
PHYSICAL REVIEW A 89, 023619 (2014)

Chiral ladders and the edges of quantum Hall insulators
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The realization and detection of topological phases with ultracold atomic gases is at the frontier of current
theoretical and experimental research. Here, we identify cold atoms in optical ladders subjected to synthetic
magnetic fields as readily realizable bridges between one-dimensional spin-orbit (time-reversal) topological
insulators and two-dimensional quantum Hall insulators. We reveal three instances of their promising potential:
(i) they realize spin-orbit coupling, with the left-right leg degree of freedom playing the role of an effective spin,
(ii) their energy bands and eigenstates exactly reproduce the topological chiral edge modes of two-dimensional
Chern insulators, and (iii) they can be tailored to realize a topological phase transition from a trivial to a topological
insulating phase. We propose realistic schemes to observe the chiral and topological properties of ladder systems
with current optical lattice-based experiments. Our findings open a door to the exploration of the physics of the
edges of quantum Hall insulators and to the realization of spin-orbit coupling and topological superfluid phases
with ultracold atomic gases.
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Introduction. Realizing topological matter in ultracold
atomic systems is an ongoing challenge, with promising
novel perspectives for the investigation of topology in many-
body quantum systems [1]. A current focus of attention is
the realization of topological insulating phases [2,3], which
exhibit remarkable transport properties: they are insulating
in the bulk, but have protected conducting states on their
edge or surface. In solid-state systems, topological insula-
tors have been realized both in quantum Hall devices [2],
where the presence of an external magnetic field leads to
quantization of the electronic conductivity, and in materials
with spin-orbit coupling [2,3], in which the combination
of spin-orbit interaction and time-reversal symmetry gives
rise to spin and momentum locking. For ultracold atomic
gases, the engineering of synthetic gauge potentials [4–6],
on the one hand, and of spin-orbit couplings [7,8], on
the other hand, opens important paths for the exploration
of topological phases in novel, unprecedentedly clean and
well-controlled environments [9]. By exploiting laser-induced
gauge potentials [10–12], large uniform magnetic fields could
be achieved in the near future in optical lattice-based exper-
iments [5], allowing one to explore the Hofstadter butterfly
model [13]. In this paradigmatic example of a quantum Hall
insulator, the interplay between the magnetic field and the
periodic potential leads to the formation of energy bands
characterized by nontrivial topological invariants, i.e., the
Chern numbers [14,15]. It is a challenge to develop schemes
to unambiguously characterize the topological character of
atomic topological insulating phases [16–22]. Especially
promising is the possibility of detecting the emergence of
edge modes with well-defined chirality [18,23–25] in which
current propagates at the boundaries of the system in a
topologically protected manner [26,27]. Additionally, using
suitably arranged lasers that couple different internal states,
spin-orbit coupling has been realized recently in bosonic [7]
and fermionic [8] atomic gases. The closely detuned laser
beams employed lead, however, to large photon scattering and
heating rates. It is a challenge to develop realistic schemes
for the realization of spin-orbit coupling that do not suffer

from this limitation. Particularly exciting is the possibility of
inducing p-wave pairing [3] in such spin-orbit coupled atomic
systems, paving the way towards the observation of Majorana
fermions with non-Abelian braiding statistics [28].

In this work, we identify cold atoms in optical ladders
subjected to magnetic fields as promising systems that simulta-
neously realize spin-orbit coupling, and reproduce the physics
of the chiral edges of the two-dimensional Hofstadter model.
Ladder systems have proven to be remarkably interesting toy
models, both in condensed matter [29–32] and high-energy
physics [33]. They are now readily realizable in optical lattice-
based experiments that combine effective magnetic fields with
superlattice structures [5]. Here, we propose realistic schemes
in which their chiral and topological properties could be
revealed. In the ladder, the left-right leg degree of freedom
plays the role of an effective spin, which couples to the
momentum of the particle through the magnetic field. This
effective spin-orbit interaction locks spin and momentum,
leading to Kramers degenerate pairs [34] of eigenstates with
well-defined chirality: atoms in the right leg move upwards,
whereas atoms in the left leg move downwards. Unveiling an
interesting holographic connection, we show that the energy
bands and eigenstates of the ladder system exactly reproduce
those characterizing the topological chiral edge modes of
the two-dimensional Hofstadter model. This correspondence,
which states that shrinking the two-dimensional butterfly
model into a strip of plaquettes leaves the physics at the
edges invariant, is a manifestation of the topological invariance
of the “parent” two-dimensional Chern insulator. Moreover,
as another instance of their promising potential, we show
that ladder systems can be tailored to realize a topological
one-dimensional phase transition from a trivial to a topological
insulating phase. When diagonal coupling is added to a square
geometry, the spin textures characterizing the bands acquire
a nonzero winding number. By tuning the ladder parameters,
the symmetry class of the topological insulating phase can be
changed from the BDI class, the one of polyacetylene, to the
chiral unitary (AIII) class [35]. Polyacetylene-like transitions
have been recently observed in a dimerized optical lattice [36].
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FIG. 1. (Color online) Ladders and the edges of the Hofstadter
model. (a) Schematic representation of the chiral edge modes of the
two-dimensional Hofstadter model. (b) When the system is reduced
to a ladder, the physics of the chiral edge modes remains invariant.
(c) Ladder tunneling couplings within the chosen gauge. The unit
magnetic cell is a single plaquette, and left and right tunneling
amplitudes are complex conjugate of each other.

