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ultrastrong-light-matter-interaction regime
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When the light interacts with matters in a lossy cavity, in the standard cavity quantum electrodynamics,
the dissipation of cavity fields is characterized simply by the strengths of the two couplings: the light-matter
interaction and the system-environment coupling through the cavity mirror. However, in the ultrastrong-light-
matter-interaction regime, the dissipation depends also on whether the two couplings are mediated by the electric
field or the magnetic one (capacitive or inductive in superconducting circuits). Even if we know correctly the
microscopic mechanism (Lagrangian) of the system-environment coupling, the coupling Hamiltonian itself is in
principle modified due to the ultrastrong interaction in the cavity. In this paper, we show a recipe for deriving
a general expression of the Hamiltonian of the system-environment coupling, which is applicable even in the
ultrastrong-light-matter-interaction regime in the good-cavity and independent-transition limits.
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I. INTRODUCTION

When the electromagnetic fields are confined in a cavity
consisting of mirrors with high reflectivities, we can energet-
ically identify the cavity modes while they have inevitable
broadenings due to the loss through the mirrors. The loss is
usually characterized by a loss rate κbare that is determined
by the reflectivity of the mirror (or the coupling strength
between the cavity mode and its environment) and the density
of states of the environment. In the standard cavity quantum
electrodynamics (QED) [1,2], the Hamiltonian of the system-
environment coupling (SEC) is simply supposed as

Ĥstandard
SEC =

∫ ∞

0
dω i�

√
κbare(ω)

2π
[α̂†(ω)â − â†α̂(ω)]. (1)

Here, â is the annihilation operator of a photon in the
cavity mode with eigenfrequency ω0, and α̂(ω) is the one
in the environment with frequency ω. They satisfy [â,â†] =
1, [α̂(ω),α̂†(ω′)] = δ(ω − ω′), and [â,â] = [α̂(ω),α̂(ω′)] =
[â,α̂(ω)] = [â,α̂†(ω)] = 0. In this standard expression, pho-
tons pass through the cavity mirror with conserving the number
of photons, and we can not catch the information of whether
the SEC is through the electric field or the magnetic one
by watching only the above expression. This question has
tiny meaning if Eq. (1) is well justified [3,4], and we can
discuss simply the dissipative motion of “photons” without
considering the electric and magnetic fields explicitly.

When the cavity embeds matters with excitations interact-
ing with the electromagnetic fields, the Hamiltonian of the
cavity system is generally expressed as [5]

Ĥ0 = �ω0â
†â + �g(â + â†)Ŝx + Ĥmat. (2)

Here, Ĥmat is the Hamiltonian of the matters, Ŝx is the nondi-
mensional operator that annihilates or creates an excitation in
matters, and g is the strength of the light-matter interaction
(vacuum Rabi splitting). If g is small enough compared to ω0

and to the transition frequency ωx of matters (ω0,ωx � g),
the rotating-wave approximation (RWA) can be applied to
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the light-matter interaction, and then Ĥ0 is rewritten with the
annihilation operator ŝ and creation one ŝ† of an excitation in
matters (Ŝx = ŝ + ŝ†) as

Ĥ0 � ĤRWA
0 = �ω0â

†â + �g(ŝ†â + â†ŝ) + Ĥmat. (3)

Under the RWA, the total number of photons and excitations
is conserved in the process of the light-matter interaction,
and at the same time the standard SEC Hamiltonian (1) can
be justified [1,6–8]. In most of the studies of cavity QED,
Eqs. (3) and (1) are supposed as the standard Hamiltonians
of the cavity system with light-matter interaction and of the
SEC, respectively. When the loss rate of cavity fields or
that of excitations is higher than the light-matter-interaction
strength (κbare > g), it is called the weak-interaction (coupling)
regime, and the opposite case ω0,ωx � g > κbare is called the
(normally) strong-interaction (coupling) one.

When the electromagnetic fields ultrastrongly interact with
matters (g � ω0,wx) [9,10], the RWA can not be applied to the
light-matter interaction, and we must explicitly consider the
counter-rotating terms (in the basis of photons and excitations)
âŝ and â†ŝ† in Eq. (2). The ultrastrong interaction has been
realized with a great effort recently by the electric dipole
transitions in subbands of semiconductor quantum wells
[11–16], molecular materials [17], and two-dimensional elec-
tron gas [18]. Further, in superconducting circuits, which has
a good correspondence with the cavity QED [10,19], flux
qubits also exhibit the ultrastrong interaction with fields in
transmission line resonator [20–22].

In the ultrastrong-light-matter-interaction regime, there
seems to be no reason to believe the standard expression (1) of
SEC [8,23], and the counter-rotating terms âα̂(ω) and α̂†(ω)â†

should also be considered for the SEC (the reason will be
explained later). Instead of Eq. (1), we can suppose intuitively
the following two SEC Hamiltonians:

Ĥ+
SEC =

∫ ∞

0
dω i�

√
κbare(ω)

2π
(â + â†)[α̂†(ω) − α̂(ω)], (4a)

Ĥ−
SEC =

∫ ∞

0
dω i�

√
κbare(ω)

2π
[i(â − â†)][α̂†(ω) − α̂(ω)].

(4b)
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These expressions will be obtained in this paper by the straight-
forward calculation from Lagrangians, although there is an
attempt starting from Eq. (1) and performing a normalization
additionally to correct its discrepancy from the reliable results
[8] as discussed in Refs. [24–26].

Since the light-matter interaction is proportional to â + â†

[not to i(â − â†)] in Eq. (2), the dissipative motion of the
cavity fields in principle depends on whether the SEC is
expressed as Ĥ+

SEC or Ĥ−
SEC. Then, in the ultrastrong-light-

matter-interaction regime, we face the ambiguity for choosing
Ĥ±

SEC (or the sign in the light-matter interaction), by which the
dissipation of the cavity fields is also characterized not only
by the strengths of the two couplings (g and κbare) and the
detuning between ω0 and ωx . This fact will be demonstrated
also in this paper. In other words, the “photon” picture is no
longer suitable, and we must correctly understand whether the
two couplings (light-matter interaction and SEC) are mediated
by the electric field or the magnetic one. They are basically
determined by the detailed mechanisms of the light-matter
interaction and of the SEC in the system to be supposed
(described by Lagrangians), and we can no longer discuss
the dissipation and detection in the ultrastrong-light-matter-
interaction regime without avoiding this ambiguity.

The theoretical treatment of the SEC in the ultrastrong-
light-matter-interaction regime has been discussed in the
formalism of quantum Langevin equation [24,25,27,28] and
of master equation [7,29]. The photon measurement has also
been discussed [30], and many theoretical proposals were
raised [24,28,30–32]. However, in these theoretical works, the
SEC Hamiltonians were simply given without the discussion
whether it is mediated by the electric field or the magnetic one
(capacitive or inductive in circuits). In Ref. [33], the coupling
Hamiltonian between an artificial atom and transmission
lines is derived microscopically. The derivation of the SEC
Hamiltonians has been discussed by considering explicitly
the boundary conditions of the cavity fields [34–42], whereas
empty cavities were mainly supposed. In our previous work
[8], the SEC Hamiltonian is derived based on the Maxwell’s
boundary conditions at the mirror of the cavity that is
filled by a medium with excitations ultrastrongly interacting
with the electromagnetic fields. However, the derivation is
applicable to only the systems with simple bosonic excitations
in matters, and a recipe for deriving the SEC Hamiltonian
that is independent of the detail of matters is still desired.
In this paper, we try to derive the SEC Hamiltonian starting
from the Lagrangian describing the detailed mechanisms of
the SEC while keeping the matter system as a black box as far
as possible. The SEC is explicitly discussed for two systems:
superconducting circuits and a Fabry-Perot cavity.

We first review the treatment of the SEC in Sec. II. The
Langevin and master equations are derived for given SEC
Hamiltonians (4), and the input-output relation is also derived.
The straightforward derivation of the SEC Hamiltonians is
performed in Sec. III. We will find that, in the straightforward
calculation from the Lagrangians, the SEC Hamiltonians are
in principle modified by the presence of the ultrastrong-light-
matter interaction. In other words, the SEC Hamiltonians can
not be determined without the complete knowledge inside the
cavity in principle. In some cases, the SEC Hamiltonians can
not be obtained in the simple forms as Eqs. (4). However, in

FIG. 1. (Color online) In both circuits, a LC resonator with
capacitance CR and inductance LR couples with a semi-infinite
transmission line (environment) with capacitance CT and inductance
LT per unit length. They are coupled by a capacitance Cc. The
resonator also couples with a Cooper pair box (CPB) with capacitance
CJ and Josephson energy EJ. Whereas the resonator-CPB coupled
system itself is equivalent in both circuits and the resonator-
environment coupling is also equivalent, the two circuits are not
equivalent as a whole due to the difference of the position of the CPB,
which corresponds to the difference of the inductive resonator-CPB
interaction (circuit A) and the capacitive one (circuit B).

the good-cavity and independent-transition limits (definitions
will be explained in Sec. II), the SEC Hamiltonians can be
derived as Eqs. (4), and the expressions are not modified by the
presence of the ultrastrong-light-matter interaction. The recipe
of the derivation will be shown in Sec. IV. The discussions in
Secs. III and IV will be performed by considering explicitly
superconducting circuits consisting of a LC circuit as depicted
in Fig. 1 (the case of a transmission line resonator is discussed
in Appendix). The derivation of the SEC Hamiltonian of a
Fabry-Perot cavity for the electromagnetic fields will be shown
in Sec. V. The discussion in this paper will be summarized in
Sec. VI.

