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Conductivity of strongly correlated bosons in optical lattices in an Abelian synthetic magnetic field
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Topological phase engineering of neutral bosons loaded in an optical lattice opens a new window for
manipulating of transport phenomena in such systems. Exploiting the Bose-Hubbard model and using the
magnetic Kubo formula proposed in this paper we show that the optical conductivity abruptly changes for
different flux densities in the Mott phase. Especially, when the frequency of the applied field corresponds to the
on-site boson interaction energy, we observe insulator or metallic behavior for a given Hofstadter spectrum. We
also prove that for different synthetic magnetic-field configurations the critical conductivity at the tip of the lobe
is nonuniversal and depends on the energy minima of the spectrum. In the case of 1/2 and 1/3 flux per plaquette,
our results are in good agreement with those of the previous Monte Carlo study. Moreover, we show that for
half magnetic flux through the cell the critical conductivity suddenly changes in the presence of a superlattice
potential with uniaxial periodicity.

DOI: 10.1103/PhysRevA.89.023631 PACS number(s): 03.75.Lm, 05.30.Jp, 03.75.Nt

I. INTRODUCTION

The Bose-Hubbard model (BHM) is commonly used to
describe many interesting physical systems, e.g., superconduc-
tors with short coherence length [1], Josephson-junction arrays
[2,3], or quantum phase transitions in cold quantum gases [4,5]
on which the idea of quantum simulations can be realized [6].
Recently, attention has been paid to the BHM behavior in a
strong synthetic magnetic field [7–14] as well as to its transport
properties [15–21]. This research has opened the possibility of
highly controllable BHM dynamics with explicitly designed
kinetics, which is the subject of our study.

Aside from Josephson-junction arrays [22,23], up to
now a strong magnetic-field regime has been available by
simulating a vector potential imposed on many-body wave
functions of ultracold neutral gases. It has been realized
by engineering the adequate phase of atoms when they
change their quantum states upon hopping through the lattice
sites, using, e.g., Raman-assisted and photoassisted tunneling
[24–27] and shaking of the lattice [14,28]. In particular,
staggered [25] and uniform [26,27] magnetic fields have
been created. Such a synthetic magnetic field has also been
proposed to be generated by combining quadrupolar potential
and modulation of tunneling in time [29], although it has not
been realized yet (see also [30]). Moreover, the relevant gauge
degrees of freedom can be precisely experimentally verifiable
and can cause interesting effects like a finite momentum
condensate [13]. As follows from the above, the possibility
of simulating a vector potential provides many opportunities,
which has made it a rapidly expanding area of research. The
interest in the simulation has been growing in view of possible
future application of ultracold quantum gases in topological
quantum computation or spintronics [31,32].

If we consider the BHM equipped with orbital effects, its
complexity considerably increases, as it develops a multi-sub-
band structure dependent on the quantity of flux per plaquette.
To the best of our knowledge the conductivity in a strong
magnetic field has been considered mainly numerically in
just a few papers. One of the main problems in carrying out
the related calculations is the complex hopping term (Peierls
factor) which occurs in the BHM Hamiltonian. This is the

reason why the optical conductivity (OC) has been rarely
studied. Y. Nishiyama [33] has analyzed OC in the hard-core
limit of the BHM with disorder. OC in Josephson-junction
arrays has been also studied within a Landau levels framework
without commensurability effects of magnetic field [3,34]. The
critical conductivity could be much more easily available in
numerical calculations thanks to the correspondence between
the BHM at integer filling and the XY model [2,35], in
which the cases f = 1/2 and 1/3 flux per plaquette have
been studied [2]. Using this correspondence, E. Granato and
J. Kosterlitz [36] derived analytically the value of critical
conductivity for one-half flux per plaquette. Also Y. Nishiyama
[33] by applying the exact diagonalization method has shown
that the critical conductivity subjected to magnetic field is
nonuniversal. Understanding of such a nonuniversal behavior
gives better insight into the physics behind the superconductor-
insulator phase transition phenomena.

The engineering of the conductivity can be also improved
by changing experimentally the value of the potential on
adjacent sites. This solution has been recently of growing
interest because it allows a simple experimental realization
[25,37] and generates interesting physical phenomena [13,38].
In particular, tuning the uniaxially periodic potential with a
magnetic-flux quantum per unit cell results in a new possibility
of merging cones simulation in which the semi-Dirac point in
the Hofstadter spectrum emerges [38]. Recently this possibility
has been also exploited in the context of time-of-flight patterns
with and without synthetic magnetic field [13].

In this work we present a theory of conductivity valid in
a strong magnetic field not achievable in typical condensed-
matter experiments. In the Mott phase for the two-dimensional
(2D) square lattice, we describe the optical behavior using
two exemplary values of uniform magnetic field, f = 1/2
and 1/4, as well as the case with uniaxially staggered
potential. We highlight the fact that the calculation could
be straightforwardly extended to an arbitrary amplitude of
the magnetic field and also gauge degree of freedom. For
verification of the results obtained, a combination of two types
of currently available experiments is proposed. Our method
is tested for the the critical value of conductivity on the
Mott insulator-superfluid phase boundary in two dimensions.

