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Effective dissipation and nonlocality induced by nonparaxiality
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We investigate beam diffraction and spatial modulation instability of coherent light beams propagating in
the nonparaxial regime in a nonlinear Kerr medium. We study the instability of plane-wave solutions in terms
of the degree of nonparaxiality, beyond the regime of validity of the nonlinear Schroedinger equation. We
also numerically analyze the way nonparaxial terms break the integrability and affect the periodical evolution
of higher-order soliton solutions. We discuss nonlocality and effective dissipation introduced by the nonlinear
coupling with evanescent waves.
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I. INTRODUCTION

The nonlinear Schroedinger equation (NLS) describes
propagation of a light beam in a nonlinear Kerr medium
within the paraxial approximation [1,2], and models a large
variety of phenomena, like solitons and shock waves, which
are routinely experimentally observed [3,4]. The NLS is an
integrable equation [5] that also finds many applications in
hydrodynamics, plasma physics, and Bose-Einstein conden-
sation, and this promotes the interdisciplinar exchange of
information between different fields of nonlinear physics. In
particular, modulation instability (MI) was first discovered in
hydrodynamics and named Benjamin-Feir instability [6,7], a
mechanism responsible for the breaking of periodic surface
waves on an inviscid fluid layer in deep water [6]. MI concerns
the instability of the plane-wave solution of the NLS equation
with respect to a sinusoidal perturbation [8,9], and in the
framework of high power laser beam propagation corresponds
to the spatial modulation of the transverse beam profile and
the resulting generation of filaments [10,11]. In these respects,
MI is often indicated as a precursor to the formation of bright
solitons. In the time domain, i.e., in the case of a laser beam in
an optical fiber, MI induces a temporal intensity modulation
and generations of trains of light pulses [8,9], and is also
relevant during supercontinuum generation [12].

When considering the spatial nonlinear dynamics of spatial
beams, the limit of application of the NLS, and of the
corresponding analysis of MI, is represented by the paraxial
approximation: the beam propagation must occur in a narrow
cone of wave vectors around the direction of propagation; this
corresponds to a regime in which the transverse dimension
of the beam is much greater than the beam wavelength [8,9].
Various investigations show that the paraxial regime may be
broken during nonlinear evolution [13–16], and this may be
extremely relevant for applications such as ultrahigh resolution
microscopy [17].

Many efforts have been made in the direction of developing
more accurate models to go beyond the paraxial approxima-
tion [18–30]. In this paper we follow the approach of Kolesik
and Moloney, and employ the unidirectional pulse propagation
equation (UPPE) [28,31] in the monochromatic regime and
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for a one-dimensional spatial beam. The UPPE generalizes
the standard NLS and provides a good description of beams
whose size could be slightly smaller, or of the same order, of the
wavelength and maintains a scalar form. Investigating MI by
the UPPE can represent a test for such a model for nonparaxial
light beam propagating in a nonlinear Kerr medium.

In the following, we introduce the UPPE and study the
propagation of one-dimensional spatial light beams in the
monochromatic regime. We define the degree of nonparaxiality
of the beam, and show that in a linear medium this equation
provides a more accurate description of the diffraction of a
light beam with respect to the paraxial evolution equation
(i.e., the linear Schroedinger equation), because it includes
all higher-order diffraction terms and takes into account the
effective dissipation of the energy carried out in the direction of
propagation due to the existence of evanescent waves. We first
study the diffraction of nonparaxial Gaussian beams searching
for corrections to the well-known results from linear optics,
and show that diffraction can be analytically treated at any
order of nonparaxiality. We then analyze MI: we first consider
a modified NLS in which we include all the higher-order
diffraction terms and calculate the rate of exponential growth
for each Fourier component of an initial small perturbation
of the transverse beam profile; then, in a later section, we
consider the entire UPPE model retaining the corrections to
the nonlinear terms. We demonstrate the importance of these
corrections and show the way nonparaxiality affects the growth
of the perturbation. Finally, we numerically investigate the way
this higher-order terms lead to the breaking of the periodicity
of higher-order soliton solutions.

II. UNIDIRECTIONAL PULSE PROPAGATION EQUATION

The UPPE [28] is a scalar envelope equation for the
transverse components of the electric field and furnishes a
connection between the nonlinear Maxwell equations and
the simple NLS, which is valid in the limit of paraxial
propagation. The UPPE is derived from Maxwell equations
under the valitidy of (i) the scalar, and (ii) the unidirectional
approximation.

The scalar approximation (i) neglects the longitudinal
component of the electric field and of the polarization vector.
Even in a simple isotropic nonlinear medium, nonlinearity
couples components of the electric field, and neglecting the
longitudinal components of the electric field and of the
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polarization vector constitutes an approximation, which is
known to be effective in many practical applications. The
validity of the scalar approximation is lost for strongly non-
paraxial beams, when it is necessary to include the longitudinal
component of the electric field in the model and take into
account the full vectorial electric field [21,23,24,27,28]. For
beams that propagate in a paraxial or slightly nonparaxial
regime, the UPPE provides a more accurate description of
the beam evolution than the NLS equation and maintains a
scalar form.