II. REVIEWING TREATMENT OF SEC

When the total Hamiltonian Ĥ = Ĥ0 + Ĥ±
SEC + Ĥenv is

already given, we can discuss the dissipation of the cavity
system Ĥ0 based on the well-established frameworks [1,6]
even in the ultrastrong-light-matter-interaction regime. Here,
the Hamiltonian of the environment is simply supposed as

Ĥenv =
∫ ∞

0
dω �ωα̂†(ω)α̂(ω), (5)

and the annihilation and creation operators satisfy

[α̂(ω),α̂†(ω′)] = δ(ω − ω′), (6a)

[α̂(ω),α̂(ω′)] = 0. (6b)

We first diagonalize the cavity system including the light-
matter interaction as

Ĥ0 =
∑

μ

�ωμ|μ〉〈μ|, (7)
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where |μ〉 is an eigenstate and ωμ is its eigenfrequency.
As mentioned in Ref. [7] for the ultrastrong-light-matter-
interaction regime, in order to guarantee the decay of the
cavity system to its ground state in the environment at
zero temperature [8,23], we should neglect the fast-rotating
(counter-rotating) terms in the SEC Hamiltonian (4) based on
the eigenstates of the cavity system as

Ĥ±
SEC �

∫ ∞

0
dω i�

√
κbare(ω)

2π
[α̂†(ω)x̂± − x̂

†
±α̂(ω)]. (8)

Here, we denote the cavity fields as

X̂+ = â + â†, (9a)

X̂− = i(â − â†), (9b)

and x̂± represents the lowering part of them:

x̂± =
∑

μ,ν>μ

|μ〉〈μ|X̂±|ν〉〈ν|. (10)

In the weak- and normally strong-light-matter-interaction
regimes, the lowering and raising operators reduce to x̂± =
â and x̂

†
± = â†, respectively. Then, the SEC Hamiltonian

(8) is rewritten to the standard one (1). However, in the
ultrastrong-light-matter-interaction regime, we generally get
x̂± �= â because the total number of photons and excitations
is no longer conserved [9]. Here, we suppose that X̂± does
not have diagonal elements for simplicity, and the original
fields are represented as X̂± = x̂± + x̂

†
±, whereas the diagonal

elements cause the pure dephasing in general [7]. In the
derivation of the master equation, the importance of the usage
of true eigenstates of the cavity system (called the spectral

decomposition in Ref. [6]) has been discussed even for the
normally strong-light-matter-interaction regime [43–47], and
the approximation from Eq. (4) to Eq. (8) is called the
pre-trace RWA in Ref. [47]. This approximation is justified
because the counter-rotating terms α̂(ω)x̂± and α̂†(ω)x̂†

± (in
the basis of true eigenstates) oscillate rapidly compared to
the remaining two terms appearing in Eq. (8). The pre-trace
RWA can be applied when the environment is large enough
compared to the cavity system and in the good-cavity limit,
i.e., the loss rate is small enough compared to the transition
frequency of the cavity system: κbare 	 ω0,ωx [more precisely
κν,μ < ων,μ for loss rate κν,μ (14) relevant to the transition of
interest with frequency ων,μ = ων − ωμ (ν > μ)]. Under these
assumptions, we can suppose that the state of the environment
is modified only slightly by the coupling with the cavity
system, and the energy loss to the environment no longer
returns to the cavity. Then, only the two corotating terms
that conserve the energy can survive in Eq. (8). If we want
to discuss the Lamb shift due to the SEC correctly, we should
keep the counter-rotating terms, and Eqs. (4) should be used
without applying the pre-trace RWA.

We simply suppose that the fields in the environment have
no coherence and are distributed as

〈α̂†(ω)α̂(ω′)〉 = δ(ω − ω′)n(ω), (11a)

〈α̂(ω)α̂†(ω′)〉 = δ(ω − ω′)[n(ω) + 1], (11b)

〈α̂(ω)α̂(ω′)〉 = 0. (11c)

From the approximated SEC Hamiltonian (8), the master equa-
tion for the reduced density operator ρ̂ representing the cavity
system is derived under the Born-Markov approximation in
the Schrödinger picture as [1,6]

d

dt
ρ̂(t) = 1

i�
[ρ̂(t),Ĥ0] +

∑
μ,ν>μ

κbare(ων,μ)

2
{n(ων,μ)[x̂†

±ρ̂(t)x̂μ,ν
± + {x̂μ,ν

± }†ρ̂(t)x̂± − x̂±{x̂μ,ν
± }†ρ̂(t) − ρ̂(t)x̂μ,ν

± x̂
†
±]

+ [n(ων,μ) + 1][x̂±ρ̂(t){x̂μ,ν
± }† + x̂

μ,ν
± ρ̂(t)x̂†

± − x̂
†
±x̂

μ,ν
± ρ̂(t) − ρ̂(t){x̂μ,ν

± }†x̂±]}, (12)

where x̂
μ,ν
± = |μ〉〈μ|X̂±|ν〉〈ν|. Further, we suppose that the loss rate is low enough compared to the difference of transitions

of interest as κbare 	 |ων,μ − ων ′,μ′ | (more precisely, κν,μ,κν ′,μ′ 	 |ων,μ − ων ′,μ′ |) and all the transitions of interest can be
well identified (we call this situation as “independent-transition limit” in this paper). In this situation, we can also neglect the
fast-oscillating terms involving the different transitions {μ,ν} �= {μ′,ν ′}, which is called the post-trace RWA in Ref. [47], and
then the master equation is finally approximated as [6,7]

d

dt
ρ̂(t) = 1

i�
[ρ̂(t),Ĥ0] +

∑
μ,ν>μ

κbare(ων,μ)|〈μ|X̂±|ν〉|2
2

{n(ων,μ)[2σ̂ †
μ,νρ̂(t)σ̂μ,ν − σ̂μ,ν σ̂

†
μ,νρ̂(t) − ρ̂(t)σ̂μ,ν σ̂

†
μ,ν]

+ [n(ων,μ) + 1][2σ̂μ,ν ρ̂(t)σ̂ †
μ,ν − σ̂ †

μ,ν σ̂μ,ν ρ̂(t) − ρ̂(t)σ̂ †
μ,νσ̂μ,ν]}, (13)

where σ̂μ,ν = |μ〉〈ν|. In this way, the loss rate of each transition is modulated by the matrix element |〈μ|X̂±|ν〉|2 of the cavity
field X̂± involving the SEC:

κν,μ = κbare(ων,μ)|〈μ|X̂±|ν〉|2. (14)

In the same manner, we can also treat the dissipation of matters by considering the coupling between fields of excitations in
matters and its environment including the pure dephasing [7].

On the other hand, from the approximated SEC Hamiltonian (8), we can also derive the quantum
Langevin equation for system operator Ô under the Born-Markov approximation in the Heisenberg picture
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as [1]

d

dt
Ô = 1

i�
[Ô,Ĥ0] − [Ô,x̂

†
±]

∫ ∞

0
dω e−iωt

[
κbare(ω)

2
x̂±(ω) +

√
κbare(ω)âin(ω)]

+
∫ ∞

0
dω eiωt

[
κbare(ω)

2
x̂±(ω) +

√
κbare(ω)âin(ω)

]†
[Ô,x̂±], (15)

where the Fourier transform is defined as

x̂(t) =
∫ ∞

−∞
dω e−iωt x̂(ω), (16a)

x̂(ω) = 1

2π

∫ ∞

−∞
dt eiωt x̂(t). (16b)

The input operator âin(t) is defined as

âin(t) = 1√
2π

∫ ∞

0
dω e−iω(t−t0)α̂(ω,t0), (17a)

âin(ω) = 1√
2π

eiωt0 α̂(ω,t0) for ω > 0, (17b)

where t0 is the switch-on time of the SEC [1], and α̂(ω,t0)
satisfies the equal-time commutation relation (6) and also
shows the distribution of the environment (11). Obeying the
procedure in Ref. [1], the input-output relation is also derived
as [30]

âout(ω) = âin(ω) +
√

κbare(ω)x̂±(ω). (18)

For calculating quantities corresponding to measurements by
photon detectors, we should perform the time and normal
ordering of the operators [30] in the basis of true eigenstates
of the cavity system, as usually performed in quantum optics
[1]. In Ref. [27], the standard SEC Hamiltonian (1) was
used for deriving the quantum Langevin equation and the
input-output relation. Even in this treatment, we can obtain the
vacuum output from the vacuum input, but the cavity system
itself is excited even by the environment at zero temperature
[n(ω) = 0] [23]. We can avoid this problem by using the
SEC Hamiltonian (8) with the pre-trace RWA (in the basis
of true eigenstates). In the independent-transition limit, the
quantum Langevin equation is rewritten under the post-trace
RWA (neglecting the coupling with other transitions) as

d

dt
σ̂μ,ν =

(
−iων,μ − κbare(ων,μ)|〈μ|X̂±|ν〉|2

2

)
σ̂μ,ν

−
∫ ∞

0
dω e−iωt

√
κbare(ω)〈ν|X̂±|μ〉âin(ω), (19a)

σ̂μ,ν(ω) = −i
√

κbare(ω)〈ν|X̂±|μ〉
ω − ων,μ + iκbare(ω)|〈μ|X̂±|ν〉|2 . (19b)

Substituting this into the input-output relation (18), we get

âout(ω) =
∑

μ,ν>μ

ω − ων,μ − iκbare(ω)|〈μ|X̂±|ν〉|2/2

ω − ων,μ + iκbare(ω)|〈μ|X̂±|ν〉|2/2
âin(ω).

(20)

In this way, we can also check the modulation of the loss rates
of the transitions by the matrix element |〈μ|X̂±|ν〉|2.

The above master equation (12) and the quantum Langevin
one (15) are derived from the given SEC Hamiltonian Ĥ±

SEC
(4). However, there still remains the ambiguity for choos-
ing X̂+ = â + â† or X̂− = i(â − â†), which is in principle
determined by the mechanism of the confinement and loss
of the cavity fields. In other words, we get an additional
parameter for controlling the dissipation of the cavity system in
the ultrastrong-light-matter-interaction regime. In our previous
work [8], we supposed a cavity structure consisting of a perfect
mirror and a nonperfect thin mirror as depicted in Fig. 3.
Supposing that the inside of the cavity is filled by a medium
with simple bosonic excitations, we successfully derived the
SEC Hamiltonian from the Maxwell’s boundary conditions at
the nonperfect mirror. It is expressed as

ĤMBC
SEC =

∑
j

∫ ∞

0
dω i�

√
κMBC(ωj )

2π
[α̂†(ω)p̂j − p̂

†
j α̂(ω)],

(21)

where p̂j is the annihilation (bosonic) operator of a polariton
in the j th eigentransition mode and ωj is its eigenfrequency.
Whereas we also get the explicit expression of loss rate
κMBC(ω), it is not easy to catch whether ĤMBC

SEC is expressed
by electric field [X̂− = i(â − â†)] or the magnetic one [X̂+ =
â + â†] because Eq. (21) corresponds to the SEC Hamiltonian
(8) after the pre-trace RWA. Further, the derivation procedure
of Eq. (21) is applicable to mainly the bosonic excitations in
matters (p̂j and ωj are derived by Bogoliubov transformation),
and the extension to general nonlinear systems (e.g., Jaynes-
Cummings and Rabi models with/without A2 term) is not
straightforward.

In the following discussions, we try to derive the SEC
Hamiltonian from the Lagrangian describing the detailed
mechanism of the SEC.

III. STRAIGHTFORWARD DERIVATION

In this and the next sections, we consider explicitly
superconducting circuits, which have a good correspondence
with the cavity QED and have a rich tunability compared
with the actual light-matter system [10,19], especially the two
circuits depicted in Fig. 1. Before deriving Hamiltonians, we
must derive Lagrangians describing correctly the circuits, and
the derivation procedure of them is already established [48,49].

