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Full characterization of Airy beams under physical principles

J. Rogel-Salazar*

Applied Mathematics and Quantitative Analysis Group, Science and Technology Research Institute, School of Physics Astronomy
and Mathematics, University of Hertfordshire, Hatfield AL10 9AB, United Kingdom

H. A. Jiménez-Romero
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The propagation characteristics of Airy beams is investigated and fully described under the traveling-wave
approach analogous to that used for nondiffracting Bessel beams. This is possible when noticing that Airy
functions are, in fact, Bessel functions of fractional order 1

3 . We show how physical principles impose restrictions
such that the nondiffracting Airy beams cannot be of infinite extent as has been argued and introduce quantitative
expressions for the maximum transverse and longitudinal extent of Airy beams. We show that under the appropriate
physical conditions it is possible to obtain higher-order Airy beams.
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I. INTRODUCTION

Bessel beams are known to belong to a class of opti-
cal beams described by the (2 + 1)-dimensional Helmholtz
equation, and they have the property of being nondiffracting
[1,2] and self-healing [3,4] on propagation. Originally, Bessel
beam properties were studied using the diffraction Rayleigh-
Sommerfeld or Fresnel-Kirchhoff integral. Implicitly, this
approach considers the Bessel beam to be of infinite transverse
extent [1]. Alternatively, a more straightforward and physically
sound description of these beams can be done in terms
of traveling Hankel waves [2]. This description based on
the differential Helmholtz wave equation provides a better
understanding of the physical origin of these beams and
their intriguing properties. Even further, this same approach
allowed us to demonstrate the existence of other families of
nondiffracting beams described by fundamental solutions of
the separable (2 + 1) Helmholtz wave equation. These families
of beams show propagation characteristics analogous to the
Bessel beams [5,6].

In recent years, another kind of nondiffracting beam has
been reported, but its propagation is governed by the paraxial
wave equation in (1 + 1) dimensions, the so-called Airy beam
[7]. These beams do not belong to the same class as those
of the Helmholtz equation, and thus it might be expected
that their physical properties are not actually described in the
same terms. Nonetheless, an interesting fact that is hardly
discussed in all the published literature on Airy beams is that
the Airy functions are Bessel functions of fractional order
equal to 1/3. This allows the application of the aforementioned
traveling Hankel wave description. In this work we show
that Airy beams have properties similar to those of Bessel

*Also at Blackett Laboratory, Department of Physics, Imperial
College London, Prince Consort Road, London SW7 2BZ, United
Kingdom; j.rogel@physics.org
†sabino@inaoep.mx

beams because the former are the result of the superposition
of counterpropagating Hankel traveling waves of fractional
order. We also demonstrate that the proposed wave approach
imposes the condition under physical principles for these
beams to be of finite extent, contrary to the “ideal” infinite Airy
beam.

The aim of this paper is to provide a better understanding
of the fundamental nature of the traveling-wave methodology
applied to Airy beams. In particular we show that all
the known propagation characteristics of Airy beams are
straightforwardly and intuitively understood using the Hankel
traveling-wave approach and that the focusing features of
(1 + 1)-dimensional Airy beams can only be described in clear
and simple terms with this methodology, which is similar
to that for (2 + 1)-dimensional Bessel beams. In Sec. II we
provide a brief account of the traveling-wave description
for Bessel beams as a way to motivate its application to
Airy beams. Section III explains the relationship between
Airy and Bessel functions, and in Sec. IV we show the
characteristics of the finite Airy beam in a direct manner.
Finally, in Sec. V we show that higher-order Airy beams can
exist by discussing the physical conditions that enable this
possibility.