They have also been predicted to occur in two-leg ladders
with unequal parity orbitals [37]. Two-leg ladders have been
recently predicted to hold bound states with fractional charge
and non-Abelian statistics [38].

The ladder. We consider a system of noninteracting
particles in a two-leg ladder geometry, subjected to a magnetic
flux φ per plaquette. This system has been studied in previous
work, where both the energy bands and eigenstates have been
analyzed [29,30]. Here, we describe the ladder system in terms
of an effective spin-orbit Hamiltonian, identifying experimen-
tal signatures of their topological and chiral properties in
optical lattice-based experiments. We choose a Landau gauge,
for which the Hamiltonian is translational invariant in the
leg direction and the magnetic cell corresponds to a single
plaquette [see Fig. 1(c)]:

H = −t
∑

�

(eiϕa
†
�+1a� + e−iϕb

†
�+1b�) − t ′

∑
�

a
†
�b� + H.c. (1)

Here, the operator a� (b�) annihilates a particle at site � in the
right (left) leg. The hopping amplitude between neighboring
sites in the right (left) leg is teiϕ (te−iϕ), with ϕ = φ/2, and t ′
is the tunneling amplitude between legs. Written in momentum
space, the Hamiltonian takes the form

H = −2t
∑

k

c†k H(k) ck, (2)

with c†k = [a†
k,b

†
k], a

†
k(b†k) = 1√

L

∑
�

eik�a
†
�(b†�), and k = 2π

L
n,

where n is an integer and L is the number of ladder rungs.
The Hamiltonian matrix is

H(k) = ε0(k)1 + ξσx + sin ϕ sin k σz, (3)

where ε0(k) = cos ϕ cos k, ξ = t ′/2t , and σx,σz are Pauli
matrices. The system can be thought of as an effective
system of spin- 1

2 particles, where the left-right leg degree
of freedom plays the role of an effective spin. The σz term
in the Hamiltonian is an effective spin-orbit coupling, which
results from the nonzero magnetic flux piercing the ladder.
This term leads to spin-momentum locking: spin-up (-down)
particles minimize their energy by having positive (negative)
momentum k. The σx term is an effective magnetic field in the
x direction, which results from tunneling between the ladder
legs.

The Hamiltonian is invariant under the operation
U

†
TH∗(−k)UT . Though the Hamiltonian is not real, complex

conjugation together with the unitary transformation UT = σx ,
which reverts the particle effective spin, leaves the Hamiltonian
invariant: σxH∗(−k)σx = H(k). Usually, for a Hamiltonian
describing particles with real spin, we say that it exhibits time-
reversal symmetry if it is invariant under complex conjugation
together with spin reversal. Here, it is the combination of
complex conjugation and effective spin reversal which leaves
the Hamiltonian invariant. Within a generalized definition in
which a Hamiltonian is time-reversal invariant if it is real
up to unitary transformation [40], the ladder Hamiltonian is
time-reversal invariant. We will adopt this definition here.