The Lagrangian applicable to both two circuits is shown in
Sec. III A, and we try to derive the Hamiltonian with keeping
artificial atoms (matters) as a black box. Although the SEC
Hamiltonian can not be derived without the knowledge inside
the cavity in general, we can derive it in the special case
where the resonator fields interact inductively with artificial
atoms as circuit A. This situation is discussed in Sec. III B.
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In the opposite case, where the resonator fields interact with
artificial atoms capacitively as circuit B, the expression of the
SEC Hamiltonian depends on the detail of the cavity system.
In Sec. III C, we derive the SEC Hamiltonian by considering
circuit B explicitly. The difference of dissipative behaviors of
the two circuits is demonstrated in Sec. III D.

A. Lagrangian

In both circuits in Fig. 1, a LC resonator characterized by
capacitance CR and inductance LR confines the superconduct-
ing current (microwave) with a frequency of ω0 = 1/

√
LRCR,

which corresponds to the electromagnetic fields in a cavity
[19]. At the capacitance Cc, the resonator couples with a
semi-infinite transmission line (external line, environment)
characterized by capacitance CT and inductance LT per unit
length. The difference of circuits A and B is the position of
the Cooper pair box (CPB, artificial atoms) characterized by
capacitance CJ and Josephson energy EJ, which couples with
the resonator and corresponds to matters interacting with the
cavity fields. The two circuits are equivalent in the absence
of the CPB or of the external line. However, due to the
presence of both, the two circuits are in principle different.
Then, the dissipative motion of the resonator fields depends
on whether the resonator-CPB interaction is mediated by the
charge (capacitive) or the magnetic flux (inductive) in the
LC resonator, which corresponds to the electric and magnetic
fields in a cavity of light.

Once a circuit is given, we can derive its Lagrangian [48,49],
and then its Hamiltonian is also determined. However, here we
try to derive the SEC Hamiltonian with keeping the matter
system as a black box (not only the CPB, but also other
elements can exist). By defining the flux φ in the resonator
and {�j } in the external line as in Fig. 1, the Lagrangian of
the whole circuit is generally expressed as [42,49,50]

L = L0 + Cc

2
(φ̇ − �̇0)2

+
∞∑

j=1

[
CT�x

2
�̇2

j − (�j − �j−1)2

2LT�x

]
. (22)

The last two terms are the Lagrangian of the external line. �x

is the infinitesimal distance, and the overdot means the time
derivative. The second term represents the SEC, and L0 is the
Lagrangian in the resonator:

L0 = CR

2
φ̇2 − φ2

2LR
+ LM, (23)

whereLM expresses arbitrary circuit elements such as the CPB
and their interactions with the resonator fields. The conjugate
momenta are obtained as follows:

q = ∂L
∂φ̇

= CRφ̇ + ∂LM

∂φ̇
+ Cc(φ̇ − �̇0), (24a)

Q0 = ∂L
∂�̇0

= Cc(�̇0 − φ̇), (24b)

Qj = ∂L
∂�̇j

= CT�x�̇j for j > 0. (24c)

Then, the Lagrange equations are obtained as

CRφ̈ + d

dt

∂LM

∂φ̇
+ Cc(φ̈ − �̈0) = − φ

LR
+ ∂LM

∂φ
, (25a)

Cc(�̈0 − φ̈) = −�0 − �1

LT�x
, (25b)

CT�x�̈j = �j+1 + �j−1 − 2�j

LT�x

for j > 0. (25c)

In the continuous description �(xj ) = �j of the field in the
transmission line, these equations are rewritten as

CRφ̈ + d

dt

∂LM

∂φ̇
+ Cc[φ̈ − �̈(0+)] = − φ

LR
+ ∂LM

∂φ
, (26a)

Cc[�̈(0+) − φ̈] = 1

LT

∂�(x)

∂x

∣∣∣∣
x=0+

, (26b)

CT�̈(x) = 1

LT

∂2�(x)

∂x2
for x>0.

(26c)

As seen in Eq. (26c), the fields in the external line simply
propagate with a speed of v = 1/

√
LTCT, while it contacts

with the resonator at the capacitance Cc (x = 0) and Eq. (26b)
is the boundary condition. From Eqs. (26a) and (26b), we get

CRφ̈ + φ

LR
+ d

dt

∂LM

∂φ̇
− ∂LM

∂φ
= 1

LT

∂�(x)

∂x

∣∣∣∣
x=0+

. (27)

The left-hand side is the equation of motion of φ derived
from the Lagrangian L0 of the resonator system, and the right-
hand side is the perturbation due to the coupling with the
environment (external line). We can fully solve the equations
of motion with the knowledge of LM . But, can we derive the
SEC Hamiltonian without it? The total Hamiltonian is derived
in terms of the fluxes and their time derivatives as

H(φ,φ̇, . . . ,{�j,�̇j })

= H0(φ,φ̇, . . .) + Cc

2
(φ̇ − �̇0)2

+
∞∑

j=1

[
CT�x

2
�̇2

j + (�j − �j−1)2

2LT�x

]
, (28)

where H0 is the Hamiltonian derived from L0. The SEC is
represented by the second term. In terms of the conjugate
momenta, the Hamiltonian is rewritten as

H(φ,q, . . . ,{�j,Qj })
= H0(φ,q + Q0, . . .)

+ Q2
0

2Cc
+

∞∑
j=1

[
Q2

j

2CT�x
+ (�j − �j−1)2

2LT�x

]
. (29)

In this way, when we consider the capacitive coupling between
the resonator and the external line as in Fig. 1 (and employing
the flux-base description [49]), the SEC is included in Ĥ0 and
determined with the parameters of H0 replacing q by q + Q0.
Whereas the SEC Hamiltonian has been expressed simply by
φ or q in the well-known discussions [1,6,7], it is derived in a
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complicated form in general, e.g., expressed by q/CR + (q +
ρ)/CJ with the charge ρ in the CPB for circuit B as will be
shown in Sec. III C. Then, the SEC Hamiltonian in principle
depends on the detail of the resonator system, and we can
not clearly distinguish the Hamiltonians of it, of environment,
and of the SEC without the knowledge of LM . However, we
can distinguish them in specific situations such as circuit A in
Fig. 1. In the next section, we first derive the SEC Hamiltonian
in such situations by the straightforward calculation, although
it gives the complicated SEC Hamiltonian for circuit B as
discussed in Sec. III C.

B. In the case of inductive resonator-CPB interaction (circuit A)

As a less general case, if the other elements in the
LC resonator interact with the resonator fields only by
its flux φ but not by the time derivative φ̇ (this means
∂LM/∂φ̇ = 0), the total Hamiltonian can be separated clearly
as HA = HA

0 (φ,q, . . .) + HA
SEC + HA

env. Here, HA
0 = HLC +

. . . includes the Hamiltonian of the LC resonator

HLC = q2

2CR
+ φ2

2LR
, (30)

and also represents arbitrary circuit elements (artificial atoms,
other resonators, etc.) and the interaction between them. Even
if the resonator embeds complicated elements, if ∂LM/∂φ̇ = 0
is satisfied, the SEC Hamiltonian is represented simply as

HA
SEC = qQ0

CR
, (31)

and the environment is defined as

HA
env = Q2

0

2C ′
c

+
∞∑

j=1

[
Q2

j

2CT�x
+ (�j − �j−1)2

2LT�x

]
, (32)

where the contact capacitance is modulated as

1

C ′
c

= 1

Cc
+ 1

CR
. (33)

The Hamiltonian of the LC resonator can be easily
quantized as

ĤLC = �ω0â
†â, (34)

where the annihilation and creation operators satisfy

[â,â†] = 1, (35a)

[â,â] = 0. (35b)

In terms of them, the resonator fields are expressed as

φ̂ =
√

�ZR

2
(â + â†), (36a)

q̂ = −i

√
�

2ZR
(â − â†), (36b)

where ZR = √
LR/CR is the impedance of the LC circuit. They

certainly satisfy [φ̂,q̂] = i�.
We next quantize the environmentHenv. From this Hamilto-

nian, the equation of motion of quantized external field �̂(x)

is derived in the continuous basis as the wave equation for
x > 0:

CT
d2

dt2
�̂(x) = 1

LT

∂2�̂(x)

∂x2
for x > 0. (37)

When the environment Henv is isolated from the resonator
system, the external fields obey the following boundary
conditions at the boundary x = 0+:

d

dt
�̂(0+) = Q̂0

C ′
c

, (38a)

d

dt
Q̂0 = 1

LT

∂�̂(x)

∂x

∣∣∣∣
x=0+

. (38b)

From these two equations, we get the following relation for
�(x = 0+):

C ′
c
d2

dt2
�̂(0+) = 1

LT

∂�̂(x)

∂x

∣∣∣∣
x=0+

. (39)

Solving the wave equation (37) with this boundary condition,
the wave function at frequency ω is obtained as

f (z,ω) =
√

2

�

cos(ωx/v) − iζ (ω) sin(ωx/v)

1 + iζ (ω)
, (40)

where ζ (ω) is the nondimensional parameter defined with the
characteristic impedance ZT = √

LT/CT of the transmission
line:

ζ (ω) = ωZTC ′
c. (41)

Then, the positive-frequency components of the external fields
are quantized by annihilation operators {α̂m} as

�̂+(z) =
∞∑

m=1

√
�ZT

km�

cos(kmx)−iζ (vkm) sin(kmx)

1+iζ (vkm)
α̂m, (42a)

Q̂+(z) = −i

∞∑
m=1

√
�km

ZT�

cos(kmx) − iζ (vkm) sin(kmx)

1 + iζ (vkm)
α̂m,

(42b)

where the wave number is defined as km = mπ/� with length
� of the external system and integer m = 1,2, . . . . Eventually,
the Hamiltonian of the environment is rewritten as

ĤA
env =

∞∑
m=1

�vkmα̂†
mα̂m. (43)

From Eq. (38a), Q̂0 is described by the external field as

Q̂+
0 = −ivC ′

c

∞∑
m=1

√
�kmZT

�

α̂m

1 + iζ (vkm)
(44a)

= −iC ′
c

∫ ∞

0
dω

√
2�ωZT

1 + iζ (ω)

α̂(ω)√
2π

. (44b)

Therefore, the SEC Hamiltonian (31) is expressed as

ĤA
SEC =

∫ ∞

0
dω i�

√
κ ′

LC

2π

ω

ω0

2ZR

�
q̂

[
α̂†(ω)

1 − iζ (ω)
− H.c.