II. TRAVELING HANKEL WAVES AND BESSEL BEAMS

Light propagation in linear media is described with the use
of the scalar wave equation for the electric field E(r,t) given
by

∇2E(r,t) = 1

v2

∂E(r,t)
∂t2

. (1)

In cylindrical coordinates r = (r,z), and v corresponds to
the speed of light in the medium in question. It is possible
to solve Eq. (1) by separation of variables [8], resulting in
ordinary differential equations for the variables r , z, and t .
The separation constants can be chosen such that ω2/v2 =
k2
r + k2

z ≡ |k|2, so that we can think of k as the wave vector. In
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this manner, the equation for the radial coordinate from Eq. (1)
is given by

d2H

dr2
+ 1

r

dH

dr
+

(
k2
r − m2

r2

)
H = 0, (2)

which is the Bessel differential equation of order m [9], and its
solutions are given by the mth order Bessel function Jm(krr)
and the mth order Neumann function Nm(krr). In many cases
the Neumann functions mentioned above are discarded due
to the singularity they present at the origin. However, it has
been proved by one of the authors [2] that these functions
do indeed carry physical meaning. Also, the solutions Jm and
Nm cannot be used separately to describe the propagation of
light because they do not satisfy the Sommerfeld radiation
condition independently. For cylindrical waves this condition
reads

lim
r→∞ r1/2

(
dH

dr
− ikrH

)
= 0, (3)

and it tells us that a wave equation cannot have waves
coming from an infinite distance. Thus, the solution needed
to describe propagating waves must be given by the complex
superposition of the Jm and Nm functions. This leads to the
so-called Hankel waves [2],

H (1)
m (krr) = Jm(krr) + iNm(krr), (4)

H (2)
m (krr) = Jm(krr) − iNm(krr). (5)

Once the azimuthal and longitudinal wave components are in-
corporated, exp(imϕ + ikzz), the wave fronts of the solutions
for the Helmholtz wave equation in cylindrical coordinates
are conic helicoids. H (1)

m and H (2)
m are related to outgoing

(convex) and incoming (concave) conic solutions, respectively.
The Hankel waves, in combination with the temporal part,
describe cylindrical wave fronts that collapse and are generated
at the longitudinal z axis. This is the physical origin of the
singularity of the Hankel functions; the longitudinal axis is
simultaneously the sink and source for the incoming and
outgoing cylindrical wave components, respectively. In that
sense, since incoming waves become outgoing, there is a
region where both of them interfere, leaving only the Bessel
function:

Ein(r,ϕ,z,t) + Eout(r,ϕ,z,t)

= 2Jm(krr) exp (imϕ + ikzz − iωt) . (6)

Recalling the Sommerfeld radiation condition, Eq. (3), the
incoming wave must be generated at a finite distance, implying
that Bessel beams must have finite transverse extent and
thus a finite propagation distance. The interference of both
Hankel waves only occurs within a conic region, and it is
only within this region that the Bessel beam can be formed.
This region is therefore called the region of existence of the
Bessel beam, which can be exploited in applications such as the
design of laser resonators whose output is related to a Bessel
beam [10].

As we have mentioned before, Bessel beams are nondiffrac-
tive; that is, they propagate without spreading or changing their
shape within their region of existence. Similarly, they show the
property of self-healing that occurs when the beam is partially

blocked; that is, it reconstructs itself after some distance [4].
These properties can be straightforwardly understood in terms
of traveling Hankel waves, which provides a clear frame for the
physics behind them and others like the evolution of focused
Bessel beams [11].

III. TRAVELING-WAVE APPROACH TO AIRY BEAMS

Berry and Balazs introduced the idea of the “nonspreading
Airy wave packet” by solving a force-free Schrödinger
equation [12]. The solution propagates without change along
a parabolic trajectory and thus shows acceleration. The
relationship between the force-free Schrödinger equation and
the paraxial wave equation indicates that nondiffractive Airy
beams are therefore possible, and indeed, they have been
observed [7]. Furthermore, it has been reported that, similar
to Bessel beams, Airy beams also have the property of
self-healing [13].