The unidirectional approximation (ii) neglects the back-
ward propagating component of wave to obtain a closed
equation for the forward-propagating part. The error in doing
such an approximation is small when the complex amplitude of
the forward field is slowly varying with respect to wavelength,
a condition valid for slightly nonparaxial propagation [28,31].

For monochromatic, linearly polarized light beams, the
electric field is written as

E(r,t) = x̂
2

[E(x⊥,z)e−iω0t + c.c.], (1)

and the UPPE in an instantaneous Kerr medium is(
i∂z +

√
β2

0 − |k⊥|2)E = − n0n2k
2
0√

β2
0 − |k⊥|2

P[E]. (2)

In (2), E(k⊥,z) and P[E](k⊥,z) are, respectively, the Fourier
transform with respect to the transverse spatial coordinate x⊥,
of the electric field E(x⊥,z), and of |E(x⊥,z)|2E(x⊥,z), n0

being the linear refractive index, n2 the Kerr coefficient, k0 the
vacuum propagation constant, and β0 = n0k0. By factoring
out the slowly varying part of the complex amplitude, A =√

ε0n0c

2 σ 2Ee−iβ0z, with A measured in W1/2 and n2 in m2 W−1,
we obtain(

i∂z +
√

β2
0 − |k⊥|2 − β0

)
A = −η

β0√
β2

0 − |k⊥|2
P[A], (3)

with η = n2k0/σ
2 and σ is the characteristic transverse size of

the beam. We normalize the transverse variable x⊥ to σ , the
propagation variable z to the diffraction length (Ld = β0σ

2),
and the field amplitude A to the peak power P0 so that
ψ̂ = A/

√
P0. We define a nonlinear length, Lnl = 1/ηP0,

and a nonlinear coefficient γ = Ld/Lnl measuring the relative
strength of the linear and nonlinear terms. Correspondingly,
UPPE is rewritten as[

i∂z + 1

ε
(
√

1 − ε|k⊥|2 − 1)

]
ψ̂ + γ√

1 − ε|k⊥|2
P[ψ] = 0,

(4)
where P[ψ] is the Fourier transform of |ψ |2ψ and we
introduce the nonparaxial parameter ε which is defined as
ε = 1/β0Ld . For ε → 0, Eq. (4) reduces to the standard NLS
equation. The nonparaxial parameter ε determines the strength
of the corrections to the paraxial propagation. Because of the
scalar and unidirectional approximations, highly nonparaxial
beams are not described by Eq. (4); nevertheless, this simple
scalar model allows us to theoretically investigate light beams
with a transverse size slightly smaller or of the same order
of the wavelength, namely ε � 0.1. Nonparaxiality naturally
introduces nonlocality in the model as outlined by Eq. (4).

III. NONPARAXIAL DIFFRACTION

As a first application of the UPPE, we study the diffraction
of a beam propagating in a linear medium (γ = 0). As men-
tioned above, the UPPE provides a more accurate description
than the linear Schroedinger equation for two reasons: it
involves all the higher-order diffraction terms and includes
the evanescent part of the Fourier spectrum. In the linear case
Eq. (4) is [

i∂z + 1

ε
(
√

1 − ε|k⊥|2 − 1)

]
ψ̂ = 0. (5)

In what follows, for the sake of simplicity, we consider
the 1+1-dimensional case; the extension to the 2+1 case is
straightforward. The solution of Eq. (5) is given by

ψ(x,z) =
∫

dk

2π
ψ̂0(k)eikx+iR(k)z, (6)

with R(k) = 1
ε
(
√

1 − εk2 − 1) and ψ̂0(k) = ψ̂(k,0). In order
to study the spreading of a light beam, we use the root-mean-
square deviation of |ψ(x,z)|2:

σ 2(z) = 1

N

∫
dx x2 |ψ(x,z)|2, (7)

with the normalization constant N = ∫
dx |ψ(x,z)|2 =∫

dk
2π

|ψ̂(k,z)|2 = ∫
dk
2π

|ψ̂0(k)|2. Using Eq. (6) in Eq. (7),

σ 2(z) = 1

N

∫
dk

2π
[R′ 2|ψ̂0|2z2 − i(R′′|ψ̂0|2 + 2R′ψ̂ ′

0ψ̂
∗
0 )z

− ψ̂ ′′
0 ψ̂∗

0 ]e−2Riz, (8)

where the quotes stands for derivatives with respect to k. Ri(k)
is the imaginary part of R(k) and is different from zero only
for k > 1/

√
ε, which gives the evanescent spectrum. Typically

ε � 1, so that the evanescent Fourier components correspond
to k � 1; as the wave has a spectral range of some units in k

because of the normalization, the values of ψ̂0(k) for k � 1 are
negligibly small and, correspondingly, the exponential term in
Eq. (8) is negligible. It turns out that the beam broadens with
a quadratic power law along the propagation coordinate

σ 2(z) = Az2 + Bz + C, (9)

with

A = 1

N

∫
dk

2π
R′ 2|ψ̂0|2, (10)

B = −i
1

N

∫
dk

2π
(R′′|ψ̂0|2 + 2R′ψ̂ ′

0ψ̂
∗
0 ), (11)

