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Department of Electronics and Telecommunication, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
(Received 31 May 2013; published 19 February 2014)

We demonstrate numerically that when the forward wave approximation of Maxwell’s equations is not valid,
the hyperbolic secant pulses of self-induced transparency gradually lose energy with increasing propagation
distance through the excitation of a backward mode.
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I. INTRODUCTION

The nonlinear propagation of ultrashort light pulses tuned
close to a resonance has led to the prediction and com-
prehension of a plethora of physical phenomena, such as
adiabatic inversion [1], Rabi flopping [2], the spin echo [3],
and self-induced transparency (SIT) [4], to name a few. In
the nonresonant regime, the nonlinear Schrödinger equation,
which is based on parametric wave amplification, stands out
as a landmark, describing the complex interplay between
linear and nonlinear wave effects. A feature common to the
conventional description of all of these phenomena is that
the laser pulse is assumed to propagate only in the forward
direction and that it evolves slowly over an optical wavelength.

The pioneering work by McCall and Hahn [5], Lamb [6],
Bullough and coworkers [7], and others has shown that optical
self-induced transparency solitons of arbitrary duration and
intensity can propagate close to an atomic resonance without
losing energy provided that (i) the pulse duration T is much
shorter than the decoherence time T2 of the material and
(ii) backpropagation of the pulse can be ignored. The solitary
pulse durations may be shorter or longer than the inhomo-
geneous lifetime T ∗

2 , although it was in the inhomogeneously
broadened limit T ∗

2 � T that the solitons were first discovered
both theoretically and experimentally [5]. In this paper, we
show that for materials where backpropagation cannot be
neglected, these pulses naturally lose energy during propa-
gation, which prevents the formation of an optical soliton over
sufficiently long propagation distances.

II. THEORETICAL MODEL

When a linearly polarized electromagnetic plane wave
E = Ey(z) ŷ, B = Bx(z)x̂ propagates in a two-level material,
the Maxwell-Bloch model is summarized by Maxwell’s curl
equations and the von Neumann equation [8],

�̇ = �ξ − ωκṗ, �̇ = �ξ, (1a)

iρ̇ = [H,ρ] + R, H =
(

0 −�

−� ωs

)
, (1b)

where the overdot indicates differentiation with respect to
time and ξ ≡ z/c. The propagation axis is assumed to lie
along z. In Eq. (1), the normalized electric and magnetic
fields are � = μEy/� and � = μcBx/�, where μ is the
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transition dipole moment (projected onto the y axis) between
the ground and excited states, ρ = ρ(t,z; ωs) is the 2 × 2
density matrix, and R = R(ρ) is a relaxation superoperator.
The resonance frequency of each isolated absorber is ωs , and
the dielectric is inhomogeneously broadened with polarization
p and inversion w given by p = ∫

dωsg(ωs)(ρ12 + ρ21) and
w = ∫

dωsg(ωs)(ρ22 − ρ11), where dωsg(ωs) is the fraction
of absorbers whose resonance frequencies lie on the interval
[ωs,ωs + dωs]. The coupling frequency ωκ is defined ωκ =
Nμ2/�ε0, where N is the number density of the material.
Introducing the pseudofields �± = 1

2 (� ∓ �), the normalized

Poynting vector can be written S = −�� ẑ = �+2 − �−2.
�± represent the forward- and backward-propagating fields,
and a scaling argument can be used to show that �− is
negligible when � initially propagates in the forward (+ξ )
direction and � � ωκp [7]. This condition is equivalent to
slow spatial evolution over an optical wavelength, and Eq. (1a)
then reduces to �̇ + �ξ = −ωκ

2 ṗ. This equation is a first -order
wave equation along the forward characteristic t = ξ ; it is valid
for arbitrary pulse durations and can, together with Eq. (1b),
be solved with the inverse scattering transform technique
[7]. The equation has both soliton and breather solutions,
with the latter solution being mathematically equivalent to
the McCall-Hahn 2π soliton in the case of long pulses.
However, ωκ can become quite large in, e.g., high-pressure
alkali-metal vapors, organic dyes, or doped semiconductors.
Backpropagation is then possible a priori, and a relatively
large reflective loss from the vacuum-material interface must
also be accepted. Note that the two-level model is only
phenomenological for semiconductors, insofar that the qua-
sicontinuous bands of semiconductors can only behave like a
single inhomogeneously broadened resonance if the intraband
decoherence times are much shorter than the pulse duration.
There is also a correspondence between the Maxwell-Bloch
equations and the theory of large-area Josephson junctions
[9]. Note that when � ∼ ωκp local-field effects may become
noticeable [10]. The effect that we discuss here, however, is
primarily concerned with the breakdown of the forward wave
approximation of Maxwell’s equations, and for comparison
with known theoretical results, we have provisionally ignored
local-field effects and retained the macroscopic field � in the
Hamiltonian in Eq. (1b).

