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Behavior of trapped ultracold dilute Bose gases at large scattering length near a Feshbach resonance
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We calculate the ground-state energy and the collective excitation frequency of trapped bosons at large
scattering length interacting via the realistic two-body van der Waals potential. Our many-body method keeps
two-body correlations produced by all interacting pairs. When the scattering length is small compared to the
trap size and the number of bosons in the trap is of the order of a few thousands, the mean-field results are in
good agreement with the many-body results. However for large particle numbers, even when the condensate is
sufficiently dilute, the interatomic correlation comes into the picture. When the scattering length is quite large
near the Feshbach resonance, the Bose gas becomes highly correlated. The many-body results are close to the
Gross-Pitaevskii results for a small number of bosons, however, large deviations are noted in the large particle
limit. We also calculate the lowest collective excitation and the interaction energy for large scattering lengths.
The monopole excitation frequency exhibits a pronounced dependence on the scattering length. We also observe
a universal behavior for the interaction energy at the limit of large scattering length.

DOI: 10.1103/PhysRevA.89.023624 PACS number(s): 03.75.Hh, 03.65.Ge, 03.75.Nt

I. INTRODUCTION

The behavior of Bose-Einstein condensates (BECs) near
the Feshbach resonance has been one of the most challenging
research areas in the study of ultracold atomic physics [1–7]. In
a typical BEC experiment, the average interatomic separation
is quite large compared to the range of interatomic interaction
[8]. As a result, the study of these dilute inhomogeneous
gases were primarily based on the mean-field Gross-Pitaevskii
(GP) equation, where the effective mean-field potential is
constructed from a contact interaction using the s-wave
scattering length as only [9].

The GP equation is remarkably successful in explaining
results from most experiments of gaseous BEC when the gas
parameter na3

s (n is the number density) is very small. How-
ever, in recent days there is a new breed of experiments near the
Feshbach resonance where a stable BEC is formed at very large
scattering lengths, ∼10 000a0 (a0 = Bohr radius), and with a
fairly large number of atoms [3–5]. In this parameter regime
(large as) the underlying assumption of the GP equation,
such as the shape-independent pseudopotential approximation,
disregarding correlations, etc., needs careful scrutiny. The
shape-independent approximation (SIA) assumes that the
two-body scattering amplitude does not change over the energy
range of interest. However, for large na3

s , a larger energy
range is involved, requiring consideration of contributions
beyond the s-wave scattering. Therefore, for large na3

s the
use of SIA becomes questionable. A similar argument is
applicable in a strong confinement situation, even at the dilute
limit.

In an earlier calculation of Cowell et al. [10] for homoge-
neous systems, it was seen that different potentials having the
same scattering length as lead to widely varied ground-state
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energies. The validity of the SIA was first established by Bohn
et al. [11] only for three trapped bosons which is far from
the real experimental situation. It was shown that the SIA
is qualitatively good in the low-density limit, however the δ

interaction is not suitable as the correct two-body interaction
in the configuration space. The other calculation testing SIA
reported in the literature [12] deals with small number of atoms
in the condensate and uses the standard short-range two-body
potential.

There are some important theories based on the GP equation
which go beyond the mean-field GP theory. However, most
of the theories are focused on quantum fluctuations [12–15].
In a thorough calculation by Geltman [16], it is pointed out
that the replacement of the actual interaction by a contact
potential is not appropriate. Giorgini et al. [17] also observed
the dependence of the ground-state energy on the shape of
the two-body potential in the intermediate density regime. The
dependency of the ground- and excited-state energies of two-
and three-particle condensates on the exact shape of the two-
body potential in the high-density limit has also been indicated
[12]. In another context Khan and Gao [18] clearly pointed out
that the SIA breaks down in the large particle limit in dense
condensates.

Near the Feshbach resonance the condensate with a large
number of particles becomes highly correlated and is best
described by correlated basis functions. Although the earlier
study of Blume et al. [12] adopted the essentially exact
diffusion Monte Carlo (DMC) method, the calculation was
restricted to a few hundred atoms only, which is far from
the experimental situation. There are also some inspiring
theoretical investigations of cold atoms with large scattering
length [10,12,19–22]. However, none of these investigations
consider real experimental situation, where the long-lived
condensate of 104 atoms with scattering length as � 10 000a0

is produced [3–5]. All the earlier calculations considered
from a few tens to a few hundreds of atoms only and the
corresponding results already differed significantly from the
GP results.
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We use two-body correlated basis functions together with
the realistic van der Waals interaction for the description
of Bose gases at large scattering lengths near the Feshbach
resonance. The two key points of the present study are
as follows. We investigate when the effect of interatomic
correlation is indeed required, even in the dilute condition
(na3

s � 1). We compare our many-body results with the
GP and the modified GP equation (MGP), which keeps
first order correction in na3

s . Our results clearly show that
for the entire range of particle number the many-body
energies are in good agreement with both GP and MGP for
smaller as .

After a study of the ground-state properties of dilute Bose
gas, we next study repulsive condensate with large scattering
length near the Feshbach resonance. In recent-day experiments
it is possible to create dilute (na3

s < 1) but strongly interacting
Bose gas near the Feshbach resonance. This type of study is
especially important as the effect of interatomic correlation
dominates and the zero-range pseudopotential approximation
starts to be invalid. For this purpose we choose the scattering
length to be 10 and 100 times larger than the natural 87Rb
scattering length and the particle number in the external trap is
of the order of a few thousand. Comparison with both GP and
MGP results clearly shows that for the large scattering lengths
GP fails and MGP results are measurably different from the
many-body results. We also observe a universal behavior in the
interaction energy of the bosonic system at the large scattering
length limit.