C = − 1

N

∫
dk

2π
ψ̂ ′′

0 ψ̂∗
0 . (12)

We note that the functional dependence is the same as
that derived in paraxial approximation. The difference is
enclosed in the values of the coefficients A and B, which
depend on the nonparaxial parameter ε. The meaning of
the various coefficients is the following. Given that σ 2(0) =
1
N

∫
dx x2 |ψ(x,0)|2 = − 1

N
∫

dk
2π

ψ̂ ′′
0 ψ̂∗

0 , C represents the size
of the beam at the starting point z = 0. The coefficient B is
related to the initial chirp of the beam, it is different from zero
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only if ψ̂0(k) has a nonzero imaginary part. The last coefficient,
A, specifies the spatial scale for the beam broadening and can
be written as

A = 1

N

∫
dk

2π

k2

1 − εk2
ψ̂2

0 (k). (13)

In order to find an explicit mathematical expression for the
evolution of the rms of the beam, we consider an unchirped
Gaussian beam as initial condition: ψ(x,0) = e−x2/2/

√
2π .

We then have B = 0 and the integral in (13) can be evaluated
by an asymptotic power-series expansion in ε. We obtain the
following expressions:

σ 2(z) = 1
2 + Az2, (14)

with

A 	
∑
n=0

(2n + 1)!!

2n+1
εn = 1

2
+ 3

4
ε + 15

8
ε2 + O(ε3). (15)

If the power expansion in (15) is stopped to O(1), the well-
known results from linear Gaussian optics are retrieved. At
higher orders, it turns out that nonparaxial effects cause a
faster broadening of the beam.

We compare these theoretical results with numerical simu-
lations of Eq. (5). We found a full agreement between theory
and simulations, as shown in Fig. 1 where δ represents the
relative difference between the theoretical values of the rms σt

and those numerically calculated σn, namely δ = |σt − σn|/σt .
δ is of the order of 1% in the worst case for ε = 0.1 and for
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FIG. 1. (Color online) (a) Comparison of the numerical simu-
lations of the linear UPPE (5) with the paraxial theory, given by
Eq. (14) with A approximated by the first term in the asymptotic
expansion (15). The figure shows that the theory is correct up to an
uncertainty δ of 17% for ε = 0.1. (b) As in (a) going beyond the
paraxial approximation, i.e., including higher-order corrections in ε

(we use the first six terms in the series expansion); in this case the
error made is always lower than 1%.

a normalized propagating distance z = 10; the corresponding
value in the paraxial approximation is about 17%. We also
note that the discrepancy between paraxial and nonparaxial
models becomes relevant, i.e., greater than 1%, for ε � 0.01
corresponding to σ � 2λ.

IV. MODULATION INSTABILITY

We analyze nonparaxial MI by first considering a modified
NLS including only the corrections to the linear term, i.e.,
higher-order diffraction terms. In a later section, we also retain
the corrections to the nonlinear terms, which introduce small
nonlocal interactions. As above, to simplify the notation and
for the comparison with the numerical simulations we limit to
one-transverse spatial dimension; the extension of our theoret-
ical analysis to two transverse directions is straightforward.

A. Corrections to the linear term

We consider the following modified NLS:[
i∂z + 1

ε

(√
1 + ε∂2

x − 1
)]

ψ + γ |ψ |2ψ = 0. (16)

In passing from the Fourier space to the real space we expand
the square root in a Taylor series; this is justified by the
smallness of the ε parameter, which makes negligible the
weight of the evanescent Fourier components. MI arises from
the instability of the exact plane-wave solution with respect
to an oscillatory perturbation; the plane-wave solution is
given by

ψ(x,z) = eiγ z. (17)

The perturbation to (17) with wave number k is

ψ(x,z) = [1 + a(x,z)]eiγ z, (18)

a(x,z) = a+(z)eikx + a−(z)e−ikx, (19)

with |a(x,z)| � 1 ∀x,z. Using (18) and (19) in (16), we obtain
the following system of differential equations:

i∂z

(
a+
a∗

−

)
=

(−R(k) − γ −γ

γ R∗(k) + γ

)(
a+
a∗

−

)
, (20)

with R(k) = 1
ε
(
√

1 − εk2 − 1). Equation (20) can be solved
on the basis of the eigenvectors; correspondingly the solution
can have an exponential evolution if the eigenvalues have a
nonzero imaginary part. The eigenvalues λ± are

λ± = −iRi ± |Rr |
√

1 − 2γ

|Rr | , (21)

with Rr (k) and Ri(k) real and imaginary parts of R(k).
In a focusing medium (γ > 0), wave numbers such as

|Rr (k)| < 2γ exponentially grow with respect to z. The rate
of the growth is given by the gain function λ+ = iG:

G(k) =
⎧⎨
⎩

1−√
1−εk2

ε

√
2γ ε

1−√
1−εk2 − 1 |k| � 1√

ε
,

− 1
ε

√
εk2 − 1 + 1

ε

√
2γ ε − 1 |k| > 1√

ε
.