In this paper, we solve Eq. (1) numerically for up
to 5000 values of ωs by using a hybrid Message Pass-
ing Interface (MPI) and Open Multi-Processing (OpenMP)
pseudospectral operator-splitting method that is discussed
elsewhere in detail [11]. We consider a Gaussian input pulse
�(t,0) = �0 exp[−t2/(2T 2)] sin(ωct) that is emitting from
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a total-field–scattered-field [12] source at z = 0 in vacuum.
This pulse propagates in free space for 250 μm before it
penetrates a two-level material of length L and then exits
back into free space again. We do not make envelope or
rotating-wave approximations, and {�,�} denotes the full
electromagnetic field. Our simulation region is padded with
perfectly matched layers that prevent back reflection from the
truncated simulation region.

In what follows, the center of the absorption line
is placed at ωs = 6π × 1013rad/s (λ = 10μm), μ = 5D,
g(ωs) = (T ∗

2 /
√

2π ) exp[−(ωs − ωs)2T ∗
2

2/2], and T ∗
2 = 50 fs.

Homogeneous damping, which removes the energy that is
locked in the dipoles via, e.g., spontaneous emission or through
other channels, is accounted for via R, with T1 = 1ms and
T2 = 0.1ms, substantially longer than the pulse duration. The
spatial and temporal discretization lengths are 	z = λ/100
and 	t = 2	z/(πc), and we have verified that the output from
our computer simulations does not change with increased reso-
lution. In the following, we consider a resonant Gaussian input
pulse (ωc = ωs) with peak amplitude E0 = 8.27 × 107V/m
(�0 ≈ 1013rad/s) and duration T = 250 fs. This fixes the input
area defined by the Gaussian envelope slightly below 2.6π

and ensures that the input pulse is a temporally slowly varying
pulse ωcT ∼ 50. We are therefore in the conventional SIT
regime where the pulse duration fits between the two transverse
lifetimes (T2 � T > T ∗

2 ). Note that as an alternative to solving
Eq. (1) directly, separate inhomogeneous evolution equations
for �± that are coupled through Eq. (1b) are easily derived
from Eq. (1a) and can also be solved numerically.

III. TRADITIONAL SIT REGIME

First, we verify that the standard SIT behavior is recovered
in the limit ωκ � �0. We take N = 5 × 1023m−3 and L =
2.5 mm, which gives �0 ≈ 88ωκ . The optical density of the
dielectric is αL ≈ 14.5, where α = πωκωsg(ωs)/c is the
reciprocal absorption length [8]. With the numbers above,
α−1 ≈ 17.2λ = 172 μm. Figure 1 shows that the standard SIT
features, which are expected to hold at these conditions, are
captured by our numerical code: The initial pulse partially
reflects while the remaining energy penetrates the material. It
is then compressed and amplified over the first few absorption
lengths and reshapes into a hyperbolic secant pulse with
pulse area 2π which propagates stably and with constant
energy. We have calculated the pulse area as the Fourier
transform of �(t,z) on the line center, i.e., θ (z) = |�(ωs,z)| =
| ∫ ∞

−∞ �(t,z)e−iωs t dt |, and the pulse energy is found by
integration of the Poynting vector. The top panel in Fig. 1
shows that the computer solution agrees very well with the area
theorem θ (z) = 2nπ + arctan[exp(−αz/2) tan(θ0/2)], where
θ0 is the input area. We nevertheless point out that it is
the soliton feature and not the area theorem which is the
fundamental property of the system. Although the soliton
feature holds whenever T � T2 and backpropagation can be
ignored (even when the slowly varying and rotating-wave
approximations are not valid), the area theorem holds only
when the initial pulse is resonant, transform limited, and
slowly varying through the material and the absorption line
is symmetric around ωs [13]. These conditions are fulfilled
by the parameters above. The bottom panel in Fig. 1 shows
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FIG. 1. (Color online) (top) Normalized pulse energy (dotted
line, plotted against the right vertical axis) and area (solid line)
compared with the area theorem (dashed line). (bottom) Average
material inversion w (thick solid line, plotted against the right vertical
axis). Plotted against the left vertical axis is the forward field �+

(thin solid line), its envelope (dashed line), and the backward field
�− (dotted line). The data are taken from a distance z0 = 1.75 mm
(αz0 ≈ 10) into the material.

the auxiliary fields �± and their corresponding envelopes �̃±
after penetrating 2 mm into the dielectric. We have obtained
the envelopes �̃± via the analytic signals of �±. The full
electric-field profile coincides with the forward field �+ and
has been confirmed to be a hyperbolic secant with area ≈2π . It
inverts the material and completely reverts it to its ground state.
The presence of the negative flux field �− is clearly negligible.
After the formation of the 2π pulse, the long-time behavior
of the system is �±(t → ∞,z) = 0 and w(t → ∞,z) = −1,
which makes this particular pulse a SIT pulse.