Furthermore, the study of the collective excitation frequen-
cies and their dependence on the scattering length will also
provide a stringent test to the validity of mean-field approx-
imation and to help judge the beyond-mean-field correction
as well as the finite-size effect. Our correlated two-body
basis function and the use of the shape-dependent realistic
interaction is likely to give rich physics in this respect. Our
two-body correlated basis function has been applied recently
in the study of dilute Bose gas [23]. The ground-state energies
were compared with the GP results for as = 1000a0, which is
large but away from the recent experimental situation where
the long-lived condensate with 104 atoms and as = 10 000a0

at the Feshbach resonance is produced [3–5]. Although our
present study uses the same basis functions, the motivation
of the this work is completely different. Our earlier work
concentrated on the ground-state properties, while our present
study considers the collective excitation frequency and shows
both the beyond-mean-field and finite-size effects. We also
observe a universal behavior of the interacting bosons at such
large scattering lengths.

Section II introduces the many-body Schrödinger equation,
the correlated basis function, and the many-body effective po-
tential for trapped Bose gases. Results and their interpretation
are presented in Sec. III. Section IV presents conclusions.

II. MANY-BODY CALCULATION

A. Potential harmonics expansion method

The many-body Schrödinger equation for a condensate
having N identical bosons, each having mass m, in a spherical

trap with trap frequency ωho is given by

N∑
i=1

⎡
⎣− �

2

2m
∇2

i + m

2
ω2

hor
2
i +

N∑
j>i

V (�rij )

⎤
⎦� = E�. (1)

In this equation V (�rij ) is the interaction potential where �rij =
�ri − �rj with �ri being the position vector of the ith boson, ωho is
the frequency of external trap, and E is the total energy of the
system. Next we introduce a set of N = N − 1 Jacobi vectors
(�ζi,i = 1, . . . ,N ), then the relative motion of the bosons is
described by [24]

[
−�

2

m

N∑
i=1

∇2
ζi

+ Vtrap + Vint(�ζ1, . . . ,�ζN ) − ER

]

×�(�ζ1, . . . ,�ζN ) = 0, (2)

where Vint is the sum of all pairwise interaction and ER the
internal energy of the system, with E = ER + 3

2 �ωho.
The hyperspherical harmonic expansion method (HHEM)

is an ab initio tool to solve the many-body Schrödinger
equation where the total many-body wave function is expanded
in the complete set of hyperspherical harmonics (HH) basis
which retains all many-body correlations [25]. However, due
to the large degeneracy of HH basis, it cannot be applied
to BEC which contains few thousands to few millions of
atoms. To simplify calculations greatly, we introduce instead
the basis functions of the potential harmonics (PH) [26], which
retain only the two-body correlations. Such basis functions are
manifestly justified for the dilute BECs, where interparticle
separations are much larger than the interaction range. This
approach can be easily extended to the limit of large particle
number.

The physical meaning of the PH basis is when the (ij ) pair
interacts, all remaining particles are noninteracting spectators.
This picture is true for all possible (ij ) pairs. Thus we choose
�ζN as the �rij for the interacting (ij ) pair and the remaining
Jacobi vectors are used to define the hyperradius of (N − 2)
noninteracting particles as ρ2

ij = ∑N−1
i=1 ζ 2

i , so that r2 = ρ2
ij +

r2
ij , where r is called the global hyperradius and it defines the

average size of the condensate in the hyspherical space. The
hyperangle φ is introduced such that rij = r cos φ and ρij =
r sin φ. This permits us to decompose the total wave function
ψ into a two-body Faddeev component for the interacting (ij )
pair [24],

� =
N∑

i,j>i

φij (�rij ,r). (3)

Note that the Faddeev component φij is a function of the two-
body separation vector �rij and the global length r only, since
all the noninteracting particles are simply spectators. Thus, the
effect of two-body correlation comes through the two-body
interaction in the expansion basis. Again as the noninteracting
particles are simply spectators, the angular and hyperangular
momentum of the system are contributed by the interacting
pair only.
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The two-body Faddeev component is next expanded in the
potential harmonics (PH) basis {P	m

2K+	(
ij

N )} [24,27,28],

φij (rij ) = 1

r (3N−1)/2

∑
K

P	m
2K+	

(



ij

N
)
u	

K (r). (4)

The PH basis is a subset of the full HH basis that is sufficient
for the expansion of the potential V (�rij ). Hence {P	m

2K+	(
ij

N )}
depends only on �rij and r . It is independent of the remaining
Jacobi vectors. Substitution of this in the Faddeev equation
and projection with the PH for the (ij ) partition gives a set of
coupled differential equation (CDEs) [24,27,28],{

�
2

m

[
− d2

dr2
+ L(L + 1) + 4K(K + κ)

r2

]
+ Vtrap(r)

}
UK	(r)

+
∑
K ′

fK	VKK ′ (r)fK ′	UK ′	(r) = ER UK	(r), (5)

where κ = α + β + 1, L = 	 + (3N − 6)/2, UK	(r) =
fK	u

	
K (r), α = (3N − 8)/2, and β = 	 + 1/2. f 2

K	 is a con-
stant and represents the overlap of the PH for interacting
partition with the sum of PHs corresponding to all partitions
[26]. VKK ′ (r) is the potential matrix element [24]. One can in
principle solve Eq. (5) exactly or by adiabatic approximation
to obtain the energy and wave function of the condensate.