1050-2947/2014/89(2)/023631(12) 023631-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.023631


A. S. SAJNA, T. P. POLAK, AND R. MICNAS PHYSICAL REVIEW A 89, 023631 (2014)

The proposed analytical approach correctly reproduces critical
conductivity in the absence of magnetic field f = 0 (first
calculated in [39]), f = 1/2 [the Monte Carlo (MC) numerical
solution in [2] and the analytic one in [36,40] but using a model
corresponding to BHM], and f = 1/3 (only the numerical
solution in [2] based on MC). We have also extended the
calculations of critical conductivity over the range of arbitrary
f = p/q, which has not been hitherto reported in literature,
and confirmed its nonuniversal behavior upon changes in
the amplitude of magnetic field. The influence of uniaxially
staggered potential is also discussed. We compare our results
with presently available numerical and experimental data.

The paper is organized as follows. The BHM in the strong
uniform magnetic field is reviewed in Sec. II. In Sec. III we ap-
ply our method to study the optical conductivity and its critical
value for different strengths of synthetic magnetic fields, taking
into consideration the effects of uniaxially staggered potential.
In the last section we give a short summary of our results.

II. MODEL

The BHM Hamiltonian in standard notation is given by

H = −
∑
〈ij〉

(J̃ij b̂
†
i b̂j + H.c.) + U

2

∑
i

n̂i(n̂i − 1)

−μ
∑

i

n̂i , (1)

where b̂i (b̂†i ) is an operator which annihilates (creates) a boson
on site i and n̂i = b̂

†
i b̂i . U and μ are on-site boson interaction

and chemical potential, respectively. The hopping integral is
denoted by J̃ij and has the form

J̃ij = Jij e
i e∗

�c

∫ i

j
A0·dl (2)

with nonzero isotropic factor Jij = J in respect to adjacent
sites. Magnetic field B is introduced by a vector potential
A0 = B(0,x,0) which is taken in the Landau gauge. Further
in our calculation we define Ba2e∗/�c = 2πf where f =
Ba2e∗/hc = p/q is a flux per plaquette (p and q are coprime
integers); f depends on the charge of the boson e∗, lattice
spacing a, Planck constant h, and speed of light c. It is impor-
tant to stress that in an optical lattice the quantities like B and
e∗ are effectively created through tunability of the p/q ratio.

Using the coherent-state path integral for the BHM Hamil-
tonian [Eq. (1)], the partition function can be written as
follows:

Z[A0] =
∫

Db∗Db e−(S0+S1[A0])/�, (3)

S0 =
∑

i

∫
�β

0

dτ

[
b∗

i (τ )�
∂

∂τ
bi(τ )

+ U

2
b∗

i (τ )b∗
i (τ )bi(τ )bi(τ ) − μb∗

i (τ )bi(τ )

]
, (4)

S1[A0] = −
∑
〈ij〉

∫
�β

0

dτ
[
Jij e

i e∗
�c

∫ i

j
A0·dl

b∗
i (τ )bj (τ ) + c.c.

]
,

(5)

where the integrals in Eqs. (4) and (5) are taken over imaginary
time τ and β = 1/kBT .

To take into account magnetic field in the strong-coupling
limit of BHM we follow the same procedure as in [11,41]; i.e.,
we perform the double Hubbard-Stratonovich transformation
together with cumulant expansion. In the following, we focus
on the Mott phase and we approximate effective action to
second order in the Bq

kn and (Bq

kn)† fields:

Seff =
∑
kn

(
Bq

kn

)†[−�G−1
0 (iωn)I + Jq(k)

]
Bq

kn, (6)

where I is an identity matrix and

Bq

kn = (bk,n, bk+p,n,, ..., bk+(q−1)p,n)T , (7)

where p = (2πf, 0) and ωn = 2πn/�β is the Matsubara
frequency (n is an integer number). In Eq. (6) the summation
is performed over wave vectors k within the first magnetic
Brillouin zone, where |kx | ≤ π/qa and |ky | ≤ π/a. G0(iωn)
is the on-site Green’s function (i.e., is local where J = 0), and
at the zero-temperature limit it has the form

1

�
G0(iωn) = n0 + 1

i�ωn + En0 − En0+1
− n0

i�ωn + En0−1 − En0

(8)

with on-site energy En0 = −μn0 + Un0(n0 − 1)/2; n0 is the
integer number obtained from the on-site energy minimization
for a given chemical potential μ. The last object in Eq. (6)
that requires explanation is Jq(k). It represents a nondiagonal
q × q matrix similar to that obtained earlier [42]:

Jq(k)/J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0 −eikya −e−ikya

−e−ikya M1
. . . 0

. . .
. . .

. . .

0
. . . Mq−2 −eikya

−eikya −e−ikya Mq−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(9)

where Mα = −2 cos(kxa + 2παf ). The set of eigenvalues of
the matrix Eq. (9) leads to the Hofstadter spectrum [43].

It is important to comment here on the notation used above.
Although b and b∗ fields introduced in Eq. (6) have identical
notation as in Eq. (3) they are not the same. Namely, those fields
in which the quadratic effective action Eq. (6) is evaluated
were introduced during the second Hubbard-Stratonovich
transformation mentioned above. However, both kind of fields
have the same correlation function [41], and for this reason we
treat them on an equal footing.

For the effective action in Eq. (6) we can find a unitary
matrix Uq(k) [7] that diagonalizes it, i.e.,

Seff = −
∑
kn

(
B̃q

kn

)†
[Gd (k, iωn)]−1B̃q

kn, (10)

where Gd (k, iωn) = Uq(k)[�G−1
0 (iωn)I − Jq(k)]−1U

†
q (k) is

the diagonal Green’s function, and B̃q

kn = Uq(k)Bq

kn. As shown
in Sec. III this diagonal form of Gd (k, iωn) has q bands which
are labeled by α number.
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The above denotations will be useful for further study.
In order to simplify the calculations we also set the lattice
constant a and the reduced Planck constant � to unity.