Airy beams can be obtained when considering the propaga-
tion of a plane-polarized beam in a linear medium described
by the normalized paraxial wave equation,

−i
∂U

∂ξ
+ 1

2

∂2U

∂s2
= 0, (7)

where U (s,ξ ) is the electric-field envelope that depends on
the normalized coordinates s = x/x0 and ξ = z/kx2

0 , with
x0 being a given transverse scale and k being the wave
number. Since we know that the Airy beam remains invariant
while propagating along a curved trajectory, we can define an
accelerating variable � = s − a

4 ξ 2 + vξ , with a and v being
real constants. We can now write the electric field envelope
as U (s,ξ ) = w(�) exp[iθ (�,ξ )], which leads to the following
ordinary differential equation for w(�):

w′′ − α�w = A2

w3
, (8)

and θ (�,ξ ) is given by

θ (�,ξ ) = A

∫ �

0

d�′

w2
+

(a

2
ξ − v

)
+ a2

24
ξ 3 − av

4
ξ 2 + v

2
ξ,

(9)

where A = A(ξ ) is assumed to be a constant. We can think
of parameters a and v as the acceleration and velocity of the
beam, respectively. Without loss of generality, let us consider
the case where a = 1, v = 0, and A = 0; Eq. (8) becomes

w′′ −
(

s − 1

4
ξ 2

)
w = 0, (10)

which is the well-known Airy differential equation [14], and
therefore, the solution can be expressed as

U (s,ξ ) = Ai

(
s − ξ 2

4

)
exp

[
i

(
sξ

2
− ξ 3

12

)]
, (11)

where Ai (·) is the Airy function. The expression above implies
that the intensity of the beam has the profile of the modulus
squared of the Airy function, i.e.,

I (s,ξ ) =
∣∣∣∣Ai

(
s − ξ 2

4

)∣∣∣∣
2

. (12)
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The argument of the Airy function in Eq. (11) shows that
the Airy beam follows a parabolic trajectory that can be
interpreted as having a transverse acceleration [12]. It is
also clear that it does not change either its profile or its
amplitude on propagation when observed along this parabolic
trajectory. In this sense the Airy beam can be regarded as
being a nondiffracting beam, as is the case for the Bessel beam
discussed in Sec. II. It may seem that although both Airy and
Bessel beams are nondiffracting, the physics are not described
in a similar way given that they do not belong to the same
class of beams. However, in what follows we will show that
Airy beams can be better understood when described by the
traveling-wave approach used in the treatment of Bessel beams
outlined in Sec. II.

In order to elucidate the properties and behavior of
Airy beams, let us recall Airy’s differential equation,
namely,

d2w

ds2
∓ sw = 0, (13)

whose solutions are given by the Airy functions Ai (s) and
Bi (s) [14], where we are using normalized coordinates. The
Bi (s) function is defined as the solution with the same
amplitude of oscillation as Ai (s) as s goes to minus infinity
and differs in phase by π/2. We will therefore concentrate on
the behavior of Ai (s) in the rest of this discussion. The Airy
differential equation is defined in the entire real space, and
thus the second term in Eq. (13) can have either a positive or a
negative sign depending on whether the value of s is positive
or negative. Using either of the two signs yields the same Airy
solution with the only difference being that one will be the
mirror reflection of the other with respect to the vertical axis,
s = 0.

A simple calculation shows that by making the change
of variable w = √

sZ1/3( 2
3 s3/2), Eq. (13) can be transformed

into the Bessel differential equation of order 1/3, with Z1/3

being the cylindrical Bessel function of order 1/3 [15,16]. In
a similar way, the Airy functions can be expressed in terms
of modified Bessel functions of order 1/3, K1/3, as follows
[14]:

w(s) = 1

π

√
s

3
K1/3

(
2

3
s3/2

)
, (14)

w(s) = 1

2

√
s

3
e2πi/3H

(1)
1/3

(
2

3
is3/2

)
. (15)

We can distinguish two important cases; let us consider the
argument of these Bessel functions K1/3 to be χ = 2

3 |s|3/2.
On the one hand, when s � 0, the profile has a monotonic
decreasing behavior and is proportional to the modified Bessel
function K1/3:

Ai (s) = 1

π

√
s

3
K1/3(χ ). (16)

On the other hand, when s < 0, the profile can be considered
the superposition of two waves which are essentially Hankel
functions of order 1/3, i.e.,

Ai(−s) = 1

2

√
s

3

[
e

iπ
6 H

(1)
1/3(χ ) + e

−iπ
6 H

(2)
1/3(χ )

]
. (17)

FIG. 1. (Color online) Schematic wave fronts of the AiH (1) (s)
and AiH (2) (s) functions (arbitrary units).