B. Introduction of short-range correlation

In the laboratory BECs at temperatures ∼100 nK, the
energy of the interacting pair is negligibly small (∼10−13 eV)
compared to the energy scale of interatomic interaction
(∼1 eV). Therefore, the effective two-body interaction is
characterized by the zero-energy scattering length as (which
is typically ∼100a0–1000a0). However, a realistic interatomic
interaction is always attractive at large separations (greater
than 10a0) with a short-range (∼10a0) repulsive hard core. In
order that φij reflects the effect of this strong repulsion between
the (ij ) pair of bosons at short separations, we introduce
an additional short-range correlation function. Without the
correlation function the convergence of the above expansion
[Eq. (4)] is very slow as the pair of particles with practically
zero kinetic energy do not come closer than �|as |. However,
the zeroth-order PH is a constant [24] and would give a
large probability even for rij → 0. Therefore, we multiply
the PH basis with the additional correlation function η(rij )
which has the same short-separation behavior as φij (�rij ,r).
Thus, the short-separation behavior of φij (�rij ,r) is given by the
zero-energy solution η(rij ) of the (ij ) pair interacting through
V (rij ), [

−�
2

m

1

r2
ij

d

drij

(
r2
ij

d

drij

)
+ V (rij )

]
η(rij ) = 0. (6)

Its asymptotic form quickly attains η(rij ) ∼ C(1 − as/rij ),
from which as is obtained [29].

The new basis including η(rij ) is referred to as the correlated
PH (CPH) basis and we replace Eq. (4) by

φij (�rij ,r) = 1

r (3N−1)/2

∑
K

P	m
2K+	

(



ij

N
)
u	

K (r)η(rij ). (7)

The corresponding correlated potential matrix element is given
by

VKK ′ (r) = 1(
h

αβ

K h
αβ

K ′
) 1

2

∫ +1

−1
P

αβ

K (z)V (r
√

(1 + z)/2)

×P
αβ

K ′ (z)η(r
√

(1 + z)/2)W	(z) dz. (8)

Here P
αβ

K (z) are the Jacobi polynomials and their norm is
h

αβ

K and weight function is W	(z). The inclusion of η(rij ) in
the PH basis dramatically enhances the rate of convergence
of the expansion, however, it also makes the expansion basis
nonorthogonal. Standard procedure can handle this, but the
process becomes quite involved and slow in the numerical
procedure. Actual calculation shows that η(rij ) is different
from a constant only in a very narrow interval (∼50a0) near
the origin. This makes the overlap matrix close to a constant
matrix. Its effect is then approximately taken through the
empirically obtained asymptotic constant C.

C. Solution of the CDE

Even though the CDE Eq. (5) with the correlated potential
matrix [Eq. (7)] can be solved exactly by the renormalized
Numerov method, we choose to use the hyperspherical
adiabatic approximation (HAA) [30]. Besides being much
faster than the exact numerical method, the HAA generates
an effective potential in the hyperradial space, providing a
clear physical picture of the collective motion. In HAA, we
assume that the hyperradial motion is slow compared to the
hyperangular motion. This is justified, since the hyperradial
motion corresponds to the breathing mode of the system and
is very slow in the externally applied low-frequency trap
compared to other modes of the many-body system. The
hyperangular motion is thus decoupled adiabatically (as in
the Born-Oppenheimer approximation) and solved for a fixed
value of hyperradius r . The latter is achieved by diagonal-
izing the potential matrix together with the hypercentrifugal
repulsion for a fixed value of r .

The lowest eigenvalue ω0(r) (as a parametric function of
r) provides the effective potential for the hyperradial motion.
Thus ω0(r) is the effective potential in which the condensate
moves collectively. The energy and wave function of the
condensate are finally obtained by solving the adiabatically
separated hyperradial equation in the extreme adiabatic ap-
proximation (EAA),[

−�
2

m

d2

dr2
+ ω0(r) − ER

]
ζ0(r) = 0, (9)

subject to appropriate boundary conditions on ζ0(r). For our
numerical calculation we fix 	 = 0 and truncate the CPH
basis to a maximum value K = Kmax requiring proper conver-
gence. For our present calculation convergence is attained at
Kmax = 4.

The advantage of the above correlated potential harmonic
expansion method (CPHEM) is that the correlated two-body
basis function takes care of both the short- and long-range
correlations and keeps only four variables for all N (remain-
ing irrelevant degrees of freedom in the dilute condensate
being frozen out), which drastically reduces the numerical
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difficulties. Furthermore, in contrast with a shape-independent
zero-range potential in the GP equation, one may use any
realistic finite range potential in the CPHEM. The effective
two-body potential for the condensate, starting from any
realistic interatomic potential V (rij ), has to have the correct
long-range behavior in terms of as . This is assured through
the introduction of η(rij ) in Eq. (8) [28]. For example, the
van der Waals potential, with a hard-core repulsion and an
attractive long tail, provides a realistic picture, which is
particularly relevant in the limit of large scattering length.
For as = 10 000a0 and N = 2000, the interparticle separation
is comparable with the range (|as |) of the effective two-body
interaction for the condensate. The present technique produces
this effective interaction, having the correct tail of the realistic
potential corresponding to the appropriate as . Moreover, this
approach further reduces the 3(N − 1)-dimensional problem
to an effectively one-dimensional problem in the adiabatic
approximation, for which the resultant many-body effective
potential provides all the qualitative and quantitative features.