]
,

(45)
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where κ ′
LC is the loss rate of bare resonator mode

κ ′
LC = ω0ZTC ′

c
2

ZRCR
2

. (46)

In this way, when the interaction between LC resonator and
other elements is inductive (∂LM/∂φ̇ = 0) as in circuit A, the
SEC Hamiltonian can be simply expressed by q̂ as Eq. (45)
not by φ̂. Then, when we define the annihilation operator â of
the resonator fields as Eqs. (36), this SEC Hamiltonian (45)
corresponds to Ĥ−

SEC (4b) as

ĤA
SEC =

∫ ∞

0
dω �

√
κA

bare(ω)

2π
(â − â†)[α̂†(ω) − H.c.], (47)

where the frequency-dependent bare loss rate is

κA
bare(ω) = κ ′

LC

|1 − iζ (ω)|2
(

ω

ω0

)
. (48)

In the next section, we consider a more general situation where
∂LM/∂φ̇ �= 0. In this case, the SEC Hamiltonian is modified
by the detail of the resonator system, and then we consider
circuit B explicitly. We will find that the SEC Hamiltonian is
expressed not simply as Eq. (45) in general.

C. In the case of capacitive resonator-CPB
interaction (circuit B)

Whereas the SEC Hamiltonian can not be derived in the
straightforward way in the general situation ∂LM/∂φ̇ �= 0, it
is possible when we consider a circuit explicitly, such as circuit
B in Fig. 1. When we define ψ as the flux through the CPB
as shown in Fig. 1, the Lagrangian of the resonator system is
represented as

LB
0 = CR

2
(φ̇ − ψ̇)2 − φ2

2LR
+ CJ

2
ψ̇2 + EJ cos(2eψ/�). (49)

Then, the total Hamiltonian including the external line is
obtained as follows:

HB = HB
0 + HB

SEC + Q2
0

2C ′′
c

+
∞∑

j=1

[
Q2

j

2CT�x
+ (�j − �j−1)2

2LT�x

]
, (50)

where the contact capacitance is modulated in this case as

1

C ′′
c

= 1

Cc
+ 1

CR
+ 1

CJ
. (51)

The Hamiltonian HB
0 is the one derived from LB

0 :

HB
0 = q2

2CR
+ φ2

2LR
+ (q + ρ)2

2CJ
− EJ cos(2eψ/�), (52)

where ρ = ∂LB
0 /∂ψ̇ is the conjugate momentum of ψ . The

SEC Hamiltonian is derived as

HB
SEC =

(
q

CR
+ q + ρ

CJ

)
Q0. (53)

In the same manner as the previous section, the quantized
external field at capacitance Cc is represented as

Q̂+
0 = −iC ′′

c

∫ ∞

0
dω

√
2�ωZT

1 + iζ ′(ω)

α̂(ω)√
2π

, (54)

where ζ ′(ω) = ωZTC ′′
c . Then, the SEC Hamiltonian is ex-

pressed as

ĤB
SEC =

∫ ∞

0
dω iC ′′

c

√
2�ωZT

2π

×
(

q̂

CR
+ q̂ + ρ̂

CJ

)[
α̂†(ω)

1 − iζ ′(ω)
− H.c.

]
. (55)

In this way, by the straightforward calculation, we get such
a complicated expression as the SEC Hamiltonian compared
with Eq. (45), which is expressed simply by q̂. This expression
can not be reduced to the simple ones as Eqs. (4), which we
usually introduce intuitively. Further, Eq. (55) is the expression
specially for circuit B, and the SEC Hamiltonian is modified
depending on the detail ofLM in general (when ∂LM/∂φ̇ �= 0).
However, as will be shown in Sec. IV, in the good-cavity
and independent-transition limits, we can derive the SEC
Hamiltonian in a simple form as Eqs. (4), and its expression is
independent of LM even if ∂LM/∂φ̇ �= 0.

D. Demonstration

Before deriving the general expression of the SEC, here
we demonstrate the difference of the dissipative behaviors
in circuits A and B of Fig. 1. Whereas the Lagrangian LB

0
for circuit B is derived in Eq. (49), the one for circuit A is
obtained as

LA
0 = CR

2
φ̇2 − (φ + ψ)2

2LR
+ CJ

2
ψ̇2 + EJ cos(2eψ/�). (56)

In the absence of the external line, the two circuits are
equivalent. The difference between LA

0 and LB
0 comes from

the definition of ψ and the position of the Earth for the two
circuits as drawn in Fig. 1 [49]. From Lagrangian LA

0 , we get
the corresponding Hamiltonian as

HA
0 = q2

2CR
+ (φ + ψ)2

2LR
+ ρ2

2CJ
− EJ cos(2eψ/�). (57)

Here, ρ = ∂LA
0 /∂ψ̇ is the conjugate momentum of ψ . The

expressions of HA
0 and HB

0 in Eq. (52) look different, and
the interactions between the LC resonator and the CPB seem
inductive (through φ and ψ) and capacitive (through q and ρ)
for circuits A and B, respectively. However, they are related as

HA
0 = U ∗HB

0 U, (58)

where U is the unitary operator defined as

U = exp(−iqψ/�). (59)

By using this, we also get

U ∗φU = φ + ψ, (60a)

U ∗qU = q, (60b)

U ∗ψU = ψ, (60c)

U ∗ρU = ρ − q. (60d)
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Then, HA
0 and HB

0 are in principle equivalent, and give the
same eigenfrequencies, because circuits A and B are equivalent
in the absence of the external line. Then, we can not distinguish
the inductive and capacitive interactions in such simple circuits
without the external line. Depending on whether the interaction
is capacitive or inductive [20–22] in real circuits of interest,
the position of the CPB is modeled as Fig. 1. However, in
the presence of the external line, the two circuits are clearly
different, and the Hamiltonians are also not equal as a whole.
Even by transforming the SEC Hamiltonian HB

SEC (53) of
circuit B as

U ∗HB
SECU =

(
q

CR
+ ρ

CJ

)
Q0, (61)

this is not equivalent with HA
SEC (31) of circuit A.

For simplicity, we neglect the anharmonicity in the CPB
as cos(2eψ̂/�) ∼ 1 + (2e/�)2ψ̂2 (in the transmon regime
[10,51] but general anharmonic systems can be considered
as discussed in Sec. II), and then the fields relevant to the CPB
can be expressed by bosonic operator b̂ satisfying

[b̂,b̂†] = 1, (62a)

[b̂,b̂] = 0. (62b)

The Hamiltonian of the CPB is rewritten as

ρ̂2

2CJ
− EJ cos(2eψ̂/�) � �ωxb̂

†b̂ + const, (63)

and the fields are represented as

ψ̂ = �

2e

(
ECP

2EJ

)1/4

(b̂ + b̂†), (64a)

ρ̂ = −i
�ωxCJ

2e

(
ECP

2EJ

)1/4

(b̂ − b̂†)

= −i
2e

2

(
2EJ

ECP

)1/4

(b̂ − b̂†). (64b)

Here, ωx = √
2ECPEJ/� is the excitation frequency and

ECP = (2e)2/2CJ is the capacitive energy in the CPB [10].
In terms of the annihilation and creation operators, the
Hamiltonians of resonator systems are represented as

ĤA
0 = �ω0â

†â + �ωxb̂
†b̂ + �gA(â + â†)(b̂ + b̂†)

+ �g2
A

ω0
(b̂ + b̂†)2, (65a)

ĤB
0 = �ω0â

†â + �ωxb̂
†b̂ − �gB(â − â†)(b̂ − b̂†)

+ �g2
B

ωx

[i(â − â†)]2. (65b)

The interaction strength is defined as

g̃ = gA

ω0
= gB

ωx

= 1

2e

(
ECP

2EJ

)1/4
√

�

2ZR
, (66)

and this can reach to the ultrastrong regime g̃ ∼ 0.1 [10], while
the anharmonicity might be small [51]. The two Hamiltonians
(65) are also related by the unitary operator

Û = exp[−g̃(â − â†)(b̂ + b̂†)] (67)

as ĤA
0 = Û †ĤB

0 Û [15,49]. However, in the presence of the
external line, the two circuits are different as a whole, and then
the fields in them are dissipated differently in general.

The two Hamiltonians (65) can be diagonalized by the
Bogoliubov transformation. We introduce the annihilation
operator of a polariton (eigenmode, superposition of resonator
field, and CPB one) for circuit ξ = A,B as [8,9]

p̂
ξ

j = w
ξ

j â + x
ξ

j b̂ + y
ξ

j â† + z
ξ

j b̂
†. (68)

The coefficients are determined for satisfying[
p̂

ξ

j ,Ĥ
ξ

0

] = �ωj p̂
ξ

j , (69)[
p̂

ξ

j ,p̂
ξ†
j ′

] = δj,j ′ . (70)

Whereas the coefficients are obtained differently for the two
circuits, the eigenfrequencies ωj of lower and upper polaritons
(j = L and U ) are obtained equally. In terms of the polariton
operators, the original ones are presented as

â =
∑

j=L,U

(
w

ξ∗
j p̂

ξ

j − y
ξ

j p̂
ξ†
j

)
, (71a)

b̂ =
∑

j=L,U

(
x

ξ∗
j p̂

ξ

j − z
ξ

j p̂
ξ†
j

)
, (71b)

and then we also get

â + â† =
∑

j=L,U

(
w

ξ

j − y
ξ

j

)∗
p̂

ξ

j + H.c., (72a)

i(â − â†) =
∑

j=L,U

i
(
w

ξ

j + y
ξ

j

)∗
p̂

ξ

j + H.c., (72b)

b̂ + b̂† =
∑

j=L,U

(
x

ξ

j − z
ξ

j

)∗
p̂

ξ

j + H.c., (72c)

i(b̂ − b̂†) =
∑

j=L,U

i
(
x

ξ

j + z
ξ

j

)∗
p̂

ξ

j + H.c. (72d)

When we suppose the good-cavity limit Cc 	 CR for simplic-
ity, we get ζ (ω),ζ ′(ω) 	 1 and C ′

c � C ′′
c � Cc. Performing the

pre-trace RWA, the SEC Hamiltonian ĤA
SEC (47) for circuit A

is rewritten as

ĤA
SEC �

∫ ∞

0
dω �

√
κLC

2π

ω

ω0
(â − â†)[α̂†(ω) − H.c.] (73a)

�
∫ ∞

0
dω �

√
κLC

2π

ω

ω0
α̂†(ω)

×
∑

j=L,U

(
wA

j + yA
j

)∗
p̂A

j + H.c., (73b)

where

κLC = ω0ZTCc
2

ZRCR
2

. (74)

Then, the loss rates of the eigenmodes in circuit A are finally
expressed as

κA
j = κLC

(
ω

ω0

)∣∣wA
j + yA

j

∣∣2
. (75)
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For circuit B, the SEC Hamiltonian is obtained as Eq. (55),
and it is rewritten in the good-cavity limit as

ĤB
SEC �

∫ ∞

0
dω �

√
κLC

2π

ω

ω0

[(
1 + 4g̃2 ωx

ω0

)
(â − â†)

+ 2g̃
ωx

ω0
(b̂ − b̂†)

]
[α̂†(ω) − α̂(ω)] (76a)

�
∫ ∞

0
dω �

√
κLC

2π

ω

ω0
α̂†(ω)

