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Shock-induced PT -symmetric potentials in gas-filled photonic-crystal fibers
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We have investigated the interaction between a strong soliton and a weak probe with certain configurations
that allow optical trapping in gas-filled hollow-core photonic-crystal fibers in the presence of the shock effect.
We have shown theoretically and numerically that the shock term can lead to an unbroken parity-time- (PT -)
symmetric potential in these kinds of fibers. Time irreversible behavior, a signature feature of the PT symmetry,
is also demonstrated numerically. Our results will open different configurations and avenues for observing
PT -symmetry breaking in optical fibers, without the need to resort to complex optical systems.
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One of the postulates of ordinary quantum mechanics
is that physical observables are associated with Hermitian
operators, which are accompanied by a spectrum of real
eigenvalues [1]. Surprisingly, Bender et al. found a class of
non-Hermitian Hamiltonian operators that can also exhibit
entirely real spectra, provided these operators satisfy the
parity-time (PT ) symmetry [2,3]. Specifically, a Hamiltonian
operator is said to be PT symmetric if U (x) = U ∗(−x),
where U is the potential and x is the position. Therefore,
the real part of the potential must be even, while its imaginary
part should be odd. Interestingly, this class of operators is
characterized by the existence of a certain threshold above
which the PT symmetry is spontaneously broken and the
entire spectrum of eigenvalues becomes complex. The PT
symmetry has been investigated and explored theoretically
[4–13] and demonstrated experimentally [14–17] in a number
of different optical settings that exhibit gain and loss processes
simultaneously. The structure complexity is the most common
feature in these microstructures.

The invention of the hollow-core (HC) photonic-crystal
fibers (PCFs) [18,19] presents a great opportunity to demon-
strate the PT symmetry in the most successful waveguide of
all, the optical fiber. Usually, the Raman nonlinear contribution
is dominant in solid-core fibers and can cause this interesting
phenomenon to deteriorate. However, HC PCFs based on a
kagome lattice have extended the field of linear and nonlinear
fiber optics well beyond the interaction of light with solid
media [20]. A HC PCF can be filled with Raman-inactive gases
such as noble gases, allowing unprecedented possibilities to
study pure nonlinear effects without the disturbance of the
Raman effect. In recent years, the study of HC PCFs filled
with noble gases has led to the demonstration and prediction of
interesting unexpected phenomena such as high harmonic gen-
eration [21], deep UV generation [22], soliton self-frequency
blue shift [23–27], asymmetric self-phase modulation, and
universal modulational instability [28].

In this paper we propose the HC PCF as an alternative
structure in order to observe the PT symmetry in optics rather
than using complicated microstructures with gain and loss
that must be carefully balanced. Very recently, we introduced
a system to observe optical trapping between two ultrashort
pulses in HC PCFs filled by a noble gas due solely to the cross
phase modulation (XPM) effect [29]. The system is Raman and

plasma free. The two pulses have different scales of intensities:
The strong pump pulse introduces a potential well that traps the
weak probe pulse inside it. The two pulses must have the same
frequency ω0 to fulfill the group-velocity matching condition
and different circular polarization states for a clear monitoring
at the fiber output. In order to eliminate birefringence-induced
coupling between the pulses, the fiber core should be perfectly
symmetric. In this case, the propagation of the two pulses
in a lossless medium are governed by the following set of
normalized coupled partial differential equations [29,30]:

i∂ξψ1 + 1
2∂2

τ ψ1 + |ψ1|2ψ1 + iτsh∂τ (|ψ1|2ψ1) = 0,
(1)

i∂ξψ2 + 1
2∂2

τ ψ2 + 2|ψ1|2ψ2 + i2τsh∂τ (|ψ1|2ψ2) = 0,

where ψ1 and ψ2 are the complex envelopes of the pump and
the probe, respectively, ξ is the longitudinal coordinate along
the fiber, τ is the time coordinate, and τsh is the normalized
self-steepening (shock) coefficient. The effect of higher-order
dispersion coefficients and the nonlinearity of the probe are
neglected. It is important to mention that the coupled equations
in Ref. [30] do not include the shock term that is due to
the frequency dependence of the nonlinear Kerr coefficient
γ (ω). This effect can be included by first applying the Fourier
transform on these equations via treating the nonlinear parts
as constants, followed by expanding γ (ω) around ω0 using
the first-order Taylor series, and finally applying the inverse
Fourier transform.

