
PHYSICAL REVIEW A 89, 023618 (2014)

Phases and collective modes of Rydberg atoms in an optical lattice
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We chart out the possible phases of laser-driven Rydberg atoms in the presence of a hypercubic optical lattice.
We define a pseudospin degree of freedom whose up (down) components correspond to the excited (ground)
states of the Rydberg atoms and use them to demonstrate the realization of a canted Ising antiferromagnetic
(CIAF) Mott phase of the atoms in these systems. We also show that, on lowering the lattice depth, the quantum
melting of the CIAF and density-wave Mott states (which are also realized in these systems) leads to supersolid
phases of the atoms. We provide analytical expressions for the phase boundaries and collective excitations of
these phases in the hard-core limit within mean-field theory and discuss possible experiments to test our theory.
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I. INTRODUCTION

The study of ultracold atoms which can be excited to
Rydberg states by suitable laser driving has generated both ex-
perimental and theoretical interest in recent years [1–12]. Such
excited states are known to have large polarizability, which
leads to strong van der Waals force between them. This leads
to suppression of additional Rydberg excitations within a fixed
radius of an already excited atom; such a phenomenon, known
as a dipole blockade, has been theoretically proposed [1] and
experimentally verified [2]. Furthermore, such systems have
also been widely studied due to their potential for generating
exotic many-body ground states. The presence of van der
Waals interaction between the excited atoms in these systems
has been recognized as an additional source of long-range
interaction (∼1/r6) between the excited atoms. It was shown
that such an interaction may lead to supersolid (SS) droplets
within a superfluid (SF) phase of these atoms [3] and may drive
a second-order phase transition between their uniform SF and
crystalline SS phases [4]. The coherent collective excitation
of a SF phase in the presence of such Rydberg excitations has
also been studied [5]. Furthermore, it has been theoretically
conjectured that such systems may act as quantum simulators
and can thus be used to realize qubits [6]. More recently, the
physics of these atoms in low-dimensional optical lattices was
studied; it was shown that the presence of such a lattice leads
to several interesting effects such as a staircase structure in the
number of excited atoms [7], one-dimensional (1D) ground
states which host non-Abelian excitations such as Fibonacci
anyons [8], the realization of exotic spin models with collective
fermionic excitations [9], the dynamic creation of molecular
states of such atoms [10], and the realization of the hard-square
model in the Mott-insulating (MI) state of two-dimensional
lattices [11]. The superfluidity of Rydberg atoms in a 1D
optical lattice was also experimentally studied [12]; it was
shown that a SF phase of such a system in the presence of
a lattice can exist in spite of the presence of the van der
Waals interaction. However, a system of such Rydberg atoms
in higher-dimensional optical lattices has not been studied
theoretically so far.

In this work, we study a system of such Rydberg atoms char-
acterized by a laser drive frequency �, a detuning parameter
�, and a van der Waals interaction strength Vdi in the presence

of a hypercubic optical lattice. We present a phase diagram of
such a system and demonstrate the presence of a translational-
symmetry broken density wave (DW) and a canted Ising
antiferromagnetic (CIAF) [where the pseudospin up (down)
states correspond to the excited (ground) states of the Rydberg
atoms] Mott phases. We note that such a CIAF phase amounts
to realization of a higher-dimensional translational-symmetry
broken spin-ordered ground state using ultracold atoms [13].
On lowering the lattice depth starting from these DW or
CIAF Mott phases, the atoms undergo successive quantum
phase transitions to SS and SF phases. We provide analytic
expressions for the above-mentioned phase boundaries in
the hard-core limit within a mean-field theory and compute
their collective excitations. We point out that these collective
excitations in the SS phase, reached by increasing hopping
strength of the atoms from the CIAF, constitute a mixing of
the holelike excitations with the pseudospin collective modes.
This is in contrast to the SS phase obtained analogously
from the DW Mott state, where these modes do not hybridize
and thus these excitations provide a way to distinguish between
these two SS phases. We discuss possible experiments to test
our theory. We note that the properties of ultracold atoms with
Rydberg excitations in a higher-dimensional optical lattice has
not been studied so far; our results, particularly the existence
of DW, CIAF, and SS phases, are therefore expected to be of
interest to both experimentalists and theorists working in these
fields.