IV. BACKPROPAGATION AND DECAY OF SIT PULSES

Having established the reliability for our model with
� � ωκp, we can now address the main reason for this
paper, namely, the regime � ∼ ωκp, where backpropagation
has a non-negligible effect. The density is taken as N =
4.4 × 1025m−3, which gives �0 ≈ ωκ . The absorption length
is α−1 ≈ 0.195λs , and the material is essentially opaque for
linear transmission of resonant radiation. We take the length of
the material to be L = 0.5 mm long so that its optical thickness
is αL ≈ 256. We consider the same Gaussian input pulse. The
top panel in Fig. 2 shows the envelopes �̃+ and �̃− a distance
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FIG. 2. (Color online) (top) Plotted against the left vertical axis
are the envelopes of �+ (dashed line) and �− (dotted line). The
inversion w (solid line) is plotted against the right vertical axis. The
inset shows the pulse energy normalized to the input pulse energy as
a function of propagation distance. (bottom) Full field � (thin solid
line) and its envelope (dashed line) compared with an LSQ fit of a
hyperbolic secant pulse (dotted line). Plotted against the second set of
axes is the input pulse spectrum (dashed-dotted line) and the spectrum
�(ω,z0) (thick solid line). The data in both panels are taken at a
propagation length of z0 = 0.25 mm (αz0 ≈ 128) into the material.

z0 = 0.25 mm into the material, and the negative flux field �−
is readily discerned. The most important difference between
the behaviors in Figs. 1 and 2 lies in the fact that �+ = �

and that the long-term behavior is w(t → ∞,z) = −1 for
the denser material. In Fig. 2 we see that �±(t → ∞) = 0,
w(t → ∞) ≈ −0.98, and the pulse leaves behind energy in
the material. It is therefore not an SIT soliton. This failure to
return the material to the ground state after the passage of the
pulse is not related to the initial shedding of energy that usually
takes place when a non-SIT pulse reshapes into a soliton under
ideal SIT conditions, which is seen in Fig. 1 as an initial decline
in pulse energy over the first absorption lengths. Even at a
distance z0 = 0.25 mm into the material, the pulse in Fig. 2
has propagated αz0 ≈ 128 absorption lengths, a substantial
distance. Under ideal SIT conditions (i.e., no backpropagation
or other losses), a 2π soliton would be expected at this
penetration depth. Here, the pulse instead leaves behind a trail
of inversion w > −1, and a soliton does not form. The inset
in the top panel in Fig. 2 shows that although the residual
material excitation is relatively small, it has a profound impact
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FIG. 3. (Color online) (top) Spatial propagation of the spectrum
of �+ (color coded) inside and outside the material, the inhomo-
geneous absorption line g(ωs) (dotted line), and the initial pulse
spectrum �(ω,0) (solid line). The dashed lines show the material-
vacuum interface. (bottom) Same as for the top panel, but for �−.

on the pulse over many absorption lengths. The initial dip
in energy is associated with the initial reshaping into a sech
pulse, while the decay from αz ≈ 10 to αz ≈ 256 is connected
to a backpropagation loss. It is interesting that this decay
is almost linear up to αz ≈ 170 and that the final state of
inversion lies close to −1, which is indicative of a small-area
backward-propagating pulse. Indeed, as seen in the top panel
of Fig. 2, the area under �̃+ is much larger than that under
�̃−. The flattening of the pulse energy after αz ∼ 170 is most
likely due to an edge effect where the backpropagating pulse
is being generated from a smaller spatial region. To expose
the pulse in greater detail, the bottom panel in Fig. 2 shows
the full field � and a comparison between the corresponding
envelope �̃ (dashed line) and a numerical least squares fit
(LSQ, dotted line) of a hyperbolic secant pulse envelope
f (t) = A sech [(t − t0)/τ ]. The pulse in Fig. 2, unlike the pulse
in Fig. 1, is not a pure 2π hyperbolic secant pulse, although it
remains so to a very good approximation. Plotted against the
right vertical axis in Fig. 2(b) is also the spectral intensity of
the pulse. We notice that the center frequency of the pulse is
slightly blueshifted to a value of ≈1.005ωs .