The governing equation of the propagation of the pump
is found to be integrable and has a family of soliton solu-
tions [31,32]. The fundamental solution has a form similar to
the Schrödinger soliton, however, it is chirped,

ψ1(ξ,τ ) = A sechθ
B∗ + 1 + (B∗ − 1)tanhθ

[B + 1 + (B − 1)tanhθ ]2
eiN2ξ/2, (2)

where θ = Nτ , A = 2N (1 + N2τ 2
sh)−1/4, B =

(1 + iNτsh)A2/4N2, and N is an arbitrary parameter
that controls the amplitude and the width of the soliton
simultaneously. The temporal and spectral profiles of the
pump intensity are depicted in Figs. 1(a) and 1(b), respectively.
It is clearly shown that the temporal dependence is symmetric,
while the spectral dependence is asymmetric.
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FIG. 1. (Color online) Solid blue curves represent (a) the tem-
poral and (b) the spectral profile of the pump intensity, respectively.
Here 	 is the normalized frequency shift, N = 2.5, and τsh = 0.1137.
These parameters are used in all the simulations shown in this paper,
except in Fig. 2, where N is an independent variable. The time
derivative of the temporal pulse intensity is shown by the dashed
red curve in (a).

The probe propagates linearly since its nonlinearity is
negligible. Its governing equation can be written as

i∂ξψ2 + i2τsh|ψ1|2∂τψ2 + 1
2∂2

τ ψ2

+ 2[|ψ1|2 + iτsh∂τ |ψ1|2]ψ2 = 0. (3)

Hence, the shock term introduces two terms proportional to
τsh, as shown in Eq. (3). The first term results in additional
time-dependent group velocity, while the second term modifies
the trapping potential by an imaginary component. Introducing
the phase transformation

ψ2 = ψ̃ exp

[
−i2τsh

∫ τ

−∞
|ψ1(τ ′)|2dτ ′

]
, (4)

Eq. (3) can be then simplified to

i∂ξ ψ̃ + 1
2∂2

τ ψ̃ + [
2|ψ1|2 + 2τ 2

sh|ψ1|4 + iτsh∂τ |ψ1|2
]
ψ̃ = 0.

(5)

In seeking stationary solutions for the probe ψ̃(ξ,τ ) =
f (τ ) exp(−iqξ ), with temporal profile f and propagation
constant q, Eq. (5) becomes a linear Schrödinger equation
in time

− 1
2∂2

τ f + U (τ )f = qf, (6)

where U = −2|ψ1|2 − 2τ 2
sh|ψ1|4 − iτsh∂τ |ψ1|2 is the potential

well and q is the corresponding eigenvalue. This potential
possesses a PT symmetry since its real part is even while
its imaginary part is odd [see Fig. 1(a)]. Hence, the pump
introduces a complex PT -symmetric potential that affects the
propagation of the probe. The real part of the potential traps
the probe, while the imaginary part amplifies or attenuates the
probe amplitude. In particular, the leading and trailing parts
of the probe will experience loss and gain, respectively, with
exactly the same magnitude. Note that such induced potential
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FIG. 2. (Color online) The N dependence of (a) the real and (b)
the imaginary parts of the propagation constants of the probe in the
fundamental m = 0 and the first-order m = 1 modes.

is only due to the XPM effect combined with the shock term,
which is always important to consider for ultrashort pulses
propagating in optical fibers. In addition, the phase structure
of the soliton does not influence the form of the potential since
U depends only on |ψ1|.

This potential well has always two localized modes,
similarly to the case where the shock coefficient is absent [29].
When the potential has the shape of a fundamental Schrödinger
soliton, it can be easily demonstrated that the number of
eigenvalues is constant and independent of the potential depth
and width [1]. The reason for this unusual property is that the
potential depth and width are exactly inversely related to each
other in this case. In the presence of the self-steepening effect,
we found numerically that this scenario still holds even for
large physical values of τsh.

The localized modes can be computed numerically using
the sparse matrix technique [33]. The real and the imaginary
parts of the propagation constants are plotted versus the
parameter N for both modes in Fig. 2. As shown, the values
of the imaginary parts are negligible in comparison to the real
parts and they follow a random distribution, which indicates
that these values are just numerical errors. In other words, the
propagation constants or the eigenvalues are always pure real
values and there is no threshold for breaking thePT symmetry.
In general, the real part of the potential tries to maintain thePT
symmetry, while the imaginary part would be responsible for
the breakup of this symmetry. In our case, the real part of the
potential stays dominant in comparison to the imaginary part
because the shock term affects both parts simultaneously with
different powers of the parameter N . This result contradicts a
general statement that a linear eigenvalue problem always has a
zero threshold point or the PT symmetry in the corresponding
system is always broken [6].