∑
j=L,U

[(
1 + 4g̃2 ωx

ω0

)

× (
wB

j + yB
j

) + 2g̃
ωx

ω0

(
xB

j + zB
j

)]∗
p̂B

j + H.c. (76b)

Then, the loss rates of the eigenmodes in circuit B are obtained
as

κB
j = κLC

(
ω

ω0

)∣∣∣∣
(

1 + 4g̃2 ωx

ω0

)(
wB

j + yB
j

)

+ 2g̃
ωx

ω0

(
xB

j + zB
j

)∣∣∣∣
2

. (77)

If we use the same Hamiltonian ĤA
0 = Û †ĤB

0 Û of the
resonator system for both circuits, the SEC Hamiltonian (61)
for circuit B is represented as

Û †ĤB
SECÛ �

∫ ∞

0
dω �

√
κLC

2π

ω

ω0

[
(â − â†)

+ 2g̃
ωx

ω0
(b̂ − b̂†)

]
[α̂†(ω) − α̂(ω)] (78a)

�
∫ ∞

0
dω �

√
κLC

2π

ω

ω0
α̂†(ω)

[(
wA

j + yA
j

)

+ 2g̃
ωx

ω0

(
xA

j + zA
j

)]∗
p̂A

j + H.c. (78b)

Then, the loss rates in circuit B can also be expressed as

κB
j = κLC

(
ω

ω0

)∣∣∣∣(wA
j + yA

j

) + 2g̃
ωx

ω0

(
xA

j + zA
j

)∣∣∣∣
2

. (79)

Here, we calculate the loss rates κ
ξ

j (75), (77), and (79) for
circuit ξ = A,B and mode j = L,U . By fabricating a SQUID
at the other edge of the resonator, we can effectively tune
the resonator length by applying a magnetic flux at the SQUID
[42,52,53] (CR and LR in Fig. 1 are proportional to the effective
resonator length), and then ω0 can be tuned with keeping
ZR and g̃, while the loss rate κLC of bare resonator mode
is modified. In Fig. 2(a), we plot the eigenfrequencies of the
Hamiltonians (65) by changing the resonator frequency ω0 for
fixed g̃ = 0.01. ĤA

0 and ĤB
0 give the same eigenfrequencies:

the lower and upper modes (dashed and solid curves). In
Figs. 2(c) and 2(e), we plot the loss rates κ

ξ

j calculated from

the coefficients {wξ

j ,x
ξ

j ,y
ξ

j ,z
ξ

j } obtained by diagonalizing ĤA
0

and ĤB
0 . The dashed-dotted curves represent the bare loss rate

κLC, and all the curves are normalized to κ0
LC at ω0 = ωx . We

can not find a clear difference between the two graphs for
such non-ultrastrong interaction g̃ = 0.01, and κL/U = κLC/2
is obtained at ω0 = ωx as in the standard discussion in quantum
optics [2].
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FIG. 2. (Color online) The resonator-CPB interaction strength is
supposed as g̃ = 0.01 for (a), (c), (e) and g̃ = 0.1 for (b), (d), (f). (a),
(b) The eigenfrequencies of lower and upper modes (dashed and solid
curves) in the resonator-CPB system of circuits A and B are plotted
versus the bare resonator frequency ω0 (the results are equivalent for
the two circuits). (c), (d) The loss rates κA

L/U of the two modes are
plotted for circuit A in Fig 1. The dashed-dotted curve represents κLC

of the bare resonator mode. (e), (f) The loss rates κB
L/U for circuit

B. The loss rates are normalized to κ0
LC at ω0 = ωx . Although the

two circuits have almost the same loss rates for g̃ = 0.01, they are
significantly different in the ultrastrong-interaction regime g̃ = 0.1.

Whereas the loss rates of the two circuits are always
equivalent in the case of g̃ 	 1, it is not the case in the
ultrastrong-interaction regime g̃ = 0.1 as seen in Figs. 2(d) and
2(f). Whereas ĤA

0 and ĤB
0 still show the same eigenfrequencies

for the upper and lower modes as in Fig. 2(b), we get κ
ξ

j �=
κLC/2 at ω0 = ωx , and the cross point κξ

L = κ
ξ

U is shifted to the
left side (and the shifts are different for the two circuits). In this
way, the loss rates are strongly modulated in the ultrastrong-
interaction regime g̃ � 0.1, and the dissipation of the resonator
fields is clearly different depending on whether the resonator-
CPB interaction is inductive (circuit A) or capacitive (circuit B)
even if the SEC is capacitive in both circuits. When we consider
the same Hamiltonian HA

0 = U ∗HB
0 U of the resonator system,

the loss rates in circuit B are given by Eq. (79), and it gives
the same values as Eq. (77) for the loss rates in circuit B.
Whereas they are different from the loss rates given by Eq. (75)
for circuit A, the difference becomes negligible in the weak-
and normally strong-light-matter-interaction regimes g̃ 	 1
as seen in Figs. 2(c) and 2(e).

IV. GENERAL EXPRESSION OF SEC HAMILTONIAN

As discussed in the previous section, even if the resonator
system is equivalent as ĤA

0 = Û †ĤB
0 Û , the SEC Hamiltonians

are derived differently for circuits A and B as Eqs. (73)
and (78), respectively, by the straightforward calculation.
Although the difference is negligible in the weak- and normally
strong-light-matter-interaction regimes as seen in Fig. 2, in
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order to introduce correctly the dissipation of system of interest
in the ultrastrong-light-matter-interaction regime, the SEC
Hamiltonians must be derived from the complete knowledge of
systems of interest and how they couple with the environment.
This fact is not good news for the theoretical studies of
the ultrastrong-light-matter-interaction regime, while we get
another parameter to control the dissipation and excitation.
However, as will be discussed in this section, when the
quality of the cavity is good enough and the transitions
are independent, we can derive a general expression of the
SEC Hamiltonian that is independent of the detail of system
of interest, even in the ultrastrong-light-matter-interaction
regime. In Sec. IV A, the SEC Hamiltonian is derived from
the Lagrangian (22) without specifying LM . The comparison
with the straightforward ones is performed in Sec. IV B, and the
validity of the general expression is demonstrated in Sec. IV C.

A. Derivation

In the good-cavity limit (κLC 	 ω0,ωx), the time derivative
of the flux φ in the LC circuit is approximately represented in
terms of the lowering and raising operators σ̂ = |μ〉〈ν| as

d

dt
φ̂ �

∑
μ,ν

(−iων,μ)〈μ|φ̂|ν〉σ̂μ,ν, (80)

where ων,μ = ων − ωμ is the difference of the eigenfrequen-
cies. Then, since the SEC is expressed as (Cc/2)(φ̇ − �̇0)2

in the Lagrangian (22) and also in the Hamiltonian (28), the
equation of motion of σ̂μ,ν is approximately written as

d

dt
σ̂μ,ν = −iων,μσ̂μ,ν + Cc

2

1

i�
[σ̂μ,ν,(φ̇ − �̇0)2] (81a)

� −iων,μσ̂μ,ν −
∑
μ′,ν ′

ων ′,μ′Cc

�
〈ν ′|φ̂|μ′〉

× [σ̂μ,ν,σ̂μ′,ν ′ ]
d

dt
(φ̂ − �̂0). (81b)

The last terms are the perturbation by the SEC. Here, we
also suppose that the transition {μ,ν} of interest is well
isolated from the others (independent-transition limit). Under
this assumption, the above equation is approximately rewritten
as
d

dt
σ̂μ,ν � −iων,μσ̂μ,ν − ων,μCc

�
[σ̂μ,ν,φ̂]

d

dt
(φ̂ − �̂0). (82)

Here, we define the positive- and negative-frequency compo-
nents of the resonator and external fields as

φ̂(t) =
∫ ∞

0
dω[e−iωt φ̂+(ω) + eiωt φ̂−(ω)], (83a)

�̂(x,t) =
∫ ∞

0
dω[e−iωt �̂+(x,ω) + eiωt �̂−(x,ω)]. (83b)

The positive-frequency components correspond to the annihi-
lation (lowering) operator in the basis of the true eigenstates.
As derived in Eq. (42a) for circuit A, in the good-cavity limit
[ζ (ω) 	 1], the field �̂+(x) in the external line is described
by annihilation operators α̂(ω) as

�̂+(x,ω) =
√

�ZT

πω
cos(ωx/v)α̂(ω). (84)

On the other hand, φ̂+ is expressed by the lowering operators
as

φ̂+ =
∑

μ,ν>μ

〈μ|φ̂|ν〉σ̂μ,ν . (85)

Here, when the environment is large enough and the quality
of the resonator is good enough, the negative-frequency
components are negligible in the equation of motion of
lowering operator (corresponding to the pre-trace RWA in
Sec. II). Then, Eq. (82) is rewritten for ν > μ as

d

dt
σ̂μ,ν � −iων,μσ̂μ,ν + [σ̂μ,ν,φ̂]

×
∫ ∞

0
dω e−iωt iωων,μCc

�
[φ̂+(ω) − �̂+

0 (ω)]. (86)

On the other hand, since the dynamics in the external line (for
x > 0) is described by the simple wave equation (26c), the
field �̂+(x) can be divided into the incoming field �̂+

in and the
outgoing one �̂+

out as [8]

�̂+(x,ω) = �̂+
in(ω)e−i(ω/v)x + �̂+

out(ω)ei(ω/v)x. (87)

By using the this expression, Eq. (86) is rewritten as

d

dt
σ̂μ,ν � −iων,μσ̂μ,ν + [σ̂μ,ν,φ̂]

∫ ∞

0
dω e−iωt iωων,μCc

�

× [φ̂+(ω) − �̂+
in(ω) − �̂+

out(ω)]. (88)

Further, the boundary condition (26b) is expressed as

φ̂+(ω) − �̂+
in(ω) − �̂+

out(ω) = −i�(ω)[�̂+
in(ω) − �̂+

out(ω)],

(89)

where the nondimensional value �(ω) characterizes the degree
of confinement of the resonator:

�(ω) = 1

ωZTCc
. (90)

Then, the outgoing field is represented as

�̂+
out(ω) = φ̂+(ω) − [1 − i�(ω)]�̂+

in(ω)

1 + i�(ω)
. (91)

Substituting Eq. (91) into (88), since we can focus on the
narrow-frequency region around the resonance ω ∼ ων,μ in
the good-cavity limit, we get

d

dt
σ̂μ,ν � −iων,μσ̂μ,ν + [σ̂μ,ν,φ̂]

∫ ∞

0
dω e−iωt iω

2Cc

�

×
[

i�(ω)

1 + i�(ω)
φ̂+(ω) − i2�(ω)

1 + i�(ω)
�̂+

in(ω)

]
. (92)

Further, we also get � � 1 (Cc 	 1/ωZT) in the good-cavity
limit, and then this equation is approximated as

d

dt
σ̂μ,ν � −iων,μσ̂μ,ν − [σ̂μ,ν,φ̂]

∫ ∞

0
dω e−iωt

×
[
κLC

2

(
ω

ω0

)3 2

�ZR
φ̂+(ω) + i2ω2Cc

�
�̂+

in(ω)

]
.