III. CONDUCTIVITY IN MAGNETIC FIELD

To construct a correct theory of optical conductivity in
the strong magnetic field described by the BHM, we should
go beyond the linear response regime. This situation is
more complicated than that previously studied (e.g., see
[44]) due to the presence of a synthetic magnetic field A0

which significantly modifies the single-particle spectrum. This
modification implies that the commensurability field effects
become important. As a consequence, the amplitude of the
hopping term is a complex number [Eq. (5)] and the boson
field is described by more than one component [Eq. (7)].
To overcome these difficulties in calculation of the transport
properties we assume that such an initial state will be subtly
affected by an additional field |A| � |A0|, which is responsible
for generation of optical conductivity in the linear-response
regime. Therefore, if we want to study the response of the
system to a strong magnetic field, we simply add to the A0

some small perturbation of this field in the form of a vector
potential A, i.e.,∫ rj

ri

A0 · dl →
∫ rj

ri

A0 · dl +
∫ rj

ri

A · dl, (11)

and use the linear-response theory as a starting point with
respect to the quantity A. This leads to the well-known
expression for the optical conductivity (e.g., see [44–46]):

σ A0
xx (iω) = − 1

Nω

∑
ij

∫ β

0
dτeiωτ δ2 lnZ[A′]

δAx
i (τ )δAx

j (0)

∣∣∣∣
A=0

, (12)

but in our case the conductivity depends upon vector potential
A0 and consequently on magnetic field, and in this dependence
the commensurability effects are included.

Performing the calculations in Eq. (12) we first go to the
wave-vector representation, which allows proper incorporation
of the perturbing vector potential A, through the substitution
kx → kx + e∗

�c
A (we assume that A does not depend on

position), and then we evaluate the derivatives in Eq. (12),
getting

σ A0
xx (iω) = − (e∗)2

ω

〈
ex

kin

〉+ 1

ω

xx(iω) , (13)

where functional averages are taken with the partition function
from Eq. (3); ex

kin and 
xx(ω) are a kinetic and current-current
correlation function, respectively (we set c = 1). With the
effective action from Eq. (10) we can evaluate Eq. (13) to
the form


xx(iω) = − 1

N

∑
kk′

∫ β

0
dτ eiωτ

〈
jx

k (τ )jx
k′(0)

〉
, (14)

ex
kin = − 1

N

∑
k

q−1∑
α=0

[
∂2
kx

εα
q (k; p)

]
b∗

k+αp(0)bk+αp(0), (15)

jx
k (τ ) = e∗

q−1∑
α=0

[
∂kx

εα
q (k; p)

]
b∗

k+αp(τ )bk+αp(τ ), (16)

where εα
q (k; p) is an eigenvalue of the Jq(k) matrix defined in

Eq. (9) and the current is given by Eq. (16). Equation (13) is
the magnetic Kubo formula (MKF) valid in strong magnetic
field. This method, in contrast to that presented in [3] (see
also [34,45,47–49]), takes into account the commensurability
effects of the magnetic field and covers the whole range of k
and ω dependence.

For the simplest case, if we take the usual square-lattice
dispersion relation in the absence of magnetic field εα

1 (k; 0) =
−2J (cos kx + cos ky), one gets from Eq. (13)

σ A0
xx (iω) = (e∗)2J

ω

1

N

∑
k

2 cos kx〈b∗
k(0)bk(0)〉

− 4(e∗)2J 2

ω

1

N

∑
k,k′

∫ β

0
dτ eiωτ

× sin(kx) sin(k′
x)〈b∗

k(τ )bk(τ )b∗
k′(0)bk′ (0)〉, (17)

which recovers a well-known result [44].

A. Optical conductivity in the BHM

1. The uniform field

Now we are interested in the OC in the Mott insulator phase.
Using the fact that within the action Eq. (10) the four point
correlation function in Eq. (14) is factorized, we can rewrite
Eq. (13) to the form

σ A0
xx (iω) = − (e∗)2J

ω

1

βN

∑
kn

q−1∑
α=0

∂2
kx

εα
q (k; p)Gd

αα(k,iωn)

− (e∗)2

ω

1

βN

∑
kn

q−1∑
α=0

[
∂kx

εα
q (k; p)

]2
×Gd

αα(k,iωn)Gd
αα(k,iωn + iω). (18)

The Mott insulator Green’s function is

Gd
αα(k,iωn) = G0(iωn)

1 − εα
q (k; p)G0(iωn)

= zα
q (k; p)

iωn − Eα+
q (k; p)

+ 1 − zα
q (k; p)

iωn − Eα−
q (k; p)

, (19)

where the weight and dispersion of quasiparticles have the
form

zα
q (k; p) = Eα+

q (k; p) + μ + U

Eα+
q (k; p) − Eα−

q (k; p)
, (20)

Eα±
q (k; p) = εα

q (k; p)

2
− μ + U

(
n0 − 1

2

)
± 1

2
�α

q (k; p),

(21)

�α
q (k; p) =

√[
εα
q (k; p)

]2 + 4εα
q (k; p)U

(
n0 + 1

2

)
+ U 2.