We can now define the following functions:

AiH (1) (s) = 1

2

√
s

3
e

iπ
6 H

(1)
1/3(χ ), (18)

AiH (2) (s) = 1

2

√
s

3
e

−iπ
6 H

(2)
1/3(χ ). (19)

With these definitions, we can now write the Airy function in
a more compact form as follows:

Ai (−s) = AiH (1) (s) + AiH (2) (s) . (20)

We identify these functions as the traveling Hankel compo-
nents of the Airy beam, in analogy to the way it was done for
Bessel beams in Sec. II. We note that it is possible to obtain
an analytical form of the phase of these Hankel components
by considering the asymptotic expansion of Hankel functions,
which approximate very well to the original function from the
first maximum [14]. Using this expansion, we have that

AiH (1) (s) 	
√

s

6πχ
eiφ, (21)

AiH (2) (s) 	
√

s

6πχ
e−iφ, (22)

with φ = χ − π
4 and their wave fronts being opposite each

other. In Fig. 1, we can see the wave fronts of the components
AiH (1) (s) and AiH (2) (s). Each phase determines a geometric
wave front, and thus according to geometrical optics, the rays
that make up each beam will propagate perpendicularly to this
front [17]. In fact, when the Airy beam is cut, it will propagate
along trajectories determined by the rays of the AiH (2) (s)
beam. We note that these waves must satisfy the Sommerfeld
radiation condition that imposes the restriction of Airy beams
being of finite extent, and similar to Bessel beams, they can
only exist within a finite region of space.

In order to show that it is, in fact, the AiH (2) component
that bears the property of the parabolic caustics we carried
out the propagation of each component independently. In
Fig. 2(a) we see the propagation of the AiH (1) component that
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FIG. 2. (Color online) Behavior of the independent propagation
of (a) the AiH (1) and (b) the AiH (2) components of the Airy beam in
arbitrary dimensionless units.

simply travels away from the propagation axis, diminishing its
amplitude. In Fig. 2(b) the parabolic caustic associated with
the rays normal to the concave wavefront can be appreciated.
We note that the caustic determined by the rays defines the
parabolic motion of the main maximum of the beam under
consideration [12]. This behavior is similar to that produced
by a third-order aberration (coma). The numerical simulations
shown in this paper use a computational window such that the
dimensionless parameters are s ∈ [−30,30] and ξ ∈ [0,5], and
we have used a super-Gaussian window t(x) = exp −(s/t0)50,
where t0 is the width of the window, to reduce the diffraction
effects introduced if a hard aperture is used instead and to
emphasize the propagation features of the AiH beams.

We can now easily understand the self-healing property
of the Airy beam: since the Airy beam is formed by the

FIG. 3. (Color online) Propagation of an obstructed Airy beam
(in arbitrary dimensionless units) showing self-healing. Notice the
presence of two shadows. The red dot at the edge of the figure indicates
the position where the obstruction has been located.

FIG. 4. (Color online) Behavior of a focused Airy beam (in
arbitrary dimensionless units); observe the two regions due to the
focusing of the two Hankel traveling waves. On the left side we have
indicated the profile of the Airy beam as well as the two wave fronts
of the beam.

superposition of the fractional Hankel components AiH (1) (s)
and AiH (2) (s), the self-healing region arises from the recom-
bination of these two components after the shadows of the
obstructed waves, as seen in Fig. 3.

In regard to focusing, we note that the Airy beam shows
the noncommon behavior of presenting two different focusing
regions, one for AiH (2) (s) in which focusing is observed and a
second for AiH (1) (s), farther away, where a defocusing beam
appears. This behavior can be seen in Fig. 4, where we have
marked the two regions as I and II. This behavior is easily
explained by noting that the composing Hankel waves, besides
having opposite traveling directions, have opposite wave-front
curvatures: one is positive focusing and the other is negative
defocusing. When passing through the positive lens, these add
or subtract accordingly.