Two energy bands form [Fig. 2(a)], characterized by the
energies

E±(k) = −ε0(k) ±
√

ρ(k), (4)

where ρ(k) = ξ 2 + sin2 ϕ sin2 k. The corresponding eigen-
states are represented in the Bloch sphere by the vectors ±n̂k =
± (ξ,0, sin ϕ sin k) /

√
ρ(k). For the lowest band [see Figs. 2(b)

and 2(c)], eigenstates with positive (negative) momentum
have positive (negative) spin z component, 〈σz〉 = cos θk ,
signalizing spin current separation (Fig. 3). Time-reversal
invariance implies Kramers degeneracy for pairs of states n̂k

and n̂−k , which have opposite momentum and opposite 〈σz〉.
The two modes composing a Kramers pair are

cos
θk

2
a
†
k + sin

θk

2
b
†
k, sin

θk

2
a
†
−k + cos

θk

2
b
†
−k. (5)

For the ladder system, spin-momentum locking implies that, on
the average, particles in the right leg move upwards, whereas
particles in the left leg move downwards (Fig. 3), giving rise
to a net chiral current that flows in the direction given by
the magnetic flux. We characterize the chirality of the ladder
modes by the quantity

C = k(〈a†
kak〉 − 〈b†kbk〉) = k〈σz〉. (6)

Within the lowest (highest) energy band, eigenstates have
positive (negative) chirality. Within a band, the two states of a
Kramers pair have the same chirality.

The lowest energy band exhibits two energy minima [see
Fig. 2(a2)], characteristic of spin-orbit coupled systems, which
correspond to two opposite spin-momentum states. Though the
total physical current vanishes at these minima, the left and
right current components are finite and opposite in magnitude,
leading to a chiral current,

JC = Ja − Jb =
〈
σz

∂H
∂k

〉
, (7)

given by JC = cos2 θk

2 sin(k − ϕ) − sin2 θk

2 sin(k + ϕ). At a
critical value of the tunneling between legs, ξc = sin2 ϕ/ cos ϕ,
the two energy minima at ±kg are merged into one single
minimum at k = 0 [see Fig. 4(a)]:

sin kg = ± sin ϕ

√
1 − ξ 2/ξ 2

c . (8)

The bifurcation-merging point is signalized by a discontinuous
derivative of both the chirality C and the chiral current JC [see
Figs. 4(b) and 4(c)]. The change in behavior of the system
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FIG. 2. (Color online) Ladder energy bands and eigenstates. Energy bands for flux φ = 2π/3 and different values of the tunneling between
legs, (a1) ξ = 0, (a2) ξ = 0.5, and (a3) ξ = 1.5. The corresponding eigenstates for the lowest band are plotted as Bloch vectors n̂(k) in the
(b1)–(b3) first Brillouin zone and (c1)–(c3) Bloch sphere. As the interleg tunneling increases, the arch described by the Bloch vector decreases
and the two minima (a2) are merged into a single one at momentum zero (a3).

is a consequence of the competition between the effective
spin-orbit coupling and the effective magnetic field term in the
ladder system. For bosonic interacting particles, we expect a
quantum phase transition to occur at the bifurcation point.

Diagonal coupling and topological phase transition. In the
presence of diagonal tunneling, td , the ladder Hamiltonian
takes the form

Hd (k) = H(k) + ξd cos k σx, (9)

where ξd = td/t andH(k) is the matrix Hamiltonian in Eq. (3).
For ξd/ξ > 1, the spin texture characterizing the bands depicts
a closed loop in the x-z plane of the Bloch sphere, and the
system enters into a topological insulating phase (see Fig. 5).
At φ = π/2, the ladder model in Eq. (9) is equivalent to the Su-
Schrieffer-Heeger (SSH) model [39] describing polyacetylene,

under the unitary transformation UC = (σz + σy)/
√

2. The
system is, in this case, invariant under the charge conjugation
operation U

†
CH∗(−k)UC = −H(k) [40]. By tuning the ladder

parameters (for instance, by inducing a complex phase to the
diagonal tunneling), the symmetry class of the topological
phase can be changed, achieving the chiral unitary (AIII)
class [35].

Ladder modes and chiral edge states of the Hofstadter
model. We establish an exact correspondence between the
chiral edge states of the Hofstadter model with flux φ =
2πm/n per plaquette and the eigenstates of a (n − 1)-leg
ladder with the same flux and tunneling couplings. The
eigenenergies are identical. The edge states are found to be
repetitions of ladder eigenstates, with an exponential decay.
Let us consider the Hofstadter model in a cylindrical geometry