III. RESULTS AND DISCUSSION

A. Choice of interaction

The system parameters are the mass m = m(87Rb) and
frequency ωho = 2π × 77.78 Hz, corresponding to the JILA
trap. The trap length aho = √

�/mωho is chosen as the unit of
length and harmonic oscillator energy �ωho is taken as the unit
of energy. These are referred to as the oscillator units (o.u.) of
length and energy respectively. For the mean-field GP equation
the two-body potential chosen is the zero-range potential
V (r) = (4π�

2as/m) δ(r). It is assumed that the single param-
eter as provides the correct zero-energy scattering amplitude.
From the two-body scattering, the zero-range potential given
above correctly gives the scattering amplitude at zero range
in the first Born approximation. It is shape independent as it
ignores completely the energy dependence of the scattering
amplitude. It is a good approximation when na3

s is small.
We choose the realistic van der Waals potential

V (rij ) =
{−C6/r6

ij for rij > rc,

∞ for rij � rc

(10)

with C6 = 6.489 755 × 10−11 o.u. for 87Rb atoms. This
interaction potential is justified for the description of the
experimentally achieved condensate [29]. For a given value
of rc, as can be calculated analytically solving Eq. (6) for the
van der Waals potential given by Eq. (10) or equivalently
Eq. (5.43) of Ref. [29]. We choose the rc value which
corresponds to the single-node in the two-body wave function.
The value of rc is 1.121 054 × 10−3 o.u. which corresponds to
as = 0.004 33 o.u. and mimics the JILA trap experiment. The
relation of the scattering length to the effective range is briefly
discussed in Appendix A.

B. Dilute BEC (na3
s � 1)

To facilitate discussions we point out that in a laboratory
BEC there are three very different length scales: the trap
length aho = √

�/(mωho) ∼ 2.3 × 104a0, the scattering length
as = 100a0 which is the range of effective interaction of
nearly zero-energy bosons, and the range of actual two-body

interatomic interaction r2B (∼65a0 for van der Waals potential
for Rb atoms). The indicated values of as and aho correspond
to the original JILA experiment for Rb atoms. For N bosons
in the trap the number density is n ∼ N/a3

ho, with average
interparticle separation ∼aho/N

1/3. We then define two dif-
ferent types of diluteness: (1) A condensate is “physically
dilute” when average interparticle separation is large compared
to r2B , i.e., r2BN1/3/aho � 1. (2) A condensate is dilute in
“gas parameter” when n|as |3 � 1. When a condensate is not
physically dilute, the atoms “see” the details of the actual
interatomic interaction. On the other hand, when a condensate
is physically dilute but dense in gas parameter, atoms interact
only through zero-energy effective interaction in terms of as ,
but correlations become more relevant.

We first study the ground state of a system of 87Rb atoms in
an isotropic harmonic trap with the chosen parameter as given
earlier. The natural s-wave triplet scattering length for 87Rb is
as = 100a0. Therefore, the gas parameter is na3

s < 8.1 × 10−3

for N < 105, which satisfies the criterion of diluteness. We fix
the scattering length and vary the number of bosons from
very few to quite a large number. We compare our many-
body results with the widely used mean-field GP approach.
The relevant equations of this GP approach are indicated in
Appendix B.

In Fig. 1 we plot the ground-state energy per particle as a
function of log10(N ). There is almost no noticeable difference
between many-body results and the mean-field results when
the number of bosons in the trap is of the order of a few
thousands. For much higher N the GP results are slightly
smaller than the many-body results. As the MGP equation
partly incorporates two-body physics, the MGP results are
closer to our many-body results. However a small difference
between the MGP and CPHEM exists which is attributed to the
use of shape-dependent potential and all two-body correlations
in the many-body calculation. Thus we do not observe any
significant deviation between the mean-field and the many-
body results in the dilute gas parameter situation.

Ecorr

log10(N)
54321

0.04

0.02

CPHEM
MGP

GP

log10(N)

E
/N

54321

14

12

10

8

6

4

2

0

FIG. 1. (Color online) Ground-state energy per atom (in o.u.) as
a function of log10(N ) for scattering length (as = 100a0) obtained by
the CPHEM. The GP results are obtained by solving Eq. (B1) and
the MGP results are obtained by solving Eq. (B2). The normalized
correlation energy [Eq. (11)]. is shown in the inset.
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It is seen from Fig. 1 that our many-body energies are
always equal to or larger than the mean-field energies. We,
therefore, define the energy difference ECPHEM − EGP as the
correlation energy. We plot the normalized correlation energy

Ecorr = ECPHEM − EGP

ECPHEM
(11)

as a function of log10(N ) in Fig. 1 (inset). The correlation
energy is quite small as the system is extremely dilute, however
it smoothly increases with N . It indicates that the effect of
correlation will be significant at large scattering lengths.

We are using a realistic and shape-dependent potential.
The validity of SIA is questionable whenever the interparticle
separation is comparable to the range of two-body realistic
interaction, even though the condensate is extremely dilute
in the gas parameter. This can be investigated by increasing
the range of the two-body realistic interaction by increasing
C6, while keeping as constant. We feel that the present work
is a good platform to check the validity of SIA in this way.
Thus we vary C6, making it larger than the corresponding
experimental value and observe how the condensate properties
are affected by the strength of the long-range tail of the
two-body potential. The two additional values of C6 which
we choose are 10 × 10−11 and 50 × 10−11 o.u. For each value
of C6, we calculate the corresponding rc such that as has the
same value. For each set of (C6,rc), we solve the many-body
equation for N = 10, 100, 1000, 10 000 bosons, and the results
are given in Table I.