A simple geometrical analysis under this consideration
easily explains the two observed regions. In Fig. 5 we show
a schematic of the optical arrangements including a lens; the
wave fronts have been marked in two different colors. Notice
how each region is generated by the focusing of the rays
coming from each of the two wave fronts, i.e., from each of the
Hankel waves that compose the Airy beam. We can think of
each region being formed due to the simultaneous incidence
of each Hankel component of the Airy beam. We would like to

FIG. 5. (Color online) Schematic ray tracing of the double focus-
ing of an Airy beam related to that shown in Fig. 4.
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FIG. 6. (Color online) Propagation of an off-axis Airy-Gauss
beam using arbitrary dimensionless units

emphasize that this is the case regardless of any interference
pattern caused by the functions AiH (1) and AiH (2). However,
we can indeed go further and assume that it is possible to make
use of a packet that is either only the real or only the imaginary
part of one of these two components, for example, AiH (1).

Finally, we can now take a more general view of the
behavior of an Airy-Gauss beam when it is off axis. In Fig. 6
we show the propagation of the Airy-Gauss beam, where it
is clear that each of the Hankel components provides the two
contrasting behaviors of focusing and defocusing mentioned
before.

As we have seen, the application of the traveling Hankel
wave approach has provided us with a straightforward descrip-
tion of the propagation characteristics of the Airy beam under
different circumstances. We will now show how to determine
the propagation distance of finite-energy Airy beams.

IV. FINITE AIRY BEAMS

It is usually argued that nondiffracting beams, such as the
Airy beam, require an infinite amount of energy for their
generation. This might be to give an explanation for the
nondiffraction feature or because the range of the mathematical
function that describes the profile is infinite. However, in this
section we show that from a physical perspective this cannot
be the case as the beam must be constrained by physical
principles. One of the principles mentioned above for the
Bessel beams also applies for the Airy beams, and that is the
Sommerfeld radiation condition. Within the traveling wave
approach, to have an infinite Airy beam would require having
sources at infinity.

For Airy beams, whose profile exhibits reduction of the
separation distance between intensity peaks, there exists
another more basic physical constraint that we discuss now.
The distance between two consecutive peaks in the transverse
Airy intensity profile should not become smaller than the
wavelength of the light used. If that were the case, we would
end up with an unphysical situation. This situation is analogous
to the treatment, for instance, of wave excitations with a
fractal boundary [18,19]; although mathematically the fractal

FIG. 7. (Color online) Schematic of the behavior of an Airy

beam: When the wave vector
−→
k of the Airy beam, which is normal

to the wave front φ, reaches the maximum paraxial value θc = π

6 , the
oscillations in the profile must dampen in order to remain physical.
At that point, the distance between two extreme points in the profile
must be of the order of half the critical wavelength λc.

structure continues to infinitely small scales, in reality there
are physical constraints that avoid this situation.

Next, we proceed to find a critical value of the beam extent
after which its profile must dampen, giving rise to a finite-
energy Airy beam. In order to tackle the issue, let us take the
asymptotic expansion for large arguments of the Airy function
given by the corresponding Bessel functions of order 1/3:

Ai (αs) ∝ cos

(
2

3
(αs)

3
2 − π

4

)
, (23)

where we have taken the normalized coordinates and α is a
parameter that allows us to change the frequency in the Airy
function. We need to find the distance between two consecutive
extreme points of the equation above (see Fig. 7). These points
occur when the following conditions are met: For minima we
have

smin = 1

α

(
3π

2

) 2
3
(

2l − 3

4

) 2
3

, (24)

and for maxima we have

smax = 1

α

(
3π

2

) 2
3
(

2l + 1

4

) 2
3

, (25)

where l is a nonnegative integer that provides us with
information about the number of cycles that have occurred
for a particular value of l.

In this way, the distance between two consecutive extremes
is thus given by

s = 1

α

(
3π

2

) 2
3

[(
2l − 3

4

) 2
3

−
(

2l + 1

4

) 2
3

]
. (26)

We know that the distance between two consecutive peaks
in the beam intensity cannot be smaller than the transverse
wavelength λc, i.e., s � λc/2. This argument provides a
physical criterion for the cutoff point of a finite Airy beam
after which it must dampen.
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FIG. 8. (Color online) The method to determine the propagation
distance ξmax of an Airy beam is given by the intersection of the
parabolic trajectory followed by the main maximum and a ray coming
from the edge of the profile (in arbitrary dimensionless units). We also
show a diagram of the phases of the Hankel components of the Airy
beam.