The paper is organized as follows. In Sec. II, we study the
model Hamiltonian describing the system of Rydberg atoms
and present a phase diagram of such a system. This is followed
by a detailed study of various phases and collective excitations
of Rydberg atoms in the hard-core limit presented in Sec. III.
Finally, we discuss experiments which can test our theory and
conclude in Sec. IV and present details of our calculation in
the Appendix.

II. THE MODEL AND PHASE DIAGRAM

We begin with an effective Hamiltonian of the sys-
tem of ultracold bosonic atoms in an optical lat-
tice, coupled to a highly excited Rydberg state, given
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by H = H0 + H1 + H2 [7], where

H0 = �
∑

i

(a†
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+U
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(
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H2 = Vdi/2
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(
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)/|i − j |6. (1)

Here ai (bi) denotes creation operators for the bosons in
the ground (excited) state at the lattice site i, n̂

a(b)
i = a

†
i ai

(b†i bi) are the corresponding number operators, and μ is the
chemical potential. The on-site part of the Hamiltonian is
described by H0, where U (λU ) is the on-site interaction
strength between two bosons in ground (different) states. In
a typical experiment the atoms are excited to Rydberg states
of very large quantum numbers by two photon excitations.
The first part of H0 describes the coupling between the
ground and Rydberg excited states with an effective Rabi
frequency � [14]. The center-of-mass motion of the atoms
is described by H1, where 〈ij 〉 indicates that j is one of the
nearest-neighbor sites of i, J (ηJ ) is the nearest-neighbor
hopping amplitude of the bosons in the ground (excited)
states which can be tuned by tuning the optical lattice depth,
and we have set the lattice spacing to unity. The last part
of the Hamiltonian H3 describes van der Waals repulsion
between the Rydberg excited states. We assume that the van
der Waals interaction between the Rydberg atoms is strong
enough to allow nb

i � 1 at each site, but it can be neglected for
|i − j | � 2: z(z − 1)Vdi/32 � �,�,U , where z = 2d denotes
the coordination number of the lattice. In this regime, it is
possible to approximate the long-range interaction term by
H2 � Vdi/2

∑
〈ij〉 n̂

b
i n̂

b
j [15].

We begin our analysis within a mean-field (MF) analysis of
the Hamiltonian [Eq. (1)], which turns out to be a reasonable
method to describe the MI-SF transition for ultracold bosons.
The prediction of the mean-field theory is well known to
qualitatively agree with both experimental results and quantum
Monte Carlo data for d � 2. However, MF approximation
breaks down for d < 2 due to strong quantum fluctuations and
we do not expect our analysis to hold for d = 1. The simplest
variational Gutzwiller wave function which can describe the
phases of such a system is given by |ψ〉 = ∏

i |ψ〉i , where

|ψ〉i =
∑
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i ,n
b
i
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na
i ,n

b
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〉
i
, (2)

and f i
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i

are the Gutzwiller coefficients on site i. The

variational energy of the system in terms of f i
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A numerical minimization E provides the mean-field ground
states. We note that for finite �, H conserves ni = na

i + nb
i ;

however, na
i and nb

i are not conserved. It is evident from Eq. (1)
that ni in the ground state is determined by μ; in contrast, nb

i for
a fixed μ is determined by a competition between � < 0 and
Vdi which are optimized by nb

i = 1 on every site and nb
i = 0

on every alternate site, respectively. This competition provides
a possibility of translational-symmetry-broken ground states
with two-sublattice structure (denoted subsequently as A and
B). These expectations are corroborated in the phase diagrams
shown in Figs. 1 and 2 for representative values of the
parameter for ni � 2 at each site. We find from Fig. 1 that for
ni � 1, the Mott phases constitute “uniform Mott-insulating”
(UMI) phases with ni = 0 and 1 at each lattice site, and
two-sublattice symmetry-broken DW and CIAF phases. For
the DW phase, the A sublattice has a linear combination
of |1,0〉 and |0,1〉 states where the B sublattice has ni = 0,
leading to nA − nB = 1 and n̄ = (nA + nB)/2 = 1/2. The
CIAF phase, in contrast, has nA = nB = 1; in this phase the
Gutzwiller wave function takes the form