The proposed configuration does not allow a breaking of
the PT symmetry, which would definitely be of considerable
interest. However, it represents the foundation of an uncon-
ventional and relatively easily implemented scheme to realize
the PT -symmetric potentials in waveguides. The current
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FIG. 3. (Color online) (a) Temporal and (b) spectral evolution
of the pump. Temporal and spectral evolution of the copropagating
probe, when it is in (c) and (d) the fundamental mode or (e) and (f)
the first-order mode.

configuration is limited by the available free parameters,
which are only the shock coefficient τsh and the parameter N .
PT -symmetry breaking will occur when the imaginary part
of the pump-induced potential prevails over its real part. This
can be achieved by seeking a challenging configuration with
additional free parameters that can reduce or even eliminate
the time-dependent group-velocity term in Eq. (3), which is
responsible for the dominance of the real part of the potential
in the current configuration.

The copropagation of the pump and the probe in either the
fundamental or the first-order mode is shown in Fig. 3 by
simulating Eq. (1). The probe does not suffer from dispersion-
induced broadening during propagation due to XPM that traps
the probe inside the soliton-induced potential. In designing a
real physical system, the nonlinearity of the probe has also to
be considered. After a certain propagation distance, the probe
nonlinearity will start to affect not only its dynamics but the
pump dynamics too. When this happens, the concept of the
pump-induced trapping potential is no longer applicable. By
increasing the ratio between the pump and the probe input
amplitudes and designing the fiber length properly, this effect
can be easily obviated.

PT -symmetric waveguides are characterized by parity
breaking even if the PT symmetry still holds, which is known
in the literature as reciprocity breaking [16]. However, we
prefer to use the term parity instead of reciprocity since the
latter has caused a great deal of confusion that has been
resolved recently [34,35]. The system is said to be reciprocal or
nonreciprocal based only on the Lorentz reciprocity theorem.
In the spatial domain, when one considers coupled PT -
symmetric waveguides, the light evolution is not the same
when the beam is launched in one waveguide or the other
because of this parity-breaking property. In the time domain,
the parity and time-reversal operators exchange roles, hence,
we expect an irreversible temporal behavior. By mimicking the
same experiment in the time domain by introducing a positive
or negative delay 
τ (with the same magnitude) between the
pump and the probe, nonmirror symmetry outputs are obtained.
The probe will oscillate inside the complex potential in this
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FIG. 4. (Color online) Temporal profiles of the probe at the fiber
output, when it is launched in (a) the fundamental or (b) the first-order
mode. Solid red and dashed blue curves represent the output profiles
when the input probe is delayed with respect to the pump by 
τ =
±0.116. Red dash-dotted and blue dotted curves in (a) represent the
input probe, when it is delayed by 
τ = ±0.116.

case, switching back and forth between regimes with positive
and negative imaginary parts [29]. Figure 4(a) shows the output
temporal profiles of the probe when it is launched in the
fundamental mode with ±
τ . As depicted, the two outputs
are not a mirror symmetry of each other, unlike the inputs.
The reason is due to the shock term that modifies the soliton-
induced potential and transforms it from a regular symmetric
one to a PT -symmetric potential. As the imaginary part of the
potential increases, this nonmirror symmetry increases, even
though PT symmetry itself is not broken. Figure 4(b) shows
the parity breaking when the probe is launched in the first-order
mode.

In conclusion, we have studied the interaction between a
strong soliton and a weak probe in a symmetric HC PCF filled
by a noble gas in the presence of the self steepening (shock)
effect. The two pulses have the same central frequency and
opposite circular polarization states. The medium is Raman
and plasma free. The probe is trapped during propagation
because of the soliton-induced potential that always has two
localized modes. We have proven theoretically that the shock
term modifies the soliton-induced potential, which becomes
PT symmetric, by introducing an odd imaginary component
to the potential. We have found that the eigenvalues of the
system are always real or, in other words, the PT symmetry is
always unbroken. Finally, we have demonstrated numerically
the parity-breaking property by introducing a positive or
negative time delay (with the same absolute value) between
the pump and the probe. We believe that our results will
open different configurations and avenues for observing PT -
symmetry breaking in optical fibers, without the need to resort
to complex microstructures.

We would like to thank Philip St. J. Russell for useful
discussions. This research was funded by the German Max
Planck Society for the Advancement of Science.
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