It can be seen from this table that as C6 increases the
potential becomes more attractive, but simultaneously rc

also increases, although by a small amount. Therefore, the
net two-body attraction calculated from the volume integral
4π

∫ ∞
rc

V (r)r2dr increases. Note that this change occurs in
each two-body pair which goes as N (N − 1)/2 while the trap
energy and the kinetic energy increases as N . For smaller N ,
these two nearly balance. Thus, the effect of increasing C6

on the ground-state energy of the condensate is negligible
for small N and SIA is well obeyed. However for larger

TABLE I. Ground-state energy per particle (in o.u.) for different
C6 parameters. The different (C6 and rc) combination produces the
same scattering length as = 100 a0. For comparison the GP results
are also presented. C6, rc and energy values are in o.u.

C6 (o.u.) 6.489 × 10−11 10 × 10−11 50 × 10−11

rc (o.u.) 1.121 × 10−3 1.237 × 10−3 1.761 × 10−3

N 10 10 10
(E/N )CPHEM 1.522 1.522 1.522
(E/N )GP 1.515 1.515 1.515

N 100 100 100
(E/N )CPHEM 1.677 1.676 1.674
(E/N )GP 1.651 1.651 1.651

N 1000 1000 1000
(E/N )CPHEM 2.434 2.427 2.419
(E/N )GP 2.424 2.424 2.424

N 10000 10000 10000
(E/N )CPHEM 5.198 5.178 5.155
(E/N )GP 5.043 5.043 5.043

TABLE II. CPHEM ground-state energy per particle (in o.u.)
using a van der Waals and δ (CPHEMδ) interactions with as = 100a0.
GP with contact δ interaction and DMC with hard-core interaction
[12] are also presented. Column 2 determines the diluteness of the
condensate.

N na3
s CPHEM CPHEMδ DMC GP

3 10−7 1.512 1.502 1.503 1.503
5 10−7 1.519 1.506 1.507 1.507
10 10−6 1.523 1.514 1.515 1.515
20 10−6 1.548 1.531 1.532 1.532
100 10−5 1.677 1.652 1.651 1.651
1000 10−4 2.434 2.477 2.424

N , the net contribution from all pairs becomes appreciably
negative which causes a decrease in the total energy. Although
the condensate energy is grossly well reproduced by the
mean-field theory in the dilute condition, the dependence of the
ground-state energy on the shape of the two-body potential in
the large particle-number limit definitely points to the need for
the use of a realistic interaction, especially for large scattering
lengths when the condensate becomes more correlated.

We also calculate ground-state energies using the many-
body approach with the contact interaction. We replace
V (�ri − �rj ) term in the Schrödinger equation by V (�ri − �rj ) =
(4π�

2as/m) δ(�ri − �rj ) and solve the coupled equation as be-
fore. The results are presented in Table II for up to 1000 bosons,
where the condition for true diluteness is well satisfied. In the
same table, we also present the DMC results for hard-core
bosons [12] and GP results. It is nicely seen that in very dilute
condition all results are basically indistinguishable. However
for N = 1000, although the system is quite dilute in the gas
parameter, the result for van der Waals interaction is below
the result of δ interaction. This is in perfect agreement with
our previous observation that the effect of shape-dependent
potential really comes into the picture for larger N .

C. Large scattering length

In the next part of our work we consider the Bose gas
near Feshbach resonance. In Table III, we present the ground-
state energy per atom, in units of �ωho, for as = 1000a0

TABLE III. CPHEM ground-state energy per particle (in o.u.) for
N = 3–20 87Rb atoms in the isotropic trap using the van der Waals and
δ (CPHEMδ) interactions for as = 1000a0 (top) and as = 10 000a0

(bottom). The GP and MGP results are also presented for comparison.

N na3
s CPHEM CPHEMδ GP MGP

3 10−4 1.549 1.525 1.533 1.534
5 10−4 1.595 1.555 1.565 1.566
10 10−3 1.713 1.628 1.638 1.642
20 10−3 1.890 1.759 1.764 1.774

3 0.243 1.794 1.685 1.776 1.870
5 0.405 2.024 1.895 1.980 2.154
10 0.811 2.512 2.307 2.361 2.684
20 1.623 3.074 2.903 2.895 3.425
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and as = 10 000a0 for a smaller number of particles. The
condensate is purely dilute in the former case, while it is
physically dilute but fairly dense in the gas parameter in
the latter case. We observe that for as = 1000a0, the MGP
results, which are considered in the literature as better than
the GP results, are closer to the many-body energies. However
for as = 10 000a0, the many-body energies are consistently
lower than the MGP results. The consistently smaller value
in the many-body ground-state energy signifies the effect of
long-range correlation due to the presence of an attractive van
der Waals tail in the realistic potential, when the condensate
becomes highly correlated at large pair separation. It also
signifies that MGP takes into account the correct two-body
physics, however additional shape-dependent correction is
indeed required.

For a closer comparison with the GP which uses the
contact interaction, we repeat our many-body calculation
with the contact interaction and present our results in the
fourth column of Table III. It can be seen that the CPHEM
energies for the contact interaction are consistently smaller
than GP energies. For larger N and intermediate (as = 1000a0)
and large (as = 10 000a0) scattering length, we plot the
interaction energy per atom (E/N − 1.5) as a function of
the number of bosons N in Fig. 2 for the GP, MGP, and
the many-body CPHEM. For intermediate scattering length
and moderate atom number, although the system is dilute
(na3

s < 1), interatomic correlation strongly dominates. From
lower part of Fig. 2, we see that there is very little difference
between CPHEM and MGP results which nicely demonstrate
that for such density regime, only the two-body correlation is
effective.