|ψA(B)〉 = cos(θA(B))|1,0〉 − sin(θA(B))|0,1〉, (4)

on A (B) sublattice with the canting angle φ = θA − θB . A
schematic representation of these two phases is shown in
Fig. 3. We note here that a Mott phase with general filling
n0, which is commonly known as “frozen Rydberg atoms,”

-1 -0.5 00

0.2

0.4

-1 -0.5 00

0.2

0.4

0.6

-1 -0.5 00

0.2

0.4

0.6

-1 -0.5 0
0

0.2

0.4

DW

DW DW

DW

SSSS

SSSS SF
SF

SF SF

UMI

UMI

CIAF

CIAF

μ/Ωμ/Ω

n=1/2

(z
 J

)/Ω
(z

 J
)/Ω

n=1/2

n=1

n=1 n=1

n=1n=1/2

n=1/2

n=0

n=0 n=0

n=0

(z
 J

)/Ω
(z

 J
)/Ω

μ/Ω μ/Ω

SF

SF SF

SF

FIG. 1. (Color online) Top left (right): μ vs J phase diagram for
μ < 0, η = 1, � = 0, U/� = 1, λ = 3, and zVdi/� = 4 (9) showing
DW, SF, UMI, SS, and CIAF phases. Bottom: Same as the top panels
but with η = 0.
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FIG. 2. (Color online) Top left: Phase diagram as a function of Vd

and J for μ/� = 0.2 showing a multicritical point for ZVd/� � 8
and ZJ/� � 0.26. Top right: Plot of the DW (black circle) and SS
(red triangle) order parameter and cant angle φ (green square) as
a function of J for zVd/� = 10 and μ/� = 0.2 across the CIAF-
SS-SF transition. Bottom: μ vs J phase diagrams for zVd/� = 4
showing the DW with 〈n〉 = 3/2, uniform MI, SS, and SF phases.
For all plots, η = 1, λ = 3, and U/� = 1.

can be described by an effective spin Hamiltonian [5],

Hspin = �
∑

i

[|↑〉〈↓|i + |↓〉〈↑|i]

+
∑
〈ij〉

PiVijPj + �
∑

i

|↑〉〈↑|i , (5)

where the ground (excited) state is denoted by pseudospin
down (up) states |↓〉 = |n0,0〉, |↑〉 = |n0 − 1,1〉, and P =
|↑〉〈↑| is the projector for the excited state. The above model
belongs to the antiferromagnetic Ising class and captures the
transition from the uniform MI phase to the CIAF phase, which
is a continuous transition. For van der Waals interactions Vij

falls off faster than 1/|i − j |2; hence, the interaction can be
considered “short ranged” and the nearest-neighbor Ising spin
interaction plays the crucial role. The CIAF phase is favored
over the uniform MI phase for zVdi � zV c

di/� � 8 as can be
seen from the top left panel of Fig. 2.

From Fig. 1, we also find that, upon increasing J , one
encounters two second-order transitions; the first occurs from
the DW or CIAF phases to a SS phase with nA 	= nB and
〈ba〉,〈bb〉 	= 0 and the second from the SS phase to a uniform
SF phase. The DW and the SF order parameters and the CIAF
canting angle across the CIAF-SS-SF transition are shown in
right-hand panel of Fig. 2 for zVdi/� = 10 and μ/� = 0.2.
We also find the existence of several multicritical points in
the phase diagram where SS, SF, and DW (Fig. 1, left) and
CIAF, SS, DW, and SF phases (Fig. 1, top right, and Fig. 2,
top left) meet. The inclusion of fluctuation may lead to phase
separation near such multicritical points; an analysis of this
effect is beyond the scope of the present mean-field theory. A
similar phase diagram for μ > 0, shown in the bottom panel of
Fig. 2, reveals the existence of an 〈n〉 = 3/2 DW phase which