(93)
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Here, when the environment is large enough compared with
the resonator systems, the incoming and outgoing fields
correspond to the input and output operators, respectively,
appearing in the Langevin equation and the input-output
relation [8] (corresponding to the Born-Markov approximation
performed in Sec. II):

�̂+
in(ω) =

√
�ZT

2ω
âin(ω), (94a)

�̂+
out(ω) =

√
�ZT

2ω
âout(ω). (94b)

Then, the equation of motion is finally rewritten as

d

dt
σ̂μ,ν � −iων,μσ̂μ,ν − [σ̂μ,ν,φ̂]

∫ ∞

0
dω e−iωt

×
[

κLC

�ZR

(
ω

ω0

)3

φ̂+(ω) + i

√
2κLC

�ZR

(
ω

ω0

)3

âin(ω)

]
.

(95a)

On the other hand, in the good-cavity limit, Eq. (91) is
approximated as

âout(ω) � âin(ω) − i

√
2κLC

�ZR

(
ω

ω0

)3

φ̂+(ω). (95b)

These two equations correspond to the quantum Langevin
equation (15) and input-output relation (18), respectively, and
this means that the SEC Hamiltonian is represented in the
good-cavity and independent-transition limits as

ĤSEC =
∫ ∞

0
dω �

√
κLC

2π

(
ω

ω0

)3 2

�ZR
α̂†(ω)φ̂+ + H.c.

(96a)

=
∫ ∞

0
dω �

√
κLC

2π

(
ω

ω0

)3

α̂†(ω)(â + â†)+ + H.c.

(96b)

This expression is applicable to the LC resonator embedding
any circuit elements even for ∂LM/∂φ̇ �= 0, i.e., to both of the
two circuits in Fig. 1. However, we must pay attention that the
Hamiltonians Ĥ0 of resonator systems must be derived under
the same definition of φ as drawn in Fig. 1, i.e., Eqs. (57)
and (52) should be used for circuits A and B, respectively,
but the combination of Eq. (96) and U ∗HB

0 U (58) is not
appropriate for circuit B. In other words, under the same
definition of φ, we can extend Ĥ0 to sophisticated systems
including anharmonicities and more than one CPB. Whereas
the expression (96) is independent of the detail of the resonator
systems, the loss rate from eigenstate |ν〉 to |μ〉 includes the
information of the detail of resonator systems through the
matrix element 〈μ|φ̂|ν〉:

κν,μ = κLC

(
ων,μ

ω0

)3 2

�ZR
|〈μ|φ̂|ν〉|2 (97a)

= κLC

(
ων,μ

ω0

)3

|〈μ|â + â†|ν〉|2. (97b)

B. Comparison

The SEC Hamiltonian ĤSEC (96) derived above is expressed
by the flux φ̂ (not by q̂) in the resonator, but the SEC is
originally mediated by its time derivative φ̇ (capacitive) as
the second term in the Lagrangian (22). In contrast, in the
straightforward derivation, the SEC Hamiltonians ĤA,B

SEC are
derived as Eqs. (45) and (55), and they are rewritten in the
good-cavity limit (applying the pre-trace RWA) as

ĤA
SEC �

∫ ∞

0
dω i�

√
κLC

2π

ω

ω0

2ZR

�
α̂†(ω)q̂+ + H.c., (98a)

ĤB
SEC �

∫ ∞

0
dω i�

√
κLC

2π

ω

ω0

2ZR

�

× α̂†(ω)

[
q̂+ + CR

CJ
(q̂+ + ρ̂+)

]
+ H.c. (98b)

If the resonator is empty or the LC resonator couples with
other elements inductively such as circuit A, φ̇ corresponds to
the charge in the resonator:

CRφ̇ = q (for ∂LM/∂φ̇ = 0). (99a)

However, this relation is not generally valid if the LC resonator
couples with other elements capacitively (∂LM/∂φ̇ �= 0), and
φ̇ is derived for circuit B as

CRφ̇ = q + CR

CJ
(q + ρ) (circuit B). (99b)

Here, comparing the above equations and the general expres-
sion (96), we can find that Eqs. (98) are obtained from Eq. (96)
by replacing

− iωCRφ̂ → q̂ (for ∂LM/∂φ̇ = 0), (100a)

−iωCRφ̂ → q̂ + CR

CJ
(q̂ + ρ̂) (circuit B). (100b)

This replacement is justified from Eqs. (99) and because we
can focus the narrow-frequency regions around the resonances
(ω ∼ ων,μ) in the good-cavity and independent-transition
limits. Whereas it is not easy to check the validity of this
replacement rigorously, we can find this relation between
the general (but approximated) expression (96) and straight-
forward ones (98) at least for the SEC considered in this
paper. When the transitions of interest are not well isolated
with each other or the quality of the resonator is not good
enough, we can not use the general one (96), but we should
rather consider Eqs. (98), which can be derived by the above
replacement even for other structures of circuits. Then, the SEC
Hamiltonians need not be derived for each circuit of interest
by the straightforward way, but the simple replacement (100)
is efficient for deriving them.

In the case of ∂LM/∂φ̇ = 0, the SEC Hamiltonian is
expressed as Eq. (96) and also as Eq. (98a), which corresponds
to Ĥ+

SEC and Ĥ−
SEC in Eq. (4), respectively. Then, the loss rate

from state |ν〉 to |μ〉 can be expressed in the following two
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ways (∂LM/∂φ̇ = 0):

κA
ν,μ = κLC

(
ων,μ

ω0

)3

|〈μ|â + â†|ν〉|2

= κLC

(
ων,μ

ω0

)
|〈μ|â − â†|ν〉|2. (101)

Since the eigenfrequencies are strongly shifted from the bare
ones ω0 and ωx in the ultrastrong-light-matter-interaction
regime, the factors (ω/ω0) and (ω/ω0)3 are quite important
for considering the dissipation correctly. However, ignoring
the (ω/ω0) factor, the simple SEC Hamiltonians (4) can be
justified when we suppose the circuits with ∂LM/∂φ̇ = 0.
In experiments of superconducting circuits, the “inductive”
ultrastrong interaction has been realized [20–22], and it
corresponds to the situation of ∂LM/∂φ̇ = 0. Then, we can
use Eqs. (96) or (98a) for the SEC Hamiltonian. However, for
“capacitive” ultrastrong interaction with the capacitive SEC
(as in Fig. 1) or for the combination of inductive ultrastrong
interaction and inductive SEC (we can not find any restrictions
to prevent them at least in the discussion of this paper), we
should use the general one (96) or complicated expressions
such as Eq. (98b) must be derived for given circuits. In any
cases, the SEC Hamiltonian ĤSEC and Ĥ0 of resonator systems
must be derived under the same definition of resonator field φ.
Otherwise, we get incorrect loss rates.

C. Demonstration

In the good-cavity and independent-transition limits, the
SEC Hamiltonian is derived generally as Eq. (96), which is
applicable to both circuits A and B under the definition of φ as
depicted in Fig. 1. Then, the Hamiltonians ĤA,B

0 are expressed
as Eqs. (65) when we neglect the anharmonicity of the CPB.
In the same manner as Sec. III D, the SEC Hamiltonian (96) is
rewritten as

ĤSEC =
∫ ∞

0
dω �

√
κLC

2π

(
ω

ω0

)3

α̂†(ω)

×
∑

j=L,U

(
w

ξ

j − y
ξ

j

)∗
p̂

ξ

j + H.c. (102)

Then, the loss rates of eigenmodes j = L,U are expressed for
each circuit ξ = A,B as

κ
ξ

j = κLC

(
ωj

ω0

)3∣∣wξ

j − y
ξ

j

∣∣2
. (103)

We can check that this expression certainly reproduces all
the results in Fig. 2, which are obtained from the SEC
Hamiltonians ĤA,B

SEC (45) and (55) derived independently
for circuits A and B, respectively, by the straightforward
calculation. Although the SEC Hamiltonians are derived in
different forms depending on the detail of resonator systems by
the straightforward calculation, Eq. (96) keeps its expression
for any circuit elements in the LC resonator, if the SEC itself
is not changed. When we want to describe circuit B by the
same system-of-interest Hamiltonian as ĤA

0 = Û †ĤB
0 Û , the

SEC Hamiltonian (96) is rewritten as

Û †ĤSECÛ =
∫ ∞

0
dω �

√
κLC

2π

(
ω

ω0

)3 2

�ZR

× [α̂†(ω)(φ̂+ + ψ̂+) + H.c.]. (104)

Then, the loss rates in circuit B are also expressed as

κB
j = κLC

(
ωj

ω0

)3∣∣(wA
j − yA

j

) + 2g̃
(
xA

j − zA
j

)∣∣2
. (105)

This also gives the same loss rates plotted in Fig. 2. In this
way, we eventually get different Hamiltonians as a whole for
circuits A and B, and the dissipative behaviors are different
especially in the ultrastrong-light-matter-interaction regime as
demonstrated in Figs. 2(d) and 2(f). In addition, since the SEC
Hamiltonian can be transformed by the unitary operator Û as
above, we must pay attention to the definition of the flux φ of
the LC resonator as Fig. 1, under which the SEC Hamiltonian
(96) is derived. In other words, Ĥ0 and ĤSEC must be derived
correctly under the same definition of φ.

V. FABRY-PEROT CAVITY

Whereas we discuss the SEC in the system of supercon-
ducting circuits in previous sections, we can discuss the SEC
also for other systems starting from Lagrangians describing
them. We next derive the SEC Hamiltonian for a Fabry-Perot
cavity confining the electromagnetic fields. As supposed in our
previous work [8], we also consider the cavity consisting of a
perfect mirror and a nonperfect one as depicted in Fig. 3.

We first discuss the Lagrangian describing the electromag-
netic fields interacting with matters in Sec. V A. Then, in
Sec. V B, we derive the SEC Hamiltonian, by which the results
obtained in Ref. [8] can be certainly reproduced. We also
discuss some prospects for the SECs of split-ring resonators
and of subwavelength structures in Sec. V C.