For large scattering length the condensate becomes strongly
correlated, and the mean-field results for GP and MGP
differ by large amounts. The mean-field approximation is
no longer accurate. The GP energy is consistently lower
than the many-body results whereas MGP energy overshoots
the CPHEM ground-state energy. This observation is also
in perfect agreement with Table III, where even for very

MGP
GP

CPHEM

as = 103 a0

as = 10
4 a0

N

E
/N

−
1.

5

200016001200800400

25

20

15

10

5

0

FIG. 2. (Color online) Interaction energy per atom (in o.u.) as
a function of the number of bosons in the condensate of 87Rb for
intermediate scattering length (as = 103a0: bottom panel) and for
large scattering length (as = 104a0: upper panel), obtained by the
CPHEM. The GP results are obtained by solving Eq. (B1) and the
MGP results are obtained by solving Eq. (B2).

small values of N , MGP results overshoot the many-body
results. The MGP functional yields energies which are too
high as N becomes larger. It is due to the fact that the MGP
energy functional keeps the two-body physics but ignores the
shape-dependent correction term. The attractive van der Waals
tail, that must appear in every realistic two-body potential,
lowers the ground-state energy. It becomes important when the
range of the effective two-body interaction |as | becomes large.
Therefore, an additional shape-dependent correction term in
the MGP functional may improve the situation. At the same
time the two-body basis function may also be inadequate to
describe such a strongly correlated system as beyond-two-
body correlation may become important. This would be an
interesting issue for future study. It should be noted that using
our method we can obtain results for N > 2000, but mean-field
results using the program of Ref. [31] become unstable above
this limit.

D. Excitation frequencies

We also calculate excitation frequencies to observe both the
finite-size effect and the beyond-mean-field effect. The study
of the frequencies of collective oscillations of a trapped Bose
gas, interacting with large scattering length, is also important
as it provides an excellent confirmation of the prediction of
mean-field theory. The positive atomic scattering length close
to the Feshbach resonance is associated with the occurrence of
a weakly bound molecular state. In the low-density limit one
may expect the formation of Bose-Einstein condensation of
molecules which is described by the GP theory. Typically when
the gas parameter na3

s � 1, i.e., the average distance between
particles is significantly larger than the range of the effective
two-body potential, the mean-field prediction is quite accurate.
In the Thomas-Fermi (TF) limit of large particle number in an
isotropic trap, the frequencies of collective oscillation obey the
dispersion relation [9]

ω(nr,	) = ωho
(
2n2

r + 2nr	 + 3nr + 	
)1/2

, (12)

where nr is the number of radial nodes and 	 is the
angular momentum of excitation. It shows that the collective
frequencies in the mean-field theory are fixed. The effect of
going beyond the mean-field theory was studied by Pitaevskii
and Stringari [32]. For the large N limit the first correction
to the collective frequencies due to some beyond-mean-field
effects was provided by an analytic calculation [32].

The lowest mode in a spherical trap is the breathing mode
which is characterized by nr = 1 and 	 = 0. The fractional
shift in the monopole frequency (ωM ) is given by

δωM

ωM

= 63
√

π

128

√
n(0)a3

s , (13)

where n(0) is the density at the center of the trap and the gas
parameter can be written as

n(0)a3
s = 152/5

8π

(
N1/6as

aho

)12/5

. (14)

This fractional shift is insignificant for low-density, even for
large N . However, it may be significant for large as limit. Thus,
the many-body investigation in this direction, measuring the
correlation effect beyond the mean-field, is challenging.
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Mean − Field
CPHEM

[N1/6as/aho]
−1

ω
M

11109876543210

2.6

2.55

2.5

2.45

2.4

2.35

2.3

2.25

2.2

2.15

FIG. 3. (Color online) Monopole frequency (in units of ωho)
close to the Feshbach resonance as a function of the dimensionless
parameter (N 1/6as/aho)−1. The mean-field graph corresponds to the
dispersion relation Eq. (11) accounting for the beyond-mean-field
correction Eq. (13).

As pointed out earlier, in HAA the coupling potential matrix
together with the diagonal hypercentrifugal repulsion (for a
fixed r) is diagonalized to get the effective potential ω0(r),
which is the lowest eigenpotential of the potential matrix, as a
parametric function of r . In this picture, the whole condensate
exhibits collective motion in the effective potential ω0(r). The
energy levels En	 of the system are calculated as excitations
in the effective potential for orbital angular momentum 	 of
the system. Thus the ground-state energy of the condensate
(E00) in this well corresponds to n = 0, 	 = 0, whereas En	 is
the nth radial excitations of the 	th surface mode. The lowest
hyperradial excitation corresponding to the breathing mode for
	 = 0 gives the monopole frequency as ωM = (E10 − E00)/�.

As the beyond-mean-field correction depends on the com-
bination N1/6as/aho, in Fig. 3 we plot the monopole frequency
as a function of [N1/6as/aho]−1. Although the many-body
and the mean-field graphs describe the beyond mean-field
effect correctly, the extrapolation to the asymptotic region
of the noninteracting Bose gas for larger argument reveals
appreciable deviations. This is because the mean-field result
takes the TF limit with a very large particle number, whereas
our many-body calculation takes a finite number of atoms.
Thus an additional correction term in the monopole frequency
due to the finite-size effect is needed to describe the present
day experiment. The finite-size effect arises as the mean-field
prediction of monopole frequency (�√

5ωho) holds only in the
large-N limit where the quantum pressure term is ignored.