To compare the forward and backward fields, the two panels
in Fig. 3 show the propagated spectra of �± plotted together
with the inhomogeneous broadening line g(ωs) (dotted line)
and also the initial pulse spectrum �(ω,0) (solid line). Several
features of the computer solution deserve mention: First, we
observe that the forward spectrum broadens over the first few
Beer’s lengths, indicating that temporal compression of the
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FIG. 4. (Color online) Spatiotemporal reshaping over the first 176 absorption lengths. The two horizontal axes are the pulse delay t − z/c

and the propagation distance in units of α−. The vertical axis indicates the magnitude of the full field pulse envelope. The solid line plotted in
the top horizontal plane shows the peak time delay at the various propagation distances.

pulse due to spatiotemporal reshaping into a quasi-SIT pulse
is taking place. The subsequent narrowing of the spectrum is
due to backpropagation losses that lead to temporal elongation.
Note also that although the spectral intensity of the input
pulse around ω/ωs ≈ 0.78 is zero, there is such a peak in the
spectrum of the reflected field �− and no such feature for �+.
Nonlinear reflection from interfaces has been studied by others
[14] in the incoherent regime T2 � T � T1,T

∗
2 , and a redshift

has been predicted due to the Doppler-shifted reflection from
the moving saturation front that is formed in the material when
the pulse penetrates the interface. This explanation presumably
holds true here as well. The pulse velocity v near the interface
in Fig. 4 is roughly v/c ≈ 0.11 and matches the Doppler
shift �ω ≈ 0.22ωs . The small color shifts of �±(ω,z) during
propagation are, to the best of our knowledge, not predicted by
any existing theory. It is established, on the other hand, that if
the rotating-wave and slowly varying envelope approximations
in time and space are valid, Eq. (1) can be reduced to a
set of equations relating only to the pulse envelope for the
forward-propagating pulse and that frequency pushing of an
initially off-resonance 2π hyperbolic secant soliton may then
occur [15]. In our computer simulations, the input pulse is
resonant and transform limited; therefore any initial pulse
chirp or change in center frequency occurs as a result of either
bi-directional propagation, or frequency-biased reflection or
transmission from the interface.

Figure 4 shows the spatiotemporal reshaping that is induced
by the backward-propagating mode. The two horizontal axes
are the temporal pulse delay t − z/c and the propagation
distance z into the medium in units of α−1. Only the
spatiotemporal reshaping over the first 176 absorption lengths
is shown. The solid line plotted in the top plane indicates
the peak pulse delay at various z. Its curvature in the
(t − z/c,z) plane indicates a nonconstant group velocity. We
find that over the first few absorption lengths the pulse is
temporally compressed. This initial reshaping is not surprising
considering the initial conditions that are applied. According
to the area theorem, which holds as a first approximation
over the first absorption lengths, the Fourier coefficient of

�+(ωs,z) must decrease to 2π during the initial reshaping to
a hyperbolic secant pulse. During this reshaping the excess
spectral energy at the line center is either absorbed by the
medium or pushed into the spectral wings of the pulse, which
results in spectral broadening and temporal compression. With
further propagation we observe the nonstandard features:
As the pulse energy diminishes with increasing propagation
distance, the temporal pulse width increases, and the pulse
travels with further reduced group velocity. For an even longer
material, the pulse will eventually broaden to time scales
that are comparable to the homogeneous decoherence time
T2 and is then rapidly absorbed by the material. This type
of pulse stretching is typical of solitonic systems with loss
and has been studied by others through the introduction of
phenomenological loss terms in the envelope forms of Eq. (1)
(see, e.g., [15, 16]). The loss mechanism considered here is not
phenomenological but is an inevitable part of Maxwell’s wave
equation. It will be finite also for less dense materials having
the same optical thickness, although homogeneous damping
will then dominate. To our knowledge, the only soliton solution
to Eq. (1) known at present is the half-cycle hyperbolic
secant �(t,z) = �0 sech [�0(t − mzc−1)] (i.e., a hyperbolic
secant without carrier) [17] and its N -soliton generalizations.
These solitary pulses do not satisfy the multidimensional
Maxwell’s equations in vacuum and are presently therefore of
little practical relevance. Whether such solitons can stabilize
in a material through a compensation of self-focusing and
diffractive effects is an intriguing question and requires a study
of the three-dimensional Maxwell-Bloch equations. To the best
of our knowledge, such a study has not been performed to date.