(22)
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In the following we are interested in the real and regular part
of optical conductivity given by

Reσ A0
xx (ω) = (e∗)2 2π

N

q−1∑
α=0

∑
k

(
∂kx

εα
q (k; p)

)2{nB

[
Eα−

q (k; p)
]

− nB

[
Eα+

q (k; p)
]}

× [1 − zα
q (k; p)

]
zα
q (k; p)δ

(
ω2 − (

�α
q (k; p)

)2),
(23)

which has been obtained by evaluating the Matsubara sum
in Eq. (18) and performing standard analytical continuation
iω → ω + iδ [50]. The symbol δ(x) is a Dirac delta function
and nB(x) is the Bose-Einstein distribution function. Using the
density of states and taking the zero-temperature limit, Eq. (23)
can be rewritten as follows:

Reσ A0
xx (ω) = 2π2σQ

∑
α

∑
s={+,−}

α
q [us(ω); p], (24)

α
q [v; p] = ρα

q (v; p)
J
[
zα
q (v; p) − 1

]
zα
q (v; p)

U
√

4n0(n0 + 1) + (ω/U )2
, (25)

u±(ω) = U

J
(2n0 + 1)

(
1 ∓

√
1 − 1 − (ω/U )2

(2n0 + 1)2

)
, (26)

where the density of states is given by

ρα
q (v; p) = 1

N

∑
k

[
∂kx

εα
q (k; p)

]2
δ
(
v − εα

q (k; p)
)
. (27)

For magnetic fields considered here (i.e., f = 0, 1/2, and 1/4)
the exact calculations of the density of states in two dimensions
was possible in terms of complete elliptic integrals (see
Appendix A).

In Fig. 1 we show the real part of OC at zero temperature in
the Mott phase for different values of synthetic magnetic field.
It is worth noting that its behavior reflects the tight-binding
dispersion of the lattice. As expected the OC is gradually
broadened at the cost of a vanishing gap when J/U increases.
Interestingly, for f = 1/4, the contribution of the lowest
frequency peak becomes much more significant when the J/U

ratio is tuned up.
For ω = U , we observe that the existence of conductivity

at this point directly depends on the spectrum weight value
of the tight-binding dispersion εα

q (k; p). In particular, if the
spectrum weight of εα

q (k; p) at the center of the band is zero
the conductivity also disappears. Such a situation for ω = U

is satisfied when f = 1/2 and 1/4 (even q) but for odd q we
should observe metallic behavior. This special behavior of OC
at this point is directly related to the Dirac cones appearing in
quasiparticle energy dispersion Eα±

q (k; p). The corresponding
dispersions are plotted in Figs. 2(a)–2(c) for the relevant set of
parameters. In Sec. III B we suggest an experiment to check
this conjecture explicitly, because the quantities like the on-site
interaction strength U and boson hopping amplitude J are fully
controllable parameters in ultracold gases loaded on an optical
lattice.

Within the above framework we can also probe the critical
value of conductivity at the tip of the lobe (for determination

a

0.0 0.5 1.0 1.5
0

0.1

0.2

0.3

ω U

R
eσ

xx

f 0
J U 0.01
J U 0.04
J U 0.0428

b

0.0 0.5 1.0 1.5
0

0.2

0.4

0.6

ω U

R
eσ

xx

f 1 2
J U 0.03
J U 0.045
J U 0.06

c

0.4 0.6 0.8 1.0 1.2 1.4 1.6
0

0.04

0.08

0.12

ω U

R
eσ

xx

f 1 4
J U 0.03
J U 0.04
J U 0.05

FIG. 1. (Color online) Real part of optical conductivity in the
two-dimensional square lattice in the Mott phase (first lobe) sketched
in σQ units [σQ = (e∗)2/h is a quantum conductance]. (a) f = 0. (b)
f = 1/2. (c) f = 1/4. Conductivity is plotted at zero temperature
for different values of J/U within the first lobe.

of the critical value of μ/U and J/U see [11]). For this range
of parameters the OC is as shown in Fig. 3. The critical value
of conductivity for f = 1/2 (1/4) when ω → 0 is two (four)
times higher than the value with magnetic field absent. These
results are in agreement with those derived in Sec. III C.

2. The uniform field with staggered potential

In the following we use the proposed framework of OC
[see Eq. (13)] to study the transport phenomena under the
influence of uniaxially staggered potential. The situations
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1

c

0,0 π
4
,π 0,π 0,0

0.5
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k

E
4

k;
1

d

0,0 π 2,π π 2,0 0,0

0.5

0.0

0.5

1.0

k

E
1

k;
0

e

0,0 π 2,π π 2,0 0,0

0.5

0.0

0.5

1.0

k

E
2

k;
1

FIG. 2. (Color online) The wave-vector k dependence of the quasiparticle energy dispersions Eα±
q (k; p) for different amplitudes of uniform

magnetic field f and staggered potential � in the first magnetic Brillouin zone. Plots a–c correspond to Figs. 1(a)–1(c), respectively. Additionally,
plots d and e correspond to Figs. 4 and 5, respectively. This correspondence is revealed when choosing the same physical parameters for the
same plotting style in the relevant figures.

with the synthetic magnetic field absent (f = 0) and with
its value described by one-half flux per plaquette (f = 1/2)
are considered. The latter special case is a subject of current
interest [38]. In both cases of OC, i.e., f = 0 and 1/2, the
staggered potential is controlled by the parameter � [13],
which is included in the Hamiltonian Eq. (1) by an additional

term in the form ∑
ix iy

(−1)ix �̃b̂
†
ix iy

b̂ix iy , (28)

where � = �̃/2J and ix and iy enumerate the positions of
lattice sites along the x and y axis, respectively.
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0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

ω U

R
eσ

xx

f 0
f 1 2
f 1 4

FIG. 3. (Color online) Optical conductivity for different values
of the magnetic field. The parameters μ/U and J/U are chosen on
the phase boundary where Mott insulator-superfluid phase transition
takes place. The plot shows that the critical value of conductivity for
f = 1/2 (1/4) when ω → 0 is two (four) times higher than in the
case when the magnetic field is absent. Reσxx was plotted in σQ units.