Using a sum-rule approach, Pitaevskii and Stringari pro-
posed a leading-order correction to the monopole frequency in
the large particle limit as [32]

δωM

ωM

= −7

6

(aho

R

)4
log10

(
R

Caho

)
, (15)

where R = aho(15Nas/aho)1/5 and C = 1.3. In the large
particle number limit this finite-size shift will vanish but it is
important for a small particle number even in the dilute regime.
Therefore, for our present many-body calculation, we consider
the effect of both the beyond-mean-field and finite size. As the
finite-size effect depends on Nas/aho, in Fig. 4 we plot the

Mean − Field
CPHEM

Nas/aho

ω
M

706050403020100

2.24

2.22

2.2

2.18

2.16

2.14

2.12

2.1

2.08

2.06

2.04

FIG. 4. (Color online) Monopole frequency (in units of ωho) as a
function of Nas/aho for a finite number of atoms in the low-density
regime. The mean-field result takes into account the finite-size effect
Eq. (11) together with Eq. (15).

monopole frequency as a function of Nas/aho. Comparing
with Fig. 3 we find that the finite-size shift of the monopole
oscillation is much smaller than the beyond-mean-field effect
correction.

Another important issue is the behavior of the ground-state
energy in the large scattering length limit. In Figs. 5 and 6
we plot the interaction energy per particle by CPHEM as a
function of Nas/aho (using a logarithmic scale) for different
particle numbers. It is seen that the many-body results for
N = 100 and N = 1000 are separated in Fig. 5, for smaller
values of Nas/aho corresponding to as up to 1000a0. This
implies that the system does not show a universal behavior as
the many-body effect dominates. However, for large scattering
length comparable to the trap size, we observe in Fig. 6 that the
many-body results for N = 1000 and N = 10 000 absolutely
overlap, which clearly exhibits a universal behavior indicating
that our many-body treatment may be directly extrapolated for
larger N and as . We can understand the universal behavior
in the following manner. Since as is the effective range
of interaction, for as � aho, not all pairs in the condensate
interact. For a fixed value of Nas/aho, as N increases, both as

and the average interparticle separation (which is ∼aho/N
1/3)

Mean − Field
CPHEM, N = 103
CPHEM, N = 102

Nas/aho

E
/N

−
1.

5

1001010.1

4.5

4

3.5

3

2.5

2

1.5

1

0.5

0

FIG. 5. (Color online) (a) Interaction energy per atom (in o.u.)
by CPHEM as a function of Nas/aho for N identical bosons in the
trap. Note the logarithmic scale. The zero-range GP results are also
shown.
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FIG. 6. (Color online) Same as in Fig. 5 for large values of
Nas/aho near the Feshbach resonance. All data points for N = 1000
and N = 10 000 line up on a universal curve.

decrease; but they decrease differently, and the number of
interacting pairs depends on N . Hence energy per particle
depends on N , for the same value of Nas/aho. But when as

is comparable to or greater than aho, all pairs interact. Hence
energy per particle becomes independent of N for the same
value of Nas/aho, resulting in a universal behavior.

Before closing the discussion it is also necessary to observe
when the effect of three-body correlation will come into
the picture. In the strong interacting regime the two-body
correlation is still dominating, however the effect of three-body
correlations also builds up with increase in na3

s . Thus it is
indeed required to calculate the loss of atoms per second
due to three-body recombination. The three-body loss rate
for N -atom condensate is defined as

�N = LN3
∫

d3 �x[φ(�x)]6, (16)

where φ(�x) is the condensate wave function. For 87Rb
atoms the three-body recombination coefficient is L = 4.0 ×
10−30 cm6/s [29]. In CPHEM, the wave function ψ is initially
obtained as a function of the Jacobi coordinates. It is then
transformed into a function of position vectors [�x1,�x2, . . . �xN ].
Finally the one-body density is used for |φ(x)|2 to calculate �N .

In Fig. 7, we present the values of �N as a function of N

for as = 1000a0 and as = 10 000a0 and maximum number of

as = 104 a0

as = 103 a0
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0

FIG. 7. (Color online) Plot of three-body loss rate �N as a
function of N .

bosons N = 2000 as before. It is seen that for small values of N

the loss of atoms per second due to three-body recombination
is negligible for both choices of the scattering length. For
a fixed as , the value of �N smoothly increases with N as
expected. However for a fixed N , but larger as , the value of
�N decreases, as increasing as means the system becomes
more repulsive and the condensate density |φ(x)|2 becomes
more spread out towards the boundary of the trap. This
causes a decrease in �N , as the probability of three particles
coming close together reduces due to the lower density.
However this pattern will be continued until the condensate
density fills the trap size. After that we will enter in the
strongly interacting dense regime where one may expect sharp
depletion in the condensate due to three-body recombination.
Naturally our two-body basis function will not be suitable to
correctly describe the condensate in that situation. Such BEC
dynamics can probably be successfully investigated using the
number-conserving approach of Gardiner et al. [33].

IV. CONCLUSION

In this report we present the results of a quantum many-body
calculation which keeps all possible two-body correlations
to describe the interacting trapped Bose gas. Main attention
has been paid in the deeper understanding of the effects of
two-body correlations when the two-body interaction changes
from a weak to a very strong one. In the first part of our
work we investigate the properties when the s-wave scattering
length is quite small (na3

s � 1). We have critically examined
the limits of validity of SIA which is commonly used in the
study of dilute BEC.