To define the critical transverse wavelength λc we must also
take into consideration that Airy beams propagate within the
paraxial regime as governed by Eq. (7). For this purpose we
must provide the maximum angle allowed for a ray in the wave
front to be considered paraxial. Curiously enough, to date in
the literature there is not an established quantitative criterion
for such an angle, and, as noted by Beck several decades ago,
“The term paraxial rays is a relative one and to some extent
a matter of arbitrary choice.” It will depend on the tolerance
error that one plans to accept [20].

We will introduce the quantitative criterion of paraxiality
put forward by Agrawal, Siegman, and others [21–23] where
paraxial optical beams can be focused or can diverge at angles
up to a maximum critical value of θc = π/6. With this in
mind, we consider a ray perpendicular to the wave front of
AiH (2) at the cutoff position. When the wave vector

−→
k to this

ray reaches the maximum paraxial angle θc = π/6, recalling
that |−→k | = 2π/λ, a simple calculation gives λc = 2λ. Thus,
substituting s = 2λ in Eq. (26) and solving for lc, we can get
the position smax(lc), where the oscillations of the Airy profile
must dampen.

A. Maximum propagation distance of finite Airy beams

We now propose a method for determining the propagation
distance of the finite Airy beam based on the observations
made above. Consider the parabolic trajectory followed by the
main maximum of the Airy beam and take a ray coming from
the wave front at the opposite extreme of the window and find
the point of intersection. Figure 8 shows this situation; in order
to guide the eye we have marked the region of existence of the
Airy beam given by the ray as well as the parabolic trajectory
followed by the beam (white dotted lines).

We know that for an Airy beam propagating in a homoge-
neous medium, the normalized solution is given by Eq. (11),
and thus, it is clear that the trajectory of the main maximum
satisfies the following equation:

s −
(

ξ

2

)2

= a1, (27)

where a1 = −1.0187297 . . . is the first zero of the derivative of
the Airy function, that is to say, the position of the first intensity
maximum at the onset of propagation. Furthermore, we know
that light rays are normal to the wave front, and therefore, in
this case, the equation for the ray we are interested in can be
expressed as

ξ = s
−1/2
0 (s − s0), (28)

where s0 is the point where the beam is truncated, in other
words, where the edge of the window is located. Using
Eqs. (27) and (28) for the ray, we have

ξ± = 2(
√

|s0| ±
√

2|s0| − |a1|), (29)

s± = 3s0 ± 2
√

|s0|
√

2|s0| − |a1|. (30)

The solution we seek is the one with the negative sign because
it is the first intersection between the parabola and the ray,
i.e., the point where the propagation ends. In this way, the
propagation distance is given by

ξmax = 2(
√

|s0| −
√

2|s0| − |a1|). (31)

This expression defines the maximum propagation distance for
a finite Airy beam.

V. HIGHER-ORDER AIRY MODES
IN GRADIENT-INDEX MEDIA

Up to now we have concentrated on the treatment of the
Airy beam propagating in homogeneous media as a result
of solving the normalized paraxial wave equation given by
expression (7), and we have ended up with a solution given by
the Airy function. However, the Airy functions also appear in
the description of the propagating modes in inhomogeneous
media, in particular in one-dimensional linear gradient-index
media [24–26].

It is known that in sol-gel materials the gradient-index
profile can be controlled by diffusion and precipitation of
dopants, including quadratic, quartic, and higher-gradient
profiles [27–29]. These materials are used to construct Wood
lenses that are thin radial gradient index lenses with plane-
parallel surfaces whose index of refraction is of the form N =
N00 + N10r

2 + N20r
4 + · · · . With this antecedent, it could be

possible to create a material whose index of refraction is the
one-dimensional equivalent of a Wood lens.

In this section we investigate the propagating modes for
power-law gradient-index media and show that they are what
we have come to call higher-order Airy beams.

