ∪ σr (M). (C2)

In problems generally encountered in electromagnetism as
those studied here, it can be shown that the residual spectrum is
in fact reduced to the empty set. Moreover, the essential spec-
trum we denote σe(M) consists of all points of the spectrum
except isolated eigenvalues of finite multiplicity. In the cases
studied in this paper, the point spectrum is the set of isolated
eigenvalues of finite multiplicity; the essential spectrum and
the continuous spectrum can thus be taken to be identical.

APPENDIX D: SOME PROPERTIES OF
THE ADJOINT SPECTRAL PROBLEM

We derive here the expression of the adjoint operator M†
ξ .

By projecting Eq. (10) on w (we drop hereafter the index n)
and integrating by parts twice, we obtain

〈Mξ (v)|w〉 = −
∫

�

∇·(ξ∇v)w̄ d r

= −
∫

�

v∇·(ξ∇w̄) d r︸ ︷︷ ︸
=〈v|Mξ� (w)〉

+
∫

∂�

ξ (v∇w̄ − w̄∇v) · n dS︸ ︷︷ ︸
=Nξ (v,w)

.
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The first term in the right-hand side of the above equality is
equal to 〈v|Mξ � (w)〉. The second term denoted Nξ (v,w) is a
surface term called the conjunct [70]. By a suitable choice of
the boundary conditions on ∂�, the conjunct vanishes and from
this we have M†

ξ = Mξ � . The boundary conditions employed
in our models are as follows.

(i) Dirichlet homogeneous boundary condition: v = 0 and
w = 0, which makes the conjunct zero on these boundaries.

(ii) Neumann homogeneous boundary condition: (ξ∇v) ·
n = 0 and (ξ �∇w) · n = 0, which leads to Nξ (v,w) = 0.

(iii) Bloch-Floquet quasiperiodicity conditions: let �l and
�r be the two parallel boundaries where we apply these
conditions, and α the quasiperiodicity coefficient (a real
fixed parameter of the spectral problem). Since v and w are
quasiperiodic functions, they can be expressed as v(x,y) =
v�(y)eiαx and w(x,y) = w�(y)eiαx , where v� and w� are
d-periodic along x. We obtain for the conjunct∫

�r∪�l

ξ [v∇w̄ − w̄∇v] · n dS

=
∫

�r∪�l

ξ [v�∇w� + w�∇v� − 2iαv�w�] · n dS.

Now since the integrand is d periodic along x, and since
the two parallel boundaries are separated by d and have
normals with opposite directions, the contributions of �r and
�l have the same absolute values but are opposite in signs. It
means that in the framework of quasiperiodicity, the conjunct
vanishes too.

We finally get

〈Mξ (v)|w〉 = 〈v|Mξ � (w)〉
↔ 〈�χv|w〉 = 〈v|�̄χ †w〉
↔ �〈χv|w〉 = �〈χ †v|w〉,

which proves that χ † = χ̄ . The adjoint spectral problem takes
eventually the form given by Eq. (15).

We now derive a property of adjoint eigenmodes. Taking
the conjugate transpose of Eq. (10) reads

{Mξ (v)}� = Mξ � (v̄) = M†
ξ (v̄) = �̄ χ̄ v̄. (D1)

It is tempting from Eq. (D1) to say that w = v̄, but one shall
remember the boundary conditions. Indeed, if we take the
conjugate transpose of boundary conditions on ∂� for the
spectral problem, we have the following.

(i) v̄ = 0 for the Dirichlet homogeneous boundary condi-
tion.

(ii) (ξ � · gradv̄) · n = 0 for the Neumann homogeneous
boundary condition.

(iii) v̄(x,y) = v�(y)e−iαx for the quasiperiodicity condition.
This means that for a problem with either Neumann or

Dirichlet homogeneous boundary conditions, we have w = v̄.
For a nonperiodic scattering problem, one of these conditions
is employed on the outward boundaries of PMLs, which means
that we only have to solve the spectral problem to obtain the
entire set of eigenmodes. In contrast, periodic problems lack
this nice property. Indeed, the dephasing term implies that
v̄ �= w except for α = 0, and in the general case we have to
solve the two eigenproblems.
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