A. Lagrangian for electromagnetic fields

We first consider general systems of the electromag-
netic fields interacting with matters. Here, we take the
Coulomb gauge and introduce the vector potential A(r) giving
the transverse electric field E⊥(r) and the magnetic flux

FIG. 3. Sketch of a Fabry-Perot cavity. A perfect mirror is placed
at z = d and a nonperfect mirror is at z = 0.
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B(r) as

E⊥(r) = − Ȧ(r), (106a)

B(r) = ∇ × A(r). (106b)

From these relations, we directly get the following Maxwell’s
equation:

∇ × E(r) = −Ḃ(r), (107)

and the magnetic flux automatically satisfies

∇ · B(r) = 0. (108)

The longitudinal component of the electric field E‖(r) =
−∇ϕ(r) is expressed by the scalar potential ϕ(r). As discussed
in Refs. [54–56], the Lagrangian of the total system is
represented as LEB + LM−EB , where the matter and the
light-matter interaction is described by LM−EB , and LEB is
the Lagrangian representing the transverse electric field E⊥(r)
and the magnetic flux B(r) as

LEB = 1

2

∫
d r

[
ε0εbg(r)E⊥(r)2 − B(r)2

μ0

]
. (109)

Here, εbg(r) is the background dielectric constant except the
matters of interest, and it depends on position r [55,56]. ε0 and
μ0 are the vacuum permittivity and permeability, respectively.
In terms of A(r), the Lagrangian is rewritten as

LEB = 1

2

∫
d r

{
ε0εbg(r) Ȧ(r)2 − [∇ × A(r)]2

μ0

}
. (110)

Then, the Lagrange equation with respect to A(r) is derived
as

−ε0εbg(ω)Ė⊥(r) + d

dt

∂LM−EB

∂ Ȧ(z)

= −∇ × B(r)

μ0
+ ∂–LM−EB

∂–A(r)
, (111)

where we define

∂–LM−EB

∂–Aξ (r)
= ∂LM−EB

∂Aξ (r)
− ∇ · ∂LM−EB

∂[∇Aξ (r)]
. (112)

Here, we introduce the electric displacement field D(r) and
the magnetic field H(r) as

D(r) = ε0εbg(r)E(r) + P(r), (113a)

H(r) = B(r)/μ0 − M(r), (113b)

where P(r) is the polarization density and M(r) is the
magnetization. We suppose globally neutral systems and there
is no external current, and the displacement field satisfies

∇ · D(r) = 0. (114)

Then, the above Lagrange equation is rewritten as

− Ḋ(r) + Ṗ⊥(r) + d

dt

∂LM−EB

∂ Ȧ(r)

= −∇ × [H(r) + M(r)] + ∂–LM−EB

∂–A(r)
. (115)

In the absence of external current, the two fields D(r) and
H(r) must satisfy

Ḋ(r) = ∇ × H(r). (116)

Then, from the above Lagrange equation, the polarization and
magnetization should have the following relation:

Ṗ⊥(r) + d

dt

∂LM−EB

∂ Ȧ(r)
= −∇ × M(r) + ∂–LM−EB

∂–A(r)
. (117)

On the other hand, due to the duality of the electric and
magnetic fields, we can also describe the Lagrangian in terms
of D(r) and H(r) for globally neutral systems. The total
Lagrangian is represented as LDH + LM−DH , and LDH is
expressed as

LDH = 1

2

∫
d r

{
μ0 H⊥(r)2 − D(r)2

ε0εbg(r)

}
. (118)

Here, we introduce a new transverse field Y (z) giving

H⊥(r) = Ẏ (r), (119a)

D(r) = ∇ × Y (r). (119b)

By this definition, the two Maxwell’s equations (114) and (116)
are automatically satisfied. Further, since Eq. (108) should also
be satisfied, the longitudinal components of the magnetic field
and the magnetization are related as H‖(r) = −M‖(r). In
terms of Y (r), the Lagrangian LDH is rewritten as

LDH = 1

2

∫
d r

{
μ0Ẏ (r)2 − [∇ × Y (r)]2

ε0εbg(r)

}
. (120)

Then, from the total LagrangianLDH + LM−DH , the Lagrange
equation with respect to Y (r) is derived as

Ḣ⊥(r) + d

dt

∂LM−DH

∂Ẏ (r)
= −∇ × D(r)

ε0εbg(r)
+ ∂–LM−DH

∂–Y (r)
.

(121)

Since the electric field and the magnetic flux satisfy Eq. (107),
the magnetization and the polarization must have the following
relation in this case:

− Ṁ⊥(r) + d

dt

∂LM−DH

∂Ẏ (r)
= −∇ × P(r)

ε0εbg(r)
+ ∂–LM−DH

∂–Y (r)
.

(122)

Of course, the two Lagrangians LEB + LM−EB and LDH +
LM−DH are equivalent in the sense that both of them certainly
give the Maxwell’s equations and equations of motion of
charged particles in matters [54].

B. SEC for Fabry-Perot cavity

We next derive the SEC Hamiltonian for the Fabry-Perot
cavity depicted in Fig. 3 [8,57]. The system is terminated by the
perfect mirror at z = d, and a nonperfect thin mirror is placed
at z = 0. The mirror is described by the background dielectric
constant as εbg(z) = ηδ(z), and η determines the degree of
confinement of the cavity fields (and the reflectivity of the
nonperfect mirror). The electromagnetic fields are confined
in 0 < z < d, but the confinement is not perfect through the
nonperfect mirror at z = 0. Atoms or matters exist inside
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the cavity structure. For a good correspondence with the
discussion in Sec. IV, we take the Lagrangian (118) described
by the displacement field D(z) and the magnetic field H (z). In
the discrete description as depicted in Fig. 3, the Lagrangian
is expressed as

LDH = 1

2

⎧⎪⎨
⎪⎩

∑
j

μ0Ẏ (zj )2�z − [Y (z1) − Y (z0)]2

ε0η

−
∑
j �=1

[Y (zj ) − Y (zj−1)]2

ε0�z

⎫⎪⎬
⎪⎭. (123)

Here, �z is the distance between the discrete positions z1 =
�z/2 and z0 = −�z/2. The cavity system is described by
j � 1, external system is by j � 0, and the second term in
Eq. (123) corresponds to the coupling between them. From
this Lagrangian, we get the following relation in the discrete
and continuous base:

∂LDH

∂Y (z1)
= −Y (z1) − Y (z2)

ε0�z
− Y (z1) − Y (z0)

ε0η
, (124a)

∂LDH

∂Y (0+)
= 1

ε0

∂Y

∂z

∣∣∣∣
z=0+

− Y (0+) − Y (0−)

ε0η
. (124b)

The first term gives the boundary condition in the case of a
perfect mirror, i.e., D(z = 0+) = 0. The other terms represent
the connection with the external field, and it is decreased with
the increase of η. Here, we suppose that the cavity system
including the matters inside is properly diagonalized in the
case of the perfect cavity. We denote the eigenstates as {|μ〉}
and the eigenfrequencies as {ωμ}. From the total Lagrangian
L = LDH + LM−DH or its Hamiltonian, since the cavity field
connects with the external system only through the second
term of Eq. (123) [or the one of Eq. (124b)], the equation
of motion of σ̂μ,ν = |μ〉〈ν| is derived in the good-cavity and
independent-transition limits as

d

dt
σ̂μ,ν = −iων,μσ̂μ,ν + 1

i�

1

2ε0η
[σ̂μ,ν,{Ŷ (z1) − Ŷ (z0)}2]

(125a)

= −iων,μσ̂μ,ν + [σ̂μ,ν,Ŷ (0+)]
Ŷ (0+) − Ŷ (0−)

i�ε0η

(125b)

� −iων,μσ̂μ,ν + [σ̂μ,ν,Ĥ (0+)]

×
∫ ∞

0
dω

e−iωt

i�ε0ηω2
[Ĥ+(0+,ω) − Ĥ+(0−,ω)].

(125c)

Here, from the integral from of Eq. (116), we get the following
Maxwell’s boundary condition [8]:

H (0−,ω) − H (0+,ω) = −iωε0ηE(0−,ω). (126)

Since the electromagnetic fields obey the simple wave equation
in the external system, the external field in z < 0 can be
rewritten by the incoming field Ĥin and the outgoing one

Ĥout as

Ĥ (z < 0,ω) = ei(ω/c)zĤin(ω) + e−i(ω/c)zĤout(ω). (127)

From the boundary condition (126), the outgoing field is
expressed as

Ĥout(ω) = Ĥ (0+,ω) − [1 + i�(ω)]Ĥin(ω)

1 − i�(ω)
, (128)

where �(ω) = ωη/c. Substituting this into Eq. (125c), in the
good-cavity limit (� � 1), we get

d

dt
σ̂μ,ν � −iων,μσ̂μ,ν − [σ̂μ,ν,Ĥ (0+)]

∫ ∞

0
dω e−iωt

×
[

μ0c

�ω�(ω)2
Ĥ+(0+,ω) + 2

i�ε0ωc�(ω)
Ĥin

]
.

(129)

Since the incoming and outgoing fields are represented as

Ĥin(ω) = iω

μ0c

√
�

2ε0cω
âin(ω), (130a)

Ĥout(ω) = iω

μ0c

√
�

2ε0cω
âout(ω), (130b)

Eq. (129) is rewritten as

d

dt
σ̂μ,ν � −iων,μσ̂μ,ν − [σ̂μ,ν,Ĥ (0+)]

∫ ∞

0
dω e−iωt

×
[

μ0c

�ω�(ω)2
Ĥ+(0+,ω) +

√
2μ0c

�ω�(ω)2
âin

]
.

(131a)

On the other hand, from Eq. (127), we get

âout(ω) � âin(ω) +
√

2μ0c

�ω�(ω)2
Ĥ+(0+,ω). (131b)

These two equations correspond to the quantum Langevin
equation and the input-output relation, and this fact means
that the SEC is expressed in this case as

ĤSEC =
∫ ∞

0
dω i�

√
μ0c

π�ω�(ω)2
[α̂†(ω)Ĥ+(0+) − H.c.].

(132)

In the independent-transition limit, the loss rate from |ν〉 to
|μ〉 (μ < ν) is obtained as

κν,μ = 2μ0c

�ων,μ�(ων,μ)2
|〈μ|Ĥ (0+)|ν〉|2. (133)

If there is no induced magnetization inside the cavity, since
H = B/μ0 and ∂E/∂z = −Ḃ, the loss rate is also rewritten
as

κν,μ = 2c

�μ0ων,μ�(ων,μ)2
|〈μ|B̂(0+)|ν〉|2 (134a)

= 2c

�μ0ων,μ
3�(ων,μ)2

∣∣∣∣〈μ|∂Ê

∂z
|ν〉

∣∣∣∣
2

z=0+
. (134b)
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Here, for the cavity depicted in Fig. 3, the electric and magnetic
fields are expressed as

Ê(z) =
∞∑

m=1

iωm

√
�

ε0ωmd
(âm − â†

m) sin[(ωm/c)z], (135a)

B̂(z) =
∞∑

m=1

ωm

c

√
�

ε0ωmd
(âm + â†

m) cos[(ωm/c)z], (135b)

where ωm = m(πc/d) for integer m = 1,2, . . . . If the eigen-
states are mainly composed by the mth cavity mode, the loss
rate is also represented as

κν,μ = κFP
0 (ων,μ)

(
ωm

ων,μ

)
|〈μ|âm + â†

m|ν〉|2 (136a)

= κFP
0 (ων,μ)

(
ωm

ων,μ

)3

|〈μ|âm − â†
m|ν〉|2, (136b)

where κFP
0 (ω) is the loss rate of the bare cavity mode

κFP
0 (ω) = 2c

�(ω)2d
. (137)

These expressions certainly reproduce the results in our
previous work [8], where the Fabry-Perot cavity was filled
by the medium with bosonic excitations.