(22)
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FIG. 2. (Color online) (a) Comparison of the theoretical gain
functions from NLS and modified NLS. The choice of the scale
for the axes in the figure is such that the gain function in the paraxial
case is independent of the value of γ while in the nonparaxial case
it depends only on the product εγ . In panels (b) and (c) we show the
comparison between the theoretical predictions and the numerical
results for the gain function, finding a good agreement for the range
of the amplified wave numbers in the paraxial (b) and nonparaxial
model (c). The simulations were performed by a split step Fourier
method. The vertical dashed black lines separate the propagating
Fourier components from the evanescent spectrum. The modified
NLS equation takes correctly into account the nonpropagating nature
of these components; indeed in (c) the noise beyond the black lines,
present in (b), vanishes.

The gain in Eq. (22) has the expression found in the paraxial
approximation, in the limit ε → 0 (k2

c ≡ 4γ ):

G(k) = k2

2

√
k2
c

k2
− 1. (23)

In Fig. 2(a) we compare the gain function for the parax-
ial (23) and nonparaxial case (22). The introduction of
higher-order diffraction terms leads to the reduction of the
amplification bandwidth in the wave-number space: in the
paraxial case, the instability region is given by k < kc, while
in the nonparaxial case it is given by k < kc

√
1 − εγ .

In addition, the maximally amplified wave vector kmax =
kc

√
1 − εγ /2 shifts towards lower wave numbers with respect

to the paraxial case kmax = kc/
√

2, resulting in an increased
wavelength of the modulation, i.e., the healing length  =
2π/kmax. On the contrary, the maximum of the gain function
is not affected by ε.

All these corrections are of the order O(εγ ), which
means that they come from the coupling of the nonlinear
and nonparaxial effects. Therefore such corrections become
more relevant when increasing the power (larger γ ), or when
decreasing the size of the beam (larger ε).

This is further confirmed by the fact that a different
choice for the normalization parameters, i.e., expressing the
transverse coordinates and the propagation distance in units,
respectively, of the healing length  and of the nonlinear length
Lnl , leads to an UPPE only containing the single parameter εγ ,

i∂zψ̂ + 1

εγ

(√
1 − εγ

2π2
k2 − 1

)
ψ̂

+P[ψ]/

√
1 − εγ

2π2
k2 = 0. (24)

The physical meaning of the product εγ is related to the
ratio between the carrier wavelength λ and the nonlinear length
Lnl : indeed εγ = 1/β0Lnl , where β0 = 2πn0/λ. Since the
nonlinear effects typically occur on a length scale much greater
than that of the carrier wavelength of the beam, the corrections
must be small εγ � 1. Otherwise, if εγ ∼ 1, the envelope
of the wave varies on the same length scale of the carrier
wave and the use of envelope equations becomes meaningless.
Therefore, we can retain as an upper bound the value εγ ∼ 0.1.

In real world experiments, the magnitude of the corrections
is related to the nonlinear correction to the refractive index; in-
deed εγ = �n/n0 where �n = n2I0. Thus the value εγ = 0.1
can be obtained using highly nonlinear materials, such as liquid
crystals [32,33] or thermal media [4] and high intensity beams.
As an example, one can consider a beam whose transverse
width is σx = 8.5 × 10−6 m with carrier wave number β0 =
1.17 × 107 m−1 and intensity peak I0 = 1.5 × 1013 W m−2

propagating in liquid crystals (n2 ∼ 10−14 m2 W−1). The
corresponding values of ε and γ are respectively 10−4 and
103 which lead to corrections of the order εγ ∼ 0.1.

In Figs. 2(b) and 2(c) we compare the gain function obtained
from the simulation of the NLS equation (b) and the modified
NLS equation (c) with the expected theoretical trend (a) for
εγ = 0.1. The range of the amplified wave number is in
quantitative agreement with the theoretical predictions, while
the values of the gain function differs substantially in the region
around k ∼ 0. This is due to the numerical discretization which
leads the initial spectrum to have a finite width instead of
being a δ function. Thus the gain function can be thought of
as a convolution of the gain functions arising from the single
Fourier components of the initial spectrum. In addition, as
resulting from the theory, only the component of the initial
field that is parallel to the direction of growth, identified by
an eigenvector of the evolution matrix in Eq. (20), can be
amplified.

In order to calculate the gain function from the simulations
we evaluate the amplitude of the Fourier spectrum ψ̂(z,k)
at the initial point (z = 0) and after about two nonlinear
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lengths (γ z ∼ 2), so the gain function is obtained from the
numerical simulation through the simple relation G(k) =
1
z
ln[ψ̂(k,z)/ψ̂(k,0)].

The evanescent waves are given by Fourier components
with k > 1/

√
ε, and decrease exponentially. This fact is

correctly taken into account in the modified NLS equation as
one can see from the theoretical results (22) and simulations
in Fig. 2(c). This makes the model dissipative and it is valid
until the corresponding losses of power remain negligible. We
remark that the dissipation addressed here is not the known
process due to material absorption, but it is an effective process
due to the breaking of the unidirectional approximation, which
does not produce a damping in the energy content of the beam,
but a transfer to the backward component not included in the
UPPE approach.