FIG. 3. (Color online) Spin and momentum locking. Average momentum density na(k) = 〈a†
kak〉 and nb(k) = 〈b†

kbk〉 of (a) left and
(b) right components of Kramers pairs within the lowest band. On the average, right (left) particles have positive (negative) momentum
and move upwards (downwards). (c) Chirality of states within the lowest band (brown, dark gray) and highest band (orange, light gray) for
different values of the interleg tunneling ranging from ξ = 0 to ξ = 0.5.
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FIG. 4. (Color online) Time-of-flight observation of chirality and quantum phase transition. (a) Ground-state momentum density in the
experimental gauge for increasing tunneling between legs, ξ , at flux φ = 2π/3. Below the transition point, ξ < ξc [(i),(ii)] four-momentum
peaks appear. They correspond to splitting of the two opposite momenta ±kg of the two degenerate ground states in the theoretical gauge:
kg ± ϕ, and −kg ± ϕ (see text). For ξ > ξc, the two opposite momenta are merged into a single momentum component at k = 0, which results
in two peaks at ±ϕ for the experimental gauge. (b) Chirality and (c) chiral current of the ground state as a function of ξ for different values of
the flux φ. At the critical point ξc, both magnitudes exhibit a discontinuous derivative.

FIG. 5. (Color online) Topological phase transition with diagonal tunneling. Ladder energy bands and lowest band eigenstates for flux
φ = π/2 and ξ = 0.5, for different values of the diagonal tunneling (a1) ξd = 0, (a2) ξd = 0.5, and (a3) ξd = 1. Energies are given in units of
2t . At the critical point (a2)–(c2), the energy gap closes and a phase transition occurs from a trivial insulating phase (a1)–(c1) to a topological
phase (a3)–(c3), where the spin texture characterizing the band winds once around the origin. The insets in (c1)–(c3) show the ellipse described
by the tip of the vector ρ(k)n̂k , which encloses the origin above the transition point.
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with rational flux φ = 2πn/m per plaquette and tunneling
couplings t ′, t along the x and y direction, respectively.
Choosing a gauge that preserves translational invariance in
the y direction, the eigenstates have well-defined momentum
k in the y direction and well-defined magnetic momentum q in
the x direction. They are represented by n-component vectors
�k,q , which satisfy the set of Harper equations:

ε(k,q)�(α)
k,q = ξe−iqδα,n�

(α−1)
k,q + ξeiqδα,n�

(α+1)
k,q

+ cos(k + αφ)�(α)
k,q . (10)

Here, �
(α)
k,q denotes the αth eigenstate component, with α =

1, . . . ,n, and δ is the Kronecker delta. The eigenstates form
n bands [see Fig. 6(a)] characterized by nontrivial Chern
numbers.

For a strip geometry, the Hofstadter model exhibits chiral
edge modes which are localized at the boundaries of the
cylinder [Fig. 6(b)]. These modes can be obtained from the
equations above by substituting the magnetic momentum q

by iλ, where λ is the localization length of the corresponding
edge mode. The observation that we make in this work is that
these edge modes, which we denote by ψk , correspond to the
eigenmodes uk of an (n − 1)-leg cut of the two-dimensional
Hofstadter model. Direct substitution q → iλ in Eq. (10)
shows that they satisfy

ψ
(α)
k =

⎧⎨
⎩

u
(α)
k with Hn−1(k)uk = En−1uk

if α = 1, . . . ,n − 1
0 if α = n,

(11)

where Hn−1(k) is the Hamiltonian of the (n − 1)-leg ladder in
momentum space. These edge states are therefore repetitions
of decoupled ladder modes in the form e

†
k ∝ ∑

j λjd
†
k,j , where

d
†
k,j = ∑

α u
(α)
k a

†
k,nj+α is an eigenmode of the j th ladder.

The localization length is given by λ(k) = −u
(n−1)
k /u

(1)
k ,

guaranteeing that the amplitudes at the end and the beginning
of neighboring ladders are opposite, so that tunneling to sites
between ladders vanishes [see Fig. 6(b)]. For φ = 2π/3, the
chiral edge modes correspond to the chiral modes of the
two-leg ladder we analyzed above [see Figs. 6(c) and 6(d)].
The localization length is given by tanh λ(k) = 〈σz〉. It is
interesting to see how the chirality of the ladder modes is
directly connected to the chiral and localized character of the
modes of the two-dimensional system.