Let us start with the Helmholtz equation in (1+1) dimen-
sions,

∇2E + k2E = 0, (32)
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and let the medium have a dispersion relation such that the
wave number can be expressed as k2(x) = k2

0 + β[−k0 − xn +
β

4 ], where β is a parameter that depends on the medium.
We can now propose an ansatz such that the electric field
is given by E(x,z) = U (x,z) exp[i(k0 − β

2 )z]. In the paraxial
approximation we have that

2i

(
k0 − β

2

)
∂U

∂z
+ ∂2U

∂x2
− βxnU = 0. (33)

If we require that β = 2k0 the wave number is given by
k2(x) = −2k0x

n, and Eq. (33) is simplified into

∂2U

∂x2
− βxnU = 0, (34)

which corresponds to a generalized form of the Airy differen-
tial equation. Making the transformation [16]

U (x) = √
xZ 1

n+2

(
2
√

β

n + 2
x

n+2
2

)
(35)

and substituting it into Eq. (34), after some algebra, yield

Z′′
1

n+2
(ζ ) + 1

ζ
Z′

1
n+2

(ζ ) +
(

1 − 1

(n + 2)2ζ 2

)
Z 1

n+2
(ζ ) = 0,

(36)

where ζ = 2
√

β

n+2 x
n+2

2 . Equation (36) is the Bessel differential
equation whose solutions are the family of Bessel functions of
order 1

n+2 .
Equation (34) has been studied in detail by Swanson and

Headley [30], who defined its solutions as An(x) and Bn(x). It
is clear that when n = 1 the functions An(x) and Bn(x) become
the standard Airy functions Ai (x) and Bi (x), respectively. An
important remark is that they found that the general behavior
of the solutions is different depending on the parity of n. This is
something to be expected since the branches of the power-law
parabolas can have different signs depending on which side of
the origin they extend to.

We can now refer to Eq. (34) as the Airy differential
equation of order n. In other words, its solutions can be
seen as higher-order Airy functions, and similar to the Airy
functions, they can also be cast in terms of Bessel functions of
fractional order. It should therefore be clear that given adequate
conditions in a power-law gradient-index medium, it is then
possible to obtain higher-order Airy beams.

We want to remark that the study presented in this section
can also be applied to investigate the homologous problem in

quantum mechanics for the Schrödinger equation of a particle
confined within an infinite wall and a power-law potential
V (x) = βxn, with β being constant [31–35]. For the particular
case of the linear potential [36], the standing Airy wave packet
arises from considering a particle subject to a constant force,
e.g., gravitational force, so that when it takes the value of zero,
the particle wave packet is still described by the Airy function
but is accelerating away from the infinite wall as a consequence
of removing the stabilizing force [26].

VI. CONCLUSIONS

In this paper we introduced the physical principles that
govern the existence and propagation of Airy beams. We have
shown that the nondiffracting characteristics of Airy beams
can be explained under the formalism of traveling Hankel
waves originally introduced to describe Bessel beams. This is
possible because Bessel and Airy functions are intimately re-
lated to each other, with the latter being the Bessel functions of
fractional order equal to 1

3 . We introduced the two Hankel com-
ponents of the Airy beam, namely, AiH (1) (·) and AiH (2) (·) and
showed that the latter bears the parabolic caustic property of
the beam. It was shown that the superposition of these Hankel
components fully explains in simple and straightforward
terms propagation characteristics of the Airy beam, such as
self-healing and double focusing. Also, this approach allowed
us to establish the needed expression to compute the maximum
propagation distance of finite-energy Airy beams. We ad-
dressed the physical constraints of why an “ideal” Airy beam of
infinite extent cannot exist and provided a quantitative method
to obtain the maximum extent of an Airy beam of a given wave-
length. Finally, by studying the solution of the paraxial wave
equation in power-law gradient-index media we demonstrated
the possibility of creating higher-order Airy beams.

ACKNOWLEDGMENTS

The authors acknowledge Professor Rocı́o Jauregui Renaud
for fruitful and motivating discussions and for bringing to
our attention Ref. [31]. We also thank Professor Demetrios
Christodoulides for his valuable comments during the devel-
opment of the present work and Professor Duncan Moore for
enlightening discussions on gradient-index materials. Finally,
we also acknowledge support of INAOE, Mexico, and the
STRI, United Kingdom, during the development of this
project.

[1] J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, Phys. Rev. Lett. 58,
1499 (1987).
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