Figures 4 and 5 show the frequency dependence of OC for
f = 0 and 1/2, respectively. We are interested in σ A0

xx (ω) and

σ A0
yy (ω) components, in which the potential from site to site

is varied in the x direction (to see the expressions used in the
calculations of OC see Appendix B).

The data presented in Figs. 4 and 5 imply a similar behavior
of OC when the � parameter is alternated. For example, on the
basis of the staggered potential values with respect to its value
for � = 0, we conclude that it has greater impact on the xx

component of OC than on the yy one. Besides the qualitative
difference, we also observe a smaller amplitude of the OC in
direction x than in that perpendicular to x within the xy plane.
This behavior could be simply attributed to the variation in
the potential in this particular direction (i.e., x), while the yy

component of the OC does not exhibit any special difference
along the y axis (for the chosen strip of sites the � is constant).
Moreover, we show that the increase in � causes broadening
of the frequency dependence of OC.

In agreement with the conclusion drawn in Sec. III A 1
the insulator behavior of the OC for ω = U (Fig. 5) is still
maintained for f = 1/2. In contrast to the situation with no
magnetic field (see Fig. 4) the gap naturally arises when the �

parameter exceeds 1 (the single-particle spectrum also exhibits
a similar behavior). This gaplike behavior is indeed observed
in the quasiparticle energy dispersion Eα±

q (k; p) presented in

0.0 0.5 1.0 1.5
0

0.1

0.2

0.3

ω U

R
eσ

yy

0.3
0.7
1.2

0.0 0.5 1.0 1.5
0

0.04

0.08

0.12

ω U

R
eσ

xx

0.3
0.7
1.2

(b)(a)

(c) (d)

FIG. 4. (Color online) (a and b) yy and (c and d) xx components (respectively) of the real part of the optical conductivity for different
values of � in the absence of the magnetic field. On the density sketch the lighter color indicates a higher amplitude of the conductivity
(the black area corresponds to the insulator behavior). All zero-temperature plots show the situation in which the uniaxially staggered field is
subjected to the x axis. The ratio of the hopping amplitude and on-site interaction energy is J/U = 0.03 and the conductivity was plotted in
σQ units.
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FIG. 5. (Color online) Analogous physical situation as in Fig. 4 but with nonzero amplitude of the uniform magnetic field (half magnetic
flux per unit cell).

Figs. 2(d) and 2(e). Interestingly, the weight of the OC close
to ω = U for f = 1/2 is greater than for f = 0.

It is worth noting that the complex behavior of the OC in
the direction of applied uniaxially staggered potential gains
pronounced peaks. This should be easily observed in the
energy absorption rate (EAR) experiment (see Sec. III B).

B. Connection to experiment

Recently, A. Tokuno and T. Giamarchi [19] have proposed a
spectroscopic technique for cold atoms which is able to extract
current-current correlation function 
xx(ω) [Eq. (14)]. This
function is proportional to OC σ A0

xx (ω) [see Eq. (13)], which
offers a possibility to probe the transport phenomena in the
thermodynamic limit. Using the EAR techniques such a goal
could be achieved by phase modulation of the optical lattice.

Namely, a vector potential A0 could be created in different
experimental configurations [25,26,28]. In our work we
investigate the Landau gauge A0 = B(0,x,0), which generates
a uniform magnetic field. Such a uniform field has been
generated recently in [26] but using another type of effective
vector potential. On the other hand, a small perturbing vector
potential A′ could be generated by phase modulation of the
optical lattice [19]. If we consider a 2D system with x and
y axes, we can generate a synthetic electric field Ex̂ by
modulating the phase in the x direction. This situation could

be mathematically inferred from the exchange of a stationary
optical lattice potential Vop(r) = cos2(kxx) + cos2(kyy) to a
time dependent one Vop(r,t) where x → x − fx cos(ωt) (fx

is the strength of modulation which should be much smaller
than a lattice constant). Such a phase modulation (PM) could
be realized by, e.g., a recently proposed phase controller [51].
This leads us to the expression where EAR is given by [19]

RPM(ω) = − 1
2ω3f 2

x Im
̃xx(ω), (29)

in which 
̃xx(ω) corresponds to 
xx(ω) from Eq. (14) but with
exchange e∗ → M (M is the effective mass of an atom) [19].
To ensure a linear-response regime and no dynamical phase
transition the condition ωfx � 1 should be satisfied [52,53].
The calculation of RPM(ω) is made following a procedure
similar to that used in the OC case, in which the current-
current correlation function 
xx(iω) was also considered [see
Eq. (13)]. Figure 6 presents a plot of RPM/σ̃Qf 2

x for the
uniform magnetic field of a strength f = 0, 1/2, and 1/4
on the square lattice in the zero-temperature limit (here
σ̃q = M2/h is an effective quantum resistance). We see that
the factor ω3 changes significantly the weight of the response in
comparison to the OC given in Fig. 1 and therefore the higher
frequency peaks give a grater contribution to the absorbed
energy rate. The similarity of the shape of the current-current
correlation function and tight-binding dispersion in a strong
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FIG. 6. (Color online) Imaginary part of the current-current correlation function in the two-dimensional square lattice in the Mott phase
(first lobe) sketched in σ̃Qf 2

x units. (a) f = 0. (b) f = 1
2 . (c) f = 1

4 (c). Figures are plotted at zero temperature for different values of J/U .

magnetic field could be an indirect method of checking the
Hofstadter spectrum in the BHM system [8,43], where the
center of the band is located around ω = U .