B. Beyond modulation instability

MI can be observed after few nonlinear lengths. Going
further along propagation, the initially constant amplitude of
the beam, which has become modulated after two or three Lnl ,
breaks after six or seven Lnl into localized structures, or “fila-
ments,” as in Fig. 3, which can be interpreted as bright solitons.

The transverse distance between the filaments is of the order
of magnitude of the healing length, which can be written in
the paraxial case as  =

√
2π2/γ . For example, in Fig. 3 we

use γ = 103 and the distance observed between the filaments
is about 0.14.
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FIG. 3. (Color online) We simulate the filamentation process
using the NLS equation (a) and (b), and the modified NLS equation
(c) and (d). The initial condition is a constant of unitary amplitude
perturbed by a small noise. The parameters used are ε = 10−4 and
γ = 103. The filaments described by the modified NLS equation in
panel (c) have wider size and less intensity in the region of focusing,
with respect to the NLS equation in panel (a). This is due to the
exponential decay of the evanescent components of the spectrum,
which limits the narrowing of the filaments. The NLS equation
preserves the power of the beam (b) while the modified NLS equation
is a dissipative model (d) and hence it is valid until the relative loss
of power can be considered negligible.

These filaments focus and defocus periodically along the
propagation. The main difference between the paraxial and
nonparaxial model regards the focusing which is more pro-
nounced and localized in space for the former case in Fig. 3(a);
in the nonparaxial case the filaments display a larger minimum
size and appear less focused, as shown in Fig. 3(c). This is due
to the exponential decay of the evanescent part of the spectrum
that limits the narrowing of the filaments in the nonparaxial
case. As we already pointed out, the exponential decay of
the evanescent components makes the model dissipative, see
Fig. 3(d), while the NLS equation preserves the power of the
beam along the propagation as in Fig. 3(b). More specifically,
when the filaments in Fig. 3(c) tend to focus, there is an en-
hancement of the amplitude of high wave numbers in the spec-
trum, and the evanescent part decays exponentially causing a
noticeable loss of power, as one can see from Fig. 3(d). The
evanescent components cannot propagate forward and hence
they are reflected in the backward direction, which is not in-
cluded in the UPPE and results as an effective loss mechanism.

As long as the relative loss of energy is small, the modified
NLS equation is a valid model for the amplitude of the forward
propagating part of the electric field, otherwise a more accurate
model including also the backward propagating part of the field
should be employed. Figure 3(d) shows that the relative loss
of power is less than 5% within about seven nonlinear lengths
(γ z ∼ 7) and the modified NLS equation can be considered
valid in the considered range.

C. Correction to the nonlinear term

Here we consider the entire UPPE (4), that is we retain
also the modifications to the nonlinear terms and investigate
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FIG. 4. (Color online) (a) Gain functions relative to the NLS,
modified NLS and UPPE equations for εγ = 0.1. (b) Comparison
between the theoretical trends and the gain function obtained from
the numerical simulation of the UPPE.
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FIG. 5. (Color online) (a) Filamentation process with the UPPE
model. The filaments present the same structure as those in Fig. 3(c).
The introduction of small nonlocal interactions by the modification
of the nonlinear term increases the instability and this enhances the
loss of power during propagation.

their effects. Since the model (4) exhibits two singularities for
k = ±1/

√
ε, we expand the nonlinear term to the first order

in ε and consider only the relevant wave numbers such that
|k| < 1/

√
ε; indeed the assumptions ε � 1 and εγ � 1 make

the amplitude of the evanescent components very small and the
range of the amplified wave numbers, which has a magnitude
of the order of kc, is largely contained in the interval ∼1/

√
ε.

In the spatial domain the (1+1)UPPE can be written as[
i∂z + 1

ε

(√
1 + ε∂2

x − 1
)]

ψ + γ |ψ |2ψ

− 1

2
εγ ∂2

x (|ψ |2ψ) = 0. (25)

We note that the term 1
2εγ ∂2

x (|ψ |2ψ) introduces small
corrections, which have a nonlocal character. In order to
calculate the gain function of the perturbation with this model
we follow the same procedure above; we find the following
expression for the gain function:

G2(k) =
(

1 − √
1 − εk2

ε

)2 2εγ

1 − √
1 − εk2

(1 + εk2)

− 1 − (εγ )2

1 − √
1 − εk2

(
ε

k2 + 3
4εk4

1 − √
1 − εk2

)
. (26)

Equation (26) resembles (22) for k < 1/
√

ε. The difference is
given by the presence of additional terms of the order O(εnγ )
and O(εn+1γ 2) with n � 1. These latter terms introduce
higher-order corrections that are negligible with respect to
those considered in Sec. IV A above; on the other hand, the

former contain corrections of the order O(εγ ), which are
to be taken into account. These terms are responsible for
the widening of the range of the amplified wave number,
at variance with those in Sec. IV A. In fact, performing
the analysis to the first order in O(εγ ), we obtain for the
amplification range |k| < kc(1 + 3

2εγ ). Moreover, the wave
number corresponding to the maximum of the gain function
moves to higher values, so that the healing length gets smaller
when increasing εγ . In addiction, as shown in Fig. 4, the values
of the gain function grow and this enhances the instability
process.