FIG. 3. (Color online) Schematic representation of the (top) DW
and the (bottom) CIAF phases. The symbol |↑〉 represents the state
|n0 − 1,1〉 in the MI phase with n0 bosons on a given lattice site
while |↓〉 represents |n0,0〉. The empty site indicates an absence of
any boson on those sites.

has a linear combination of |1,0〉 and |0,1〉 (|1,1〉 and |2,0〉)
states on the A (B) sublattice. We note from the bottom panels
of Fig. 2 that the SS phase atop the 〈n〉 = 3/2 DW phase is
favored by large negative �.

III. PHASES AND EXCITATION SPECTRUM OF
HARD-CORE RYDBERG ATOMS

In this section, we consider hard-core bosons (U 

�,Vdi,�) with filling ni � 1. In this regime, the single-site
wave function can be written as

|ψ〉i = f i
00|0,0〉 + f i

10|1,0〉 + f i
01|0,1〉. (6)

The simplicity of the single-site wave functions allows for
analytical calculation of the phase diagram and excitation
spectrum of the bosons, which is the main focus of the rest of
the paper.

The ground-state phases can be obtained by minimizing
the energy with respect to the variational parameters f i , as
described in the previous section. To study the dynamics
and collective excitations of the bosons analytically, we
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generalize Eq. (2) with time-dependent f i
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(t). The resulting

Schrödinger equations for f i
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(t) can be obtained by mini-

mizing the action
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dt〈ψ |i∂t − H |ψ〉 (7)
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dynamical equations of the variational parameters are given
by
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00 f δ

01, (8)

where δ is the nearest-neighbor site index of the ith site and
λi are the Lagrange multipliers corresponding to the wave-
function normalization at each site. The ground-state phases
of the system can also be obtained as the steady-state
solutions f̄ i

na
i ,n

b
i

of the Schrödinger equation. Within the linear

response regime the variational parameters at each site can
be decomposed as f i

na
i ,n

b
i

(t) = f̄ i

na
i ,n

b
i

+ δf i

na
i ,n

b
i

, where f̄ i

na
i ,n

b
i

represents the steady-state solution of the dynamical equations
corresponding to the ground state (mean-field solutions) and
δf i

na
i ,n

b
i

are the time-dependent small amplitude fluctuations

of the ground state. The eigenfrequencies ω of the small
fluctuations δf̄ ieiωt describe the collective excitations of the
quantum phases and determine their stability [16].

Using this time-dependent variational technique, we ob-
tained correlated phases of Rydberg excited atoms and their
collective excitations in the hard-core limit. The detailed
discussion on various phases and analytical results is pre-
sented separately in following sections. The details of these
calculations can be found in the Appendix; here we present the
key results regarding the different phases and their collective
modes.

A. Uniform MI and SF phases

The uniform MI phase with 〈n〉 = 0 is described by the
wave function

|MI,n = 0〉 =
∏

i

f i
00|0,0〉i , (9)

with f i
00 = 1. For J = 0, this MI phase appears for μ <

−
√

�2 + �2/4 + �/2; with increasing J one finds a contin-
uous transition to a uniform SF phase. The particle excitations
are described by the fluctuations δf i

10 and δf i
01 with energy

ω�k = ±
√

1

4
{� + (1 − η)ε�k}2 + �2 + �

2
− μ − (1 + η)ε�k,

where ε�k = 2J
∑d

i=1 cos(ki). The phase boundary between the
MI and the SF phases which can be obtained from the condition
ω�k=0 = 0 is shown in the top left of Fig. 4.
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FIG. 4. (Color online) Top left: Analytical phase diagram for
μ < 0 in the hard-core limit. All parameters except U and λ are
the same as the top left of Fig. 1. Top right: Excitation spectra of
the uniform MI V/� = 1, J/� = �/� = 0.1, μ/� = 0.2, z = 6,
and η = 1. Bottom: Excitation spectra of the SF phase over the
SS phase (left) and uniform MI phase (right). All parameters are
the same as those in the top right except J/� = 0.1 (0.2) and
μ/� = −0.75 (0.2) for the bottom left (right) panels. Here k = |�k|
along kx = ky = kz.