The plots of EAR for the OC with staggered potential will
be analogous to the case of a uniform field (discussed above),
so we omit its graphical representation.

Summarizing, the EAR technique is directly related to
OC and may act as a probe of transport phenomena using
ultracold quantum gases. It is worth pointing out that the
phase modulation is independent of the strength of the lattice
potential in contrast to the amplitude modulation method [19].

C. Critical conductivity at the MI-SF phase boundary

1. The uniform field

Up to now the problem of critical conductivity in two
dimensions on the Mott insulator-superfluid phase boundary
in strong magnetic field has been rarely studied because of its
complexity. The amplitude of the hopping term with a complex
factor [see Eq. (5)] is the reason why in [2] instead of BHM at
integer filling the frustrated XY model was investigated using
the MC numerical method. Another approach to the problem
of critical conductivity in magnetic field has been proposed in
[33], but the magnetic field considered there was weaker (i.e.,
f = 1/20) than the field we studied and their calculations were
performed in the hard-core limit (the author used the exact
diagonalization method to overcome the difficulties related to
the complex hopping term). Within the approach presented in
this paper we can perform analytical analysis and study critical
behavior of conductivity in a much wider range of magnetic
fields. Namely, we show that for a commensurate value of f

critical conductivity depends only on the number of minima
located in the first reduced magnetic Brillouin zone.

To describe the critical conductivity at the tip of the Mott
lobe [11] we compute the OC [Eq. (18)] close to the phase
boundary. To do that, in the following calculations, we consider
only the real part of σ A0

xx (ω) that gives a finite frequency
contribution, namely, the part of OC which consists of the
current-current correlation function:

Reσ̃ A0
xx (iω) = −Re

⎧⎨
⎩2π

Rq

1

�βN

1

�ω

1

�

∑
kn

q−1∑
α=0

[
∂kx

εα
q (k; p)

]2

×Gd
αα(k,iωn)Gd

αα(k,iωn + iω)

⎫⎬
⎭, (30)

where Rq = h/(e∗)2 = σ−1
Q is quantum resistance (for Cooper

pair e∗ = 2e and Rq ≈ 6,45 k�), and we restore the constant
� to introduce it in quantum resistance Rq . Equation (30) also
contains the singular part of OC, but since we are interested in
the Mott phase we neglect this contribution further on.

Now, using the effective action from Eq. (10), and applying
a method similar to the Ginzburg-Landau (GL) method for
calculation of critical conductivity [44], we evaluate Eq. (30)
in order to obtain its dependence on the f = p/q parameter.
Following this procedure, we expand the action Eq. (10) to the
second order in frequency using the expression

1 − εα
q (k; p)G0(iωn) = ak − bki�ωn − ck(i�ωn)2, (31)

with

ak = 1 − εα
q (k; p)G0(iωn = 0),

bk = εα
q (k; p)∂rG0(r)|r=0, (32)

ck = 1
2εα

q (k; p)∂2
r G0(r)|r=0.

Next, in calculating the critical conductivity within the GL
action, we should assume the proper ground-state behavior.
From all sets of q-band energy dispersion, we choose the
lowest one which correctly reproduces the phase transition.
This band contains q GL modes in the first magnetic Brillouin
zone (MBZ) [11], which allows description of the critical
behavior of the BHM close to the phase boundary. Going
further we perform the summation over Matsubara frequencies
and take the limit T → 0, which reduces Eq. (30) to

Reσ̃ A0
xx (ω) = π2

Rq

1

N

∑
kQ

(k − Q)2

m2
eff

2J 2

�2
kJ

2
k

δ

(
ω2 − �2

k

c2
k

)
, (33)

where �k =
√

b2
k + 4akck, meff = 1/∂2

kx
εα
q (k; p)|k=Q, and Q

are locations of the minima in MBZ. Close to the phase
boundary only the momenta around Q bring a contribution
to conductivity, and therefore if the minimum of εα

q (k; p) is
located at k = Q we can simply expand ak from Eq. (32) to
the second order:

ak ≈ (k − Q)2

2zJmeff
, (34)

where z = εα
q (Q; p) for chosen p and q. In further calculations

we assume that ∂2
kx

εα
q (k; p) = ∂2

ky
εα
q (k; p). Finally, for the point

in the phase diagram which is close to the tip of the lobe, we
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get

Reσ̃ A0
xx (ω) = π

8Rq

∑
Q

ω2 − ( bQ

cQ

)2
ω2

�

(
ω2 − b2

Q

c2
Q

)
, (35)

where �(x) is a step function, being nonzero for x ≥ 0.
The above expression describes the behavior of optical
conductivity close to the phase transition. It has nonvanishing
amplitude when the applied frequency is equal to bQ/cQ or is
higher than this value. Denoting σ ∗ = πσQ/8 = π/8Rq and
considering the tip of the lobe, where bQ = 0 is the critical
conductivity, Reσ̃ A0

xx (ω) ≡ σc,f takes the simple form

σc,f = qσ ∗. (36)

It is important to notice that the theory presented here is valid
for the second-order phase transition; e.g., this condition is
satisfied for the cases f = 1/2 and 1/3 [2].