Figure 5(a) shows the numerical simulation of the gener-
ation of filaments with the UPPE as a model. The filaments
have the same features as those relative to the modified NLS
equation in Fig. 3(c). The only difference is the loss of power
along the propagation that is greater for the UPPE model
because of the the greater instability induced by the nonlocal
interactions, as shown in Fig. 5(b). After about seven Lnl

the loss of power reaches the 20% of the initial power. In
addition it is worth noticing that the correction to the nonlinear
term introduces fluctuations in the energy that are of the order
O(εγ ) and becomes more intense as the filaments get more
focused. As a consequence one needs a more accurate model,
which takes into account the back-propagating part of the field
for the propagation of filaments after many nonlinear lengths.

Beyond the phenomenon of MI, the dissipative and nonlocal
character of the corrections also affects the formation and
the propagation of solitons. In fact the corrections break
the Hamiltonian character of the NLS and hence also the
periodicity of the soliton solutions. As an example we
simulated the propagation of a third-order bright soliton in
Fig. 6. We found that, during propagation the soliton, instead of
describing a periodic pattern as in the paraxial model, Fig. 6(a),
breaks in two distinct structures, Fig. 6(c). Again we find that
the loss of power is noticeable, so a more accurate description
of the propagation of a nonparaxial third-order soliton must
involve the back propagating part of the field.

V. CONCLUSIONS

We have considered the process of the modulation instabil-
ity of a coherent laser beam propagating in a nonlinear Kerr
medium beyond the ordinary NLS equation, and employing
the UPPE [28]. We considered the various corrections to the
NLS equation starting from the ones to the linear terms and
then including modifications to the nonlinear part. The additive
linear terms account for the effects of higher-order diffraction

FIG. 6. (Color online) (a) The periodicity of a third-order bright soliton (γ = 9) is destroyed when including higher-order corrections in
the linear (b) and nonlinear term (c) of the NLS equation. The initial condition is ψ(x,0) = sech(x) and the ε parameter is chosen as ε = 0.01
such that εγ ∼ 0.1.
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and for the evanescent Fourier components. We analyzed the
way such corrections influence the propagation of a laser beam
in a linear medium. It turns out that the beam diffracts more
rapidly than in the paraxial case, as it can be described by
closed-form expressions, with results in perfect agreement
with the numerical simulation.

We then considered the modulation instability of a plane-
wave solution in a nonlinear Kerr medium and compared the
results of the paraxial model with the ones from the modified
NLS equation with nonparaxial corrections to the linear term.
We found that the differences in the MI gain function are
of the order of εγ , that is, the corrections to the paraxial case
arise from the coupling between the nonparaxial and nonlinear
effects. Then introducing also the nonparaxial correction to the
nonlinear term, which has nonlocal features, the gain function
is further modified and in particular it grows by an amount of
the order of εγ .

The product εγ is related to the ratio between the carrier
wavelength of the electric field and the nonlinear length. This
product can be simply written as the ratio between the nonlin-
ear modification of the refractive index and the linear refractive
index, i.e., εγ = �n/n0 = n2I0/n0, and so εγ � 1. Thus the
corrections to the NLS behavior are evident only in highly
nonlinear media such as liquid crystals [32,33] or thermal
media [4], and with high intensity beams such that εγ ∼ 0.1.

In addition, the modification to the linear term is such that
the model is able to treat correctly the evanescent Fourier
components of the spectrum, which decay exponentially
introducing dissipation in the model due to the fact that,
as the spectrum of the wave broadens, a certain amount of
energy is transferred to the evanescent waves, which excite
backward propagating waves. As long as the relative loss of
power is small the UPPE is a valid model that provides an
accurate description for the propagation of a coherent laser
beam, otherwise one has to include in the theory the backward
propagating part of the electric field and the interaction
between the forward and the backward part.

In the regime beyond the linear stage of MI, we investigated
the generation of filaments and the effect introduced by
the considered corrections. We found that the focusing of
filaments is less pronounced in the nonparaxial case. This
is due to the cutoff of the Fourier components in the Fourier
space that limits the focusing in the real space. The great
loss of power after about seven nonlinear lengths indicates
that a more accurate model which involves the backward
propagating part of the field is indeed needed to describe better
the physics beyond several nonlinear lengths. In addition,
nonparaxiality breaks the periodicity of the soliton solutions
because of the dissipative and nonlocal character of the
corrections.

[1] Spatial Solitons, edited by S. Trillo and W. Torruealls (Springer-
Verlag, Berlin, 2001).

[2] Y. Kivshar and G. P. Agrawal, Optical Solitons (Academic,
New York, 2003).

[3] C. Conti and G. Assanto, Encycl. Mod. Opt. 5, 43 (2004).
[4] S. Gentilini, N. Ghofraniha, E. DelRe, and C. Conti, Phys. Rev.