Experimental observation. The ladder properties we de-
scribe above can be readily observed in an actual experiment
by combining different techniques available in current optical
lattice-based experiments. An array of decoupled ladders
with magnetic flux can be realized by using a superlattice
structure together with the recently created staggered flux
patterns in a two-dimensional optical lattice [5]. Utilizing
the same laser configuration as for such a staggered flux
pattern, the long lattice depth is increased to realize an array of
decoupled ladders with flux pointing in the same direction [41].
The experimental ladder systems have finite size. Finite-size
ladders exhibit the same characteristic features as the one
analyzed above for periodic boundary conditions. In the same
way as discussed above, they exhibit chiral edge currents,
where the left and right legs are now connected through
the horizontal bonds at the ladder edges. We propose the
following schemes to observe spin-momentum locking and the
corresponding chirality of ladder modes. (i) State preparation.
By inducing Bloch oscillations in the lowest band, particles
can be prepared in any desired momentum eigenstate [36].
(ii) Momentum peaks and chirality. If particles are released
from the optical lattice, the momentum components of the
corresponding momentum eigenstate can be revealed in a

FIG. 6. (Color online) Chiral edges and ladder modes correspondence. (a) Energy bands for the Hofstadter model at φ = 2π/3 in a
cylindrical geometry. Energy is given in units of 2t . The conducting chiral edge modes correspond to energies lying inside the gaps. They have
the same energies as the modes of a two-leg ladder shown in (c). Their spatial structure (b) is made up of decoupled ladder modes (d).
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DARIO HÜGEL AND BELÉN PAREDES PHYSICAL REVIEW A 89, 023619 (2014)

time-of-flight measurement. For the gauge in which experi-
ments are typically performed [5], eigenstates are obtained
from the ones discussed above by the following gauge
transformation:

a
†
k → a

†
k−ϕ, b

†
k → b

†
k+ϕ. (12)

This implies that the two degenerate states within a Kramer
pair [Eq. (5)] are transformed into

cos
θk

2
a
†
k−ϕ + sin

θk

2
b
†
k+ϕ, sin

θk

2
a
†
−k−ϕ + cos

θk

2
b
†
−k+ϕ.

Thus, four-momentum components at kg ± ϕ and −kg ± ϕ

should be observed [see Fig. 4(a)]. Independent detection
of even and odd legs would reveal the different heigths
and positions of left and right momentum components,
directly reflecting spin-momentum separation. Combining the
information about momenta position and height, the chirality
of the mode can be obtained. (iii) Phase transition for bosonic
particles. By modifying the superlattice potential, tunneling
between ladder legs can be tuned, driving a quantum phase
transition. A time-of-flight experiment will show merging of
the four-momentum peaks into two peaks at the transition point
[see Fig. 4(a)]. The transition also becomes manifest in the
behavior of the chiral current of the ground state, which could
be directly measured by suddenly splitting the system into
decoupled vertical bonds. Within each double well, the system
will then perform density oscillations with an amplitude equal
to the initial current along the bond. Bonds in even arrays
should be anticorrelated with those in odd arrays, reflecting
the nonvanishing chirality of the ground state. At the critical
point ξ = ξc, the oscillation amplitude should show a kink [see
Fig. 4(c)], indicating the transition.

The correspondence between ladder modes and the chiral
edges of the Hofstadter model opens up a possibility for
the detection of the latter. A cylindrical geometry could be

achieved by connecting the two edges along one direction of
a two-dimensional lattice. Topological edge states could then
be probed by converting the system into an array of decoupled
two-leg ladders using a superlattice structure. As a direct
manifestation of the key features characterizing the chiral
edges modes of the quantum Hall insulator, we should observe
that (i) time-of-flight imaging remains invariant before and
after decoupling into ladders, and (ii) independent detection
of left and right ladder legs show spin-momentum locking,
exactly as for the ladder discussed above.

Conclusion and outlook. We have shown chiral ladders
to be promising link systems between one-dimensional spin-
orbit (time-reversal) insulators and two-dimensional quantum
Hall insulators. On the one hand, they provide us with a
realization of spin-orbit interaction in atomic systems which
is not hindered by undesired light-scattering processes. On
the other hand, they are quantum simulators of the physics
at the chiral edges of quantum Hall insulators, exactly
reproducing their chiral, localized, and robust character. We
have developed realistic schemes in which the topological
and chiral properties of the ladder system could be readily
probed in optical lattice-based experiments. Furthermore,
we expect a rich interplay between particle interactions
in the ladder and the topological and chiral features we
describe in this work, possibly giving rise to interesting
topological phases, such as fractional topological insulators
and topological superfluids. In this direction, the ladder-built
realization of spin-orbit coupling opens an interesting path
towards the exploration of a topological atomic superfluid. By
inducing s-wave pairing in the left-right leg degree of freedom,
a p-wave superfluid state could be achieved via bringing
the s-wave superfluid into contact with the spin-orbit insulator.
It is a challenge to develop schemes to realize such a p-wave
superfluid and to probe and manipulate the emerging Majorana
fermions.
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