To discuss the result from Eq. (36) we first recall that for
the simplest case q = 1, where there is no magnetic field, the
result for q = 1 confirms the results presented in [3,44,46].
With p/q = 1/2 we have σc,1/2 = 2σ ∗. This result agrees with
the analytical solution given in [36,40], where the XY model
was used. Also in the MC study for f = 1/2 [2] a value of
critical conductivity is 1.82 times higher than for f = 0 [46].
Results of an experiment conducted in Josephson-junction
arrays [22,23] also show a similar behavior. If we consider
f = 1/3, it qualitatively agrees with the Monte Carlo result
in [2], where Cha and Girvin obtained a higher value of
critical conductivity of 2.91 compared with the absence of
a magnetic field. The authors of the experimental work in
[22,23] also discuss such a scenario. It is worth adding that
the authors of [36] have speculated about a similar result for
σc,1/3, i.e., σc,1/3 = 3σc,0. Namely, they have suggested that at
least for low-order rationals of p/q critical conductivity could
satisfy Eq. (36), but they have carried out explicit calculation
only for f = 1/2. In contrast, we showed this behavior by
analytical methods for arbitrary f within a clear mathematical
framework. The above considerations are summarized in
Table I. It is worth mentioning that in three dimensions a
trivial solution σc,f = 0 is obtained, known before only for
the case of f = 0 (e.g, see [44]).

For Josephson-junction arrays (JJAs) it seems that the
critical conductivity is proportional to q/p [23] but this linear
behavior is inferred from a small number of experimental
points with a large error margin. Therefore, such a dependence
is still an open question. Moreover, in JJAs we should take into
account that arrays are not perfect and their parameters differ
through the network. Also, the measurements are performed at

TABLE I. Comparison of critical conductivity for different
magnetic-field configuration calculations [2,36,40,46] and experi-
mental measurements [22,23].

Normalized critical conductivity σc,f /σc,0

f MKF (here) XY model MC JJA experiment

1/2 2 2 1.82 ≈2
1/3 3 2.91 ≈3
1/q q ≈q

FIG. 7. (Color online) Density plot of the lowest band energy
in the Mott phase [the white rectangle describes the first magnetic
Brillouin zone (MBZ)]. The range from darker to brighter color is
assigned to the lowest and highest value of the energy spectrum,
respectively. � = 0 (left) and 0.7 (right). We see explicitly the
disappearance of one of the two minima (black color) on the center
of the MBZ.

finite temperatures. For example, if we consider a disorder we
should expect that this effect suppresses the value of critical
conductivity [2,54]. It is worth mentioning here that also long-
range interactions which we neglected could have a significant
impact [54]. Besides, it seems that σc,f should depend on p.
Hence our results in Eq. (36) within the approximations used
in this paper should be at least appropriate for p ≈ 1.

2. The uniform field (f = 1/2) with uniaxially staggered potential

To show the importance of translation symmetry breaking
by the uniaxially staggered potential in a special case f = 1/2
[38], we analyze the critical behavior of conductivity at the
phase boundary.

Following the same procedure for the critical conductivity
which led us to Eq. (36) we simply observe that for � = 0
(for the definition of parameter � see Sec. III A 2) we get
σc,f = 2σ ∗. However, for � > 0, the situation is changed
significantly. Analysis of the spectrum of quasiparticles in the
Mott phase reveals that one of the two minima disappears in
the first magnetic Brillouin zone for the nonzero value of �

(see Fig. 7). Therefore, there exists only the one lowest-energy
Ginzburg-Landau mode, which effectively recovers the critical
conductivity as when there is no magnetic field. Hence, such an
abrupt change in the critical value of σc,f from 2σ ∗ to σ ∗when
the staggered potential is turned on could be an interesting
effect in its own right. In addition, no variation in the critical
conductivity for f = 0 was observed.

The best options to study the presented effects in experi-
ments that could be made nowadays is the use of optical lattices
with ultracold atoms whose high controllability provides a
better road to connect experiment and theory. The continuous
progress in ultracold quantum gases in the near future
also will allow getting into the temperature regime where
high-precision measurement of critical conductivity will be
possible. This can verify the above results and allow omission
of additional effects which occur in standard solid-state
devices like Josephson-junction arrays. The possibility of such
measurements has been very recently discussed in [20].

The analysis made in Sec. III C permits a better un-
derstanding of the superconductor-insulator phase transition
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mechanism. To illustrate this, we shortly explain below the
fact that the critical conductivity should be affected by the
applied magnetic field. Namely, we know that the scenario
of critical resistance (i.e., 1/σc,f ) is assigned to the vortex
and boson flowing through the system at the critical transition
point [46]. Such a description is possible from the duality
transformation [39,55] (e.g., for the superconductor-insulator
transition induced in a fermionic system these bosons are
Cooper pairs with short coherence length [46]). Therefore,
application of a magnetic field at least affects the behavior
of vortices, which changes the critical resistance. In our
calculations the magnetic field is effectively incorporated
into the theory through the tight-binding dispersion relation
εα
q (k; p) which gives the q-band spectrum with q minima

in the lowest-energy level, which finally changes σc,f . If we
additionally consider the staggered potential, an analogous
prediction could be made.