A 87, 053811 (2013).
[5] V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972)

[Zh. Eksp. Teor. Fiz. 61, 118 (1971)].
[6] T. B. Benjamin and J. E. Feir, J. Fluid. Mech. 27, 417 (1967).
[7] V. E. Zakharov and L. A. Ostrovsky, Physica D 238, 540 (2009).
[8] G. P. Agrawal, Nonlinear Fiber Optics (Academic, New York,

2006).
[9] J. V. Moloney and A. C. Newell, Nonlinear Optics (Westview

Press, Oxford, 2004).
[10] A. J. Campillo, S. L. Shapiro, and B. R. Suydam, Appl. Phys.

Lett. 23, 628 (1973).
[11] A. V. Mamaev, M. Saffman, D. Z. Anderson, and A. A. Zozulya,

Phys. Rev. A 54, 870 (1996).
[12] U. Bandelow and A. Demircan, Opt. Commun. 244, 181 (2005).
[13] C. Conti, A. J. Agranat, and E. DelRe, Phys. Rev. A 84, 043809

(2011).
[14] C. Conti, M. Peccianti, and G. Assanto, Phys. Rev. Lett. 92,

113902 (2004).
[15] C. Conti, G. Ruocco, and S. Trillo, Phys. Rev. Lett. 95, 183902

(2005).
[16] A. Alberucci and G. Assanto, Opt. Lett. 36, 193 (2011).
[17] C. Barsi and J. W. Fleischer, Nat. Photon. 7, 639 (2013).

[18] M. Lax, W. H. Louisell, and W. B. McKnight, Phys. Rev. A 11,
1365 (1975).

[19] M. D. Feit and J. F. Fleck, J. Opt. Soc. Am. B 5, 633 (1988).
[20] G. Fibich, Phys. Rev. Lett. 76, 4356 (1996).
[21] B. Crosignani, P. D. Porto, and A. Yariv, Opt. Lett. 22, 778

(1997).
[22] P. Chamorro-Posada, G. S. McDonald, and G. H. C. New, J.

Mod. Opt. 45, 1111 (1998).
[23] R. de la Fuente, R. Varela, and H. Michinel, Opt. Commun. 173,

403 (2000).
[24] A. Ciattoni, B. Crosignani, and P. D. Porto, Opt. Commun. 177,

9 (2000).
[25] A. Ciattoni, B. Crosignani, and P. D. Porto, J. Opt. Soc. Am. B

17, 809 (2000).
[26] A. Ciattoni, C. Conti, E. DelRe, P. D. Porto, B. Crosignani, and

A. Yariv, Opt. Lett. 27, 734 (2002).
[27] M. Matuszewski, W. Wasilewski, M. Trippenbach, and Y. B.

Band, Opt. Commun. 221, 337 (2003).
[28] M. Kolesik and J. V. Moloney, Phys. Rev. E 70, 036604 (2004).
[29] A. Ciattoni, B. Crosignani, and P. D. Porto, Opt. Express 14,

5517 (2006).
[30] H. Wang and W. She, Opt. Commun. 254, 145 (2005).
[31] M. Kolesik, P. Jakobsen, and J. V. Moloney, Phys. Rev. A 86,

035801 (2012).
[32] M. Peccianti, C. Conti, and G. Assanto, Phys. Rev. E 68,

025602(R) (2003).
[33] M. Peccianti, C. Conti, E. Alberici, and G. Assanto, Laser Phys.

Lett. 2, 25 (2005).