It is found that SIA is nicely obeyed when the number of
bosons is less than 100. However, deviation occurs for larger
N . As the previous calculations in this direction considered
only few atoms, it is necessary to study the SIA for a large
number of atoms and using a realistic potential instead of
some model type of potentials. We also observe that the effect
of interatomic correlation gradually builds in with an increase
in na3

s . Hence, our present study makes a correlation between
the mean-field theory, which uses pure contact interaction,
and the many-body theory, which uses realistic two-body
interaction. We also apply our correlated basis function for
large scattering length near the Feshbach resonance. We
deliberately keep the number of atoms of the order of 104

such that the condensate becomes strongly interacting but
physically dilute and the application of a pair-correlated basis
function is ideal for such a situation. The many-body results
significantly differ from the mean-field results. Although the
additional correction in the MGP retrieves the failure of GP in
the intermediate scattering length, still this single correction is
not enough for stronger interactions. Our study shows that an
extra long-range shape-dependent correction term to the MGP
is indeed necessary for very strongly interacting condensates.

We also calculate the monopole excitation frequency at
large scattering length for finite N . Comparison with the
beyond mean-field approximation strongly exhibits the role of
the interatomic interaction. Finally, we observe the universal
behavior in the interaction energy when the scattering length
is quite large and comparable with trap size. Our many-body
method can be extended for a large particle number limit easily.
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As an extra advantage over the mean-field theory, our many-
body calculation keeps all possible two-body correlations and
considers both the beyond mean-field and finite-size effects.

Some related open questions are still there for future inter-
est. As for very large scattering length and in the large particle
number limit, the condensate becomes strongly correlated, and
beyond two-body collisions may play a significant role. It
indicates the importance of incorporating correlations beyond
two-body ones for dense condensates. Our present calculation
is limited to one side of the resonance, where as is large positive
and a strongly repulsive condensate is produced for any N .
However, on the other side of the resonance (where scattering
length is large negative), the condensate collapses for N larger
than a critical number. This will provide an interesting scenario
of the collapse-growth cycle of ultracold clouds.
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APPENDIX A: RELATION OF THE EFFECTIVE RANGE
TO SCATTERING LENGTH

In Fig. 8 we show as as a function of ln(rc) for the
experimental value of C6 = 6.489 75 × 10−11 o.u. As rc

decreases from a large value, as decreases monotonically until
it passes through an infinite discontinuity at a particular value
of rc when the potential just supports a two-body bound state
and η(rij ) has a node. As rc is further decreased, as decreases
from a large positive value and the pattern repeats. One extra
two-body bound state appears in each discontinuity. The hard
core in the van der Waals potential is a model for the strong
short-range repulsion. This will be valid when the average
interparticle separation (∼N−1/3 o.u.) is much larger than rc.
It is indeed true for N < 107.

In Ref. [34], Fu et al. proposed the energy dependence of
the scattering amplitude through an effective range expansion.
For a hard-sphere potential the effective range (re) and the
scattering length (as) maintains the relation re = 2

3as . Thus re

FIG. 8. Plot of scattering length (as) against ln(rc).

increases essentially linearly with the scattering length. This
does not match with the experimental condition where the
scattering length is tuned by tuning the atomic resonance.
The scattering length for a realistic van der Waals potential is
related to the effective range re by [35]

re

β6
=

(
2

3xe

)
1

(as/β6)2

{
1 +

[
1 − xe

(
as

β6

)]2
}

, (A1)

where β6 = (mC6/�
2)1/4 is the length scale of the van der

Waals interaction and xe is a constant. For such an attractive
long-range potential with a large as , the effective range almost
does not change with tuning the scattering length. Therefore,
with the van der Waals potential, a large positive scatter-
ing length can be achieved while maintaining the effective
range.

APPENDIX B: THE GP EQUATIONS

The mean-field time-independent GP equation for the
ground-state wave function of the condensate is given by

[
− �

2

2m
∇2 + 1

2
mω2

hor
2 + 4π�

2a′
s

m

∣∣φGP(�r)
∣∣2

]
φGP(�r)

= εGPφGP(�r), (B1)

where εGP is the orbital energy and φGP(�r) is the ground-state
orbital normalized to 1 and a′

s = (N − 1) as . The total energy
EGP is obtained from the energy functional [9]. Note that GP
energy depends on the product (N − 1) as rather than as and N

separately. The quantity (N − 1) in the nonlinear term instead
of N comes from the number conserving Schrödinger quantum
mechanics [36].

While the GP equation considers only the mean-field
interaction which comes from the nonlinear term in Eq. (B1),
the MGP equation contains beyond-mean-field quantum
correction. The correction to the mean-field equation was
included by Braaten and Nieto [13] which takes the effect
of quantum fluctuation into account. In the Thomas-Fermi
(TF) approximation the quantum correction adds an additional
local term in the mean-field effective potential in the GP
equation as

[
− �

2

2m
∇2 + 1

2
mω2

hor
2 + 4π�

2a′
s

m
|φMGP(�r)|2

×
(

1 + 32(a′
s)

3/2

3
√

π (N − 1)
|φMGP(�r)|

)]
φMGP(�r)

= εMGPφMGP(�r), (B2)

where the total energy EMGP can be obtained from the energy
functional. Note that the GP equation depends only on the total
interaction parameter (N − 1) as , whereas Eq. (B2) depends
separately on (N − 1) and as . Thus Eq. (B2) accounts for
two-body physics. Although the MGP equation includes some
effects due to correlations, it is still independent of the shape
of the interatomic potential.
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