IV. SUMMARY

The analysis of conductivity in BHM in a strong magnetic
field is a challenging problem due to the complex hopping
term. In particular, up to now its optical dependence was out
of reach in Monte Carlo study. Therefore our theory expands
the area in which numerical methods are used.

Namely, we have proposed the magnetic Kubo formula,
which is valid for an arbitrary flux pattern where commensu-
rability effects of a magnetic field are included. Within this
framework, we have calculated the optical conductivity in
the Mott phase of the Bose-Hubbard model and considered
its critical value. To check our results we have proposed to
compare them with a presently available experiment in ultra-
cold quantum gases in which the current-current correlation
function in a uniform magnetic field could be probed. Such a
connection of experiments and theory could open a new avenue
to study transport phenomena in a highly controllable magnetic
field where geometry of the lattice can be easily manipulated.
Moreover, for the case of critical conductivity we have shown
its dependence on the topology of the single-particle spectrum
and obtained a solution which is in good agreement with
presently available numerical and experimental data.

The method presented here can be extended over many-
body systems in which the strong magnetic field plays a
significant role.
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APPENDIX A: UNIFORM MAGNETIC FIELD FOR A
TWO-DIMENSIONAL SQUARE LATTICE

Here we present the quasiparticle energy spectrum and
densities of states for conductivity (DOSc) in two dimensions
described in Sec. III A. We use K and E to denote the first and
second complete elliptic integral, respectively.

A. f = 0

The dispersion relation for the square lattice is

εα
1 (k; 0) = −2J (cos kx + cos ky), (A1)

where the DOSc [Eq. (27)] is given by [56]

ρ0
1 (E; 0) = 4�(4 − |E|)

π2

⎡
⎣E
⎛
⎝
√

1 −
(

E

4

)2
⎞
⎠

−
(

E

4

)2

K

⎛
⎝
√

1 −
(

E

4

)2
⎞
⎠
⎤
⎦ . (A2)

B. f = 1/2

The dispersion relation for f = 1/2 is built from two sub-

bands [42] ±2
√

cos2 kx + cos k2
y and consequently the DOSc

is

ρα
2 (E; 1) = 4�α

π2|E|

⎡
⎣E
⎛
⎝
√

1 −
(

E2 − 4

4

)2
⎞
⎠

−
(

E2 − 4

4

)2

K

⎛
⎝
√

1 −
(

E2 − 4

4

)2
⎞
⎠
⎤
⎦ , (A3)

where �α is the nonzero step function within each q band.

C. f = 1/4

The form of dispersion relation f = 1/4 is expressed by

four sub-bands [42] ±
√

4 −√12 + 2 cos(4kx) + 2 cos(4ky)

and ±
√

4 +√12 + 2 cos(4kx) + 2 cos(4ky), and then we get

ρα
4 (E; 1) = 4�α

π2|E2 − 4||E|

⎡
⎣E
⎛
⎝
√

1 −
(

4 − 8E2 + E4

4

)2
⎞
⎠

−
(

4 − 8E2 + E4

4

)2

×K

⎛
⎝
√

1 −
(

4 − 8E2 + E4

4

)2
⎞
⎠
⎤
⎦ . (A4)

APPENDIX B: UNIFORM MAGNETIC FIELD FOR A
TWO-DIMENSIONAL SQUARE LATTICE WITH

UNIAXIALLY STAGGERED POTENTIAL

A. f = 0

The form of tight-binding dispersion has two sub-bands
[38] −2J cos ky ± 2J

√
cos2 kx + �2 and the appropriate

DOSc is given by, for the xx component of optical conductivity
σ A0

xx (ω),

ρα
2 (E; 1) = 2�α

π2

∫ 1

0
dx

x2

x2 + �2

√
1 − x2√

1 − (E
2 ± √

x2 + �2
)2 ,

(B1)
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and, for the yy component of optical conductivity σ A0
yy (ω),

ρα
2 (E; 1) = 2�α

π2

∫ 1

0
dx

√
1 − (E

2 ± √
x2 + �2

)2
√

1 − x2
. (B2)

B. f = 1/2

The form of tight-binding dispersion has two sub-bands
[38] ±2

√
cos2 kx + (cos ky − �)2 and the appropriate DOSc

is given by, for the xx component of optical conductivity

σ A0
xx (ω),

ρα
2 (E; 1) = 4�α

π2|E|
∫ 1−�

−1−�

dx

√(
E
2

)2 − x2
√

1 − (E
2

)2 + x2√
1 − (x + �)2

,

(B3)

and, for the yy component of optical conductivity σ A0
yy (ω),

ρα
2 (E; 1) = 4�α

π2|E|
∫ 1−�

−1−�

dx
x2√(

E
2

)2 − x2

√
1 − (x + �)2√

1 − (E
2

)2 + x2
.

(B4)

[1] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys.
62, 113 (1990).

[2] M. C. Cha and S. M. Girvin, Phys. Rev. B 49, 9794 (1994).
[3] A. van Otterlo, K. H. Wagenblast, R. Fazio, and G. Schön, Phys.

Rev. B 48, 3316 (1993).
[4] M. Greiner, O. Mandel, T. Esslinger, T. Hänsch, and I. Bloch,
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