023804-7

http://dx.doi.org/10.1103/PhysRevA.87.053811
http://dx.doi.org/10.1103/PhysRevA.87.053811
http://dx.doi.org/10.1103/PhysRevA.87.053811
http://dx.doi.org/10.1103/PhysRevA.87.053811
http://dx.doi.org/10.1017/S002211206700045X
http://dx.doi.org/10.1017/S002211206700045X
http://dx.doi.org/10.1017/S002211206700045X
http://dx.doi.org/10.1017/S002211206700045X
http://dx.doi.org/10.1016/j.physd.2008.12.002
http://dx.doi.org/10.1016/j.physd.2008.12.002
http://dx.doi.org/10.1016/j.physd.2008.12.002
http://dx.doi.org/10.1016/j.physd.2008.12.002
http://dx.doi.org/10.1063/1.1654772
http://dx.doi.org/10.1063/1.1654772
http://dx.doi.org/10.1063/1.1654772
http://dx.doi.org/10.1063/1.1654772
http://dx.doi.org/10.1103/PhysRevA.54.870
http://dx.doi.org/10.1103/PhysRevA.54.870
http://dx.doi.org/10.1103/PhysRevA.54.870
http://dx.doi.org/10.1103/PhysRevA.54.870
http://dx.doi.org/10.1016/j.optcom.2004.09.049
http://dx.doi.org/10.1016/j.optcom.2004.09.049
http://dx.doi.org/10.1016/j.optcom.2004.09.049
http://dx.doi.org/10.1016/j.optcom.2004.09.049
http://dx.doi.org/10.1103/PhysRevA.84.043809
http://dx.doi.org/10.1103/PhysRevA.84.043809
http://dx.doi.org/10.1103/PhysRevA.84.043809
http://dx.doi.org/10.1103/PhysRevA.84.043809
http://dx.doi.org/10.1103/PhysRevLett.92.113902
http://dx.doi.org/10.1103/PhysRevLett.92.113902
http://dx.doi.org/10.1103/PhysRevLett.92.113902
http://dx.doi.org/10.1103/PhysRevLett.92.113902
http://dx.doi.org/10.1103/PhysRevLett.95.183902
http://dx.doi.org/10.1103/PhysRevLett.95.183902
http://dx.doi.org/10.1103/PhysRevLett.95.183902
http://dx.doi.org/10.1103/PhysRevLett.95.183902
http://dx.doi.org/10.1364/OL.36.000193
http://dx.doi.org/10.1364/OL.36.000193
http://dx.doi.org/10.1364/OL.36.000193
http://dx.doi.org/10.1364/OL.36.000193
http://dx.doi.org/10.1038/nphoton.2013.171
http://dx.doi.org/10.1038/nphoton.2013.171
http://dx.doi.org/10.1038/nphoton.2013.171
http://dx.doi.org/10.1038/nphoton.2013.171
http://dx.doi.org/10.1103/PhysRevA.11.1365
http://dx.doi.org/10.1103/PhysRevA.11.1365
http://dx.doi.org/10.1103/PhysRevA.11.1365
http://dx.doi.org/10.1103/PhysRevA.11.1365
http://dx.doi.org/10.1364/JOSAB.5.000633
http://dx.doi.org/10.1364/JOSAB.5.000633
http://dx.doi.org/10.1364/JOSAB.5.000633
http://dx.doi.org/10.1364/JOSAB.5.000633
http://dx.doi.org/10.1103/PhysRevLett.76.4356
http://dx.doi.org/10.1103/PhysRevLett.76.4356
http://dx.doi.org/10.1103/PhysRevLett.76.4356
http://dx.doi.org/10.1103/PhysRevLett.76.4356
http://dx.doi.org/10.1364/OL.22.000778
http://dx.doi.org/10.1364/OL.22.000778
http://dx.doi.org/10.1364/OL.22.000778
http://dx.doi.org/10.1364/OL.22.000778
http://dx.doi.org/10.1080/09500349808230902
http://dx.doi.org/10.1080/09500349808230902
http://dx.doi.org/10.1080/09500349808230902
http://dx.doi.org/10.1080/09500349808230902
http://dx.doi.org/10.1016/S0030-4018(99)00637-9
http://dx.doi.org/10.1016/S0030-4018(99)00637-9
http://dx.doi.org/10.1016/S0030-4018(99)00637-9
http://dx.doi.org/10.1016/S0030-4018(99)00637-9
http://dx.doi.org/10.1016/S0030-4018(00)00569-1
http://dx.doi.org/10.1016/S0030-4018(00)00569-1
http://dx.doi.org/10.1016/S0030-4018(00)00569-1
http://dx.doi.org/10.1016/S0030-4018(00)00569-1
http://dx.doi.org/10.1364/JOSAB.17.000809
http://dx.doi.org/10.1364/JOSAB.17.000809
http://dx.doi.org/10.1364/JOSAB.17.000809
http://dx.doi.org/10.1364/JOSAB.17.000809
http://dx.doi.org/10.1364/OL.27.000734
http://dx.doi.org/10.1364/OL.27.000734
http://dx.doi.org/10.1364/OL.27.000734
http://dx.doi.org/10.1364/OL.27.000734
http://dx.doi.org/10.1016/S0030-4018(03)01535-9
http://dx.doi.org/10.1016/S0030-4018(03)01535-9
http://dx.doi.org/10.1016/S0030-4018(03)01535-9
http://dx.doi.org/10.1016/S0030-4018(03)01535-9
http://dx.doi.org/10.1103/PhysRevE.70.036604
http://dx.doi.org/10.1103/PhysRevE.70.036604
http://dx.doi.org/10.1103/PhysRevE.70.036604
http://dx.doi.org/10.1103/PhysRevE.70.036604
http://dx.doi.org/10.1364/OE.14.005517
http://dx.doi.org/10.1364/OE.14.005517
http://dx.doi.org/10.1364/OE.14.005517
http://dx.doi.org/10.1364/OE.14.005517
http://dx.doi.org/10.1016/j.optcom.2005.05.012
http://dx.doi.org/10.1016/j.optcom.2005.05.012
http://dx.doi.org/10.1016/j.optcom.2005.05.012
http://dx.doi.org/10.1016/j.optcom.2005.05.012
http://dx.doi.org/10.1103/PhysRevA.86.035801
http://dx.doi.org/10.1103/PhysRevA.86.035801
http://dx.doi.org/10.1103/PhysRevA.86.035801
http://dx.doi.org/10.1103/PhysRevA.86.035801
http://dx.doi.org/10.1103/PhysRevE.68.025602
http://dx.doi.org/10.1103/PhysRevE.68.025602
http://dx.doi.org/10.1103/PhysRevE.68.025602
http://dx.doi.org/10.1103/PhysRevE.68.025602
http://dx.doi.org/10.1002/lapl.200410142
http://dx.doi.org/10.1002/lapl.200410142
http://dx.doi.org/10.1002/lapl.200410142
http://dx.doi.org/10.1002/lapl.200410142