We now briefly mention that if the inhomogeneous lifetime
becomes longer such that T < T ∗

2 � T1,T2, the pulse behavior
changes, and a larger blueshift (see, e.g., [18] for the sharp-line
case) can move the pulse completely outside the absorption
band of the material where it can propagate a longer distance.
Nevertheless, we have numerically verified also for dense
media that off-resonant hyperbolic secant pulses are also
incapable of completely returning the material back to the
ground state and also lose energy during propagation, although
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to a considerably smaller extent than for resonant pulses
in inhomogeneously broadened media. Obviously, in the
artificial undamped limit T1,T2,T

∗
2 → ∞ the excited dipoles

radiate forever, and optical transparency is difficult to avoid.
Additionally, insofar as SIT is valid down to the single cycle
regime, so are the results of this paper. The generalization of
the 2π McCall-Hahn soliton for arbitrary durations is the 2π

breather solution

�(t,z) = 2�0 sech θR
cos θI − γ sin θI tanh θR

1 + γ 2 sin2 θI sech2 θR
, (2)

where θR = 1
2�0(t − mez/c) + δR, θI = ωc(t − mcz/c) + δI

and γ = �0/(2ωc). Equation (2) is valid in the forward wave
approximation � � ωκp. The expressions for the refractive
indices me and mc in the sharp-line regime are found in,
e.g., [7]. We have verified that the breather solution Eq. (2)
coincides with our computer solution when we consider
close-to single-cycle input pulses and that when the forward
wave approximation is not valid, these pulses also leave the
material slightly excited after they have passed.

The energy vs distance decay of SIT pulses has a com-
plicated structure that depends on the input pulse shape and
the relation between the pulse duration and the transverse and
longitudinal lifetimes. For example, after exciting the medium
with non-SIT pulses of duration T < T ∗

2 in the unidirectional
approximation, a long-lived precursor might precede the
driving pulse [11]. Even when the soliton has formed after
many Beer’s lengths, this forerunner might persist due to its
spectral location around the wings of the absorption line, where
it experiences little absorption. In the case of a SIT pulse
propagating in an inhomogeneously broadened attenuator,
which is the scenario considered in this paper, the energy decay
is adequately explained by phenomenologically incorporated
loss terms in the Bloch equations. Figure 5 shows a computer
solution of the propagation of the pulse above, but under the
rotating-wave and slowly varying envelope approximations
and with the inclusion of a spontaneous emission lifetime
T1 = 20 ps. That is, this pulse fits between the two transverse
lifetimes T ∗

2 < T < T2. Although the long-term behavior of
this system is w → −1, the same qualitative pulse behavior
is recovered in this simplified model. The pulse energy
decays linearly with propagation distance; the pulse broadens
temporally and propagates with a reduced group velocity. On
the whole, the propagational results of this paper may therefore
be understood in terms of unidirectional solitonic SIT systems
with phenomenologically incorporated loss terms.

This work also relates to recent studies of the area theorem
using Eq. (1) in the undamped limit: Hughes [19] considered
propagation of initial pulses �(t,0) = �0sech [t/T ] sin(ωct)
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FIG. 5. (Color online) Energy vs distance (dotted line) and area
vs distance (solid line) for a computer solution under the rotating-
wave and slowly varying envelope approximations. The conditions
are the same as in Figs. 2–4, but neglecting backpropagation and
including a spontaneous emission lifetime of 20 ps.

with areas between 2π and 12π [i.e., �0/(2ωc) ∼ 0.1 − 1] and
showed that these pulses did not return the material to its initial
state. A similar analysis was done by Xiao [20] and Novitsky
[21]. We remark that if the Rabi frequency is comparable to ωc,
then in view of Eq. (2) the initial pulses used in [19–21] are not
SIT pulses but must be reshaped by the material before prop-
agating as solitons. The residual energy left behind in the ma-
terial in [19,21] is a sign of this reshaping. With the indicated
parameters in Refs. [19–21] these systems are nevertheless
solitonic, supporting SIT pulses down to arbitrary durations.

V. CONCLUSIONS

In summary, by integrating the Maxwell-Bloch equations
numerically, we show that backpropagation is relevant for
self-induced transparency pulses in dense inhomogeneously
broadened materials. The backward-propagating pulse is coex-
cited along with the forward-propagating pulse. After the pulse
has passed, the atoms are left in an excited state. In this way, the
pulse gradually loses energy; it elongates temporally and trav-
els with reduced group velocity. A large redshift in the reflected
radiation is predicted. Essential SIT results are reproduced for
weaker materials where backpropagation is negligible.
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