When the light-matter interaction is mediated by the electric
polarization and the electromagnetic fields are confined by
the Fabry-Perot cavity as in Fig. 3, the loss rates are
expressed as simply as Eq. (136). This situation corresponds
to circuit A in Fig. 1, where ∂LM/∂φ̇ = 0. Whereas the
ultrastrong-light-matter interaction has been realized by the
electric dipole transitions experimentally [11–18], the situation
corresponding to circuit B, where the SEC Hamiltonians
are derived in complicated forms by the straightforward
calculation, can be realized if the ultrastrong-light-matter
interaction is mediated by the magnetic field. Even for the
electric dipole transitions, the circuit-B situation could be
realized for other cavity structures such as the split-ring
resonators [18] and the subwavelength structures [13–16]. The
SEC Hamiltonians for these structures should have different
forms.

C. Split-ring resonators and subwavelength structures

In Ref. [18], the transition between Landau levels in
two-dimensional electron gas is coupled ultrastrongly with
the modes in the split-ring resonators. The current with THz
frequency in each resonator is similar to the superconducting
current in the LC resonator in Fig. 1. Then, the SEC of the split
rings could be discussed based on the Lagrangians describing
their equivalent circuit model [58]. On the other hand, the
split rings are fabricated periodically on the sample [18], and
they behave as a metamaterial layer for the electromagnetic
fields. Then, we can also describe the sprit-ring resonators as a
resonator of the electromagnetic fields in the metamaterial with
effective permittivity and permeability (with strong frequency
dependence) as discussed in this section. In this way, the
split-ring resonators can be analyzed in such two manners.
However, a sophisticated analysis is in principle required for
describing the complicated structures of the split rings.

The subwavelength structures [13–16] enhance the confine-
ment of the electromagnetic fields, and then the light-matter
interaction is also enhanced. Further, owing to the photonic
bands constructed by the periodic subwavelength structures,
we can access directly to the surface plasmons. In order
to analyze these kinds of structures, we must extend the
simple Fabry-Perot cavity to more complex three-dimensional
systems. Whereas the extension is in principle possible, the
approach of Ref. [8] is rather appropriate for supposing such
complicated structures as the first step of the investigation be-
cause the excitations between the subbands in semiconductor
quantum wells are nearly bosonic and the cavity structure is
complicated.

VI. SUMMARY

We derived the SEC Hamiltonians by the straightforward
calculation from the Lagrangians describing in detail the
mechanisms of loss and confinement of the cavity fields.
However, we found that the SEC Hamiltonians are in principle
modified by the presence of the interaction between the cavity
fields (light) and other ones (matters) inside the cavity. When
the quality of the cavity is high enough (good-cavity limit:
κ 	 ω0,ωx), the SEC Hamiltonians should be derived as
follows:

(i) In the weak- and normally strong-light-matter-
interaction regimes (g 	 ω0,ωx), the SEC Hamiltonians can
be reduced to the standard one, Eq. (1), which can be derived
also for empty cavities. This is because the RWA can be applied
to the light-matter interaction in the basis of photons and
excitations, and the total number of photons and excitations is
conserved.

(ii) In the ultrastrong-light-matter-interaction regime (g �
ω0,ωx) and in the independent-transition limit, the SEC
Hamiltonians can be derived by the procedure in Sec. IV,
and the derived Hamiltonians such as Eqs. (96) and (132) are
generally valid independent of the detail of the light-matter
interaction inside the cavity. However, we must pay attention
that the Hamiltonians of cavity systems must be derived under
the same gauge for deriving the SEC ones (under the same
definition of resonator field φ as depicted in Fig. 1).

(iii) In the ultrastrong-light-matter-interaction regime but
not in the independent-transition limit, in which we can not
perform the post-trace RWA, the SEC Hamiltonians should be
derived by the straightforward calculation, and the expressions
such as (45), (47), and (55) are obtained depending on the
detail of cavity systems in principle. However, as far as we
checked for simple systems depicted in Fig. 1, we can obtain
the straightforward SEC Hamiltonians in the good-cavity limit
by the replacement (100) from the general expression (96).

In the bad-cavity limit, in which the pre-trace RWA can
not be applied, we must also derive the SEC Hamiltonians by
the straightforward way. Further, for discussing not only the
dissipation but also the Lamb shift due to the coupling with the
environment, the straightforward SEC Hamiltonians are also
desired.

In the ultrastrong-light-matter-interaction regime, the SEC
Hamiltonians have the additional parameter as seen in Eqs. (4),
i.e., whether the SEC is mediated by the electric field (capac-
itive) or by the magnetic field (inductive). It is determined
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by the mechanisms of the loss and confinement of the cavity
field, and the SEC Hamiltonians should be derived as explained
above. Even if the SEC and the cavity system are equivalent
as for circuits A and B in Fig. 1, the difference of the
arrangement for the two circuits gives the difference of the loss
rates of the cavity systems as demonstrated in Fig. 2. In the
independent-transition limit, we can use the general expression
ĤSEC [Eq. (96)] of the SEC Hamiltonian for both circuits,
while the Hamiltonians of the cavity systems are derived in
different forms ĤA

0 [Eq. (57)] and ĤB
0 [Eq. (52)]. When we use

the same Hamiltonian ĤA
0 = Û †ĤB

0 Û for the cavity system,
the SEC Hamiltonians are transformed in different expressions
ĤSEC [Eq. (96)] and Û †ĤSECÛ [Eq. (104)]. As the result by
these differences, the loss rates become significantly different
for the two circuits in the ultrastrong-light-matter-interaction
regime [Figs. 2(d) and 2(f)], while the difference is negligible
in the weak and normally strong ones [Figs. 2(c) and 2(e)].

We also face the similar question as to whether the
nonlinearities and dissipation in matters are mediated by the
electric polarization, magnetization, or just the number of
excitations. Whereas the ultrastrong interactions and good
cavities can be realized only in limited structures currently,
there is a possibility for controlling the inevitable dissipation
by the ultrastrong interactions with totally modeling the
light-matter interaction and the SEC.
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APPENDIX: SEC FOR TRANSMISSION
LINE RESONATOR

Instead of the LC resonator, here we consider a resonator
fabricated by a transmission line with a finite length d as
depicted in Fig. 4. The total Lagrangian is represented as

L =
N∑

j=1

[
CT�x

2
φ̇j

2 − (φj − φj−1)2

2LT�x

]
+ Cc

2
(φ̇0 − �̇0)2

+
∞∑

j=1

[
CT�x

2
�̇j

2 − (�j − �j−1)2

2LT�x

]
+ LM. (A1)

The canonical momenta are obtained as follows:

q0 = ∂L

∂φ̇0
= Cc(φ̇0 − �̇0), (A2a)

qj = ∂L

∂φ̇j

= CT�xφ̇j + ∂LM

∂φ̇j

, (A2b)

Q0 = ∂L

∂�̇0
= Cc(�̇0 − φ̇0), (A2c)

Qj = ∂L

∂�̇j

= CT�x�̇j . (A2d)

In the continuous base, the Lagrange equations are derived as

Cc[φ̈(0+) − �̈(0−)] = 1

LT

∂φ(x)

∂x

∣∣∣∣
x=0+

, (A3a)

CTφ̈(x) + 1

�x

d

dt

∂LM

∂φ̇(x)
= 1

LT

∂2φ(x)

∂x2
+ 1

�x

∂LM

∂φ(x)
,

(A3b)

Cc[�̈(0−) − φ̈(0+)] = − 1

LT

∂�(x)

∂x

∣∣∣∣
x=0−

, (A3c)

CT�̈(x) = 1

LT

∂2�(x)

∂x2
. (A3d)

Here, the motion of fields inside and outside the resonator is
described by the second and the last equation, respectively, and
the first and third equations are the boundary conditions. From
these equations, we get the following relation concerning the
incoming, outgoing, and internal fields at the capacitance Cc

(x = 0+):

ω2Cc[φ̂+(0+,ω) − �̂+
in(ω) − �̂+

out(ω)]

= − iω

LTv
[�̂+

in(ω) − �̂+
out(ω)]. (A4)

Then, the outgoing field is expressed as

�̂+
out(ω) = φ̂+(0+,ω) − [1 − i�(ω)]�̂+

in(ω)

1 + i�(ω)
. (A5)

On the other hand, from the Lagrangian or its Hamil-
tonian, the equation of motion of σ̂μ,ν is approximately

FIG. 4. A resonator is made by a transmission line with a finite length d . It couples with a semi-infinite transmission line by capacitance
Cc. Artificial atoms can exist inside the resonator except at the contact with the external line.
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obtained as

d

dt
σ̂μ,ν = −iων,μσ̂μ,ν + [σ̂μ,ν,φ̂(0+)]

∫ ∞

0
dω e−iωt iω

2Cc

�

× [φ̂+(0+,ω) − �̂+
in(ω) − �̂+

out(ω)]. (A6)

Substituting Eq. (A5) into this equation, we get in the fol-
lowing equation in good-cavity (Cc � CTd) and independent-
transition limit:

d

dt
σ̂μ,ν = −iων,μσ̂μ,ν + [σ̂μ,ν,φ̂(0+)]

∫ ∞

0
dω e−iωt

×
[
ω3ZTCc

2

�
φ̂+(0+,ω) + i

√
2ω3ZTCc

2

�
âin(ω)

]
.

(A7a)

On the other hand, Eq. (A5) is rewritten in the good-cavity
limit as

âout(ω) � âin(ω) − i

√
2ω3ZTCc

2

�
φ̂+(ω). (A7b)

From these relations, we can conclude that the SEC is
expressed as

ĤSEC �
∫ ∞

0
dω �

√
2ω3ZTCc

2

2π�
[α̂†(ω)φ̂+(0+) + H.c.]. (A8)

When we define the loss rate of the mth bare resonator mode
with frequency ωm as

κTLR
m = 2ω2

mZTCc
2

CTd
, (A9)

the SEC Hamiltonian is rewritten as

ĤSEC �
∫ ∞

0
dω �

√
κm

2π

(
ω

ωm

)3
ωmd

�vZT
[α̂†(ω)φ̂+(0+) + H.c.].

(A10)
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