For larger values of μ, a uniform MI phase with ni = 1
occurs for Vdi < V c

di. In this phase the wave function at each
site is given by

|MI,n = 1〉 =
∏

i

(
f i

10|1,0〉i + f i
01|0,1〉i

)
(10)

with f i
10 = cos θ and f i

01 = − sin θ . The collective excitations
of this MI phase are shown in the top right of Fig. 4. For
J > Jc, the MI phase becomes unstable by the creation of
holes with excitation energy,

ωh
�k = −�f01/f10 + μ − J (|f10|2 + η|f01|2)ε�k, (11)

and enters into a homogeneous SF phase via a second-order
phase transition occurring at ωh

�k=0
= 0 [17]. The collective

modes of the SF phase are shown in the bottom right of Fig. 4
which displays the well-known massless phase and massive
amplitude modes. Apart from the hole excitation, fluctuations
in coherent superposition of ground and Rydberg excited states
gives rise to pseudospin excitation mode. The pseudospin
excitation energy of this phase is given by (see Appendix for
details)

ω2 = �2
[
f 2

01

/
f 2

10 + f 2
10

/
f 2

01 − 2Vdif10f01ε�k/(�J ) + 2
]
.

(12)

An instability occurs at a critical strength of van der Waals
interaction Vdi for which ω = 0 at �k = π . This indicates
broken translational symmetry in the uniform phase and
appearance of antiferromagnetic ordering. The phase diagram
so obtained agrees well with the numerical result for the
MI-CIAF transition presented earlier.
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FIG. 5. (Color online) Top: Excitation spectra of the DW phase
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modes. All parameters are same as those in the bottom left of Fig. 4
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of the CIAF phase (left) and that of its adjacent SS phase (right). All
parameters are same as those in the top right of Fig. 4 except V/� = 2
and J/� = 0.03 (left) and 0.15 (right).

B. Density wave with half filling

The DW state with 〈n〉 = 1/2 has only one boson per site
on sublattices A whose wave function is given by

|ψA〉 = cos θ |1,0〉 − sin θ |0,1〉, (13)

with tan 2θ = 2�/� and an empty sublattice B (with
f00 = 1). In the hard-core limit, the particles in sublattice A

have an excited state sin θ |1,0〉 + cos θ |0,1〉 with excitation
energy 2

√
�2 + �2/4. These can be thought of pseudospin flip

excitation. For J = 0, another possible excitation is creation
of a hole in sublattice A which costs an energy

Eh = μ +
√

�2 + �2/4 − �/2. (14)

Similarly at sublattice B particle excitation in two internal
states (corresponding to pseudospin ±) has energy

Ep± = −μ + x/2 ±
√

x2/4 + �2 (15)

with x = Vdiz sin2 θ + �. For finite J , the particle and hole
excitations gain dispersions as shown in the top left of Fig. 5;
however, the pseudospin modes remain dispersionless and well
separated from the particle and hole modes. By increasing
J , the DW state enters into a SS phase at J = Jc via a
continuous transition. The phase boundary between the DW
and the SS phases can be obtained analytically by demanding
the condition of one gapless excitation [17] and is given by

EhEp+Ep−

= (zJ )2[η� sin 2θ + (x − μ) cos2 θ − μ(η sin θ )2]. (16)

For larger μ, the DW phase undergoes first-order transitions to
SF (J > Jc) or MI (J < Jc) provided Vdi < V c

di. The collective
modes of the SF phase are shown in the bottom left of Fig. 4
which displays the well-known gapless Goldstone mode. For
Vdi > V c

di and J < Jc, there is a continuous transition between
the DW and the CIAF phases. The phase diagrams obtained
from this analysis are shown in the top left of Fig. 4.

C. Canted Ising antiferromagnetic phase

In this phase each site has 〈n〉 = 1 but with different linear
combinations of the pseudospin up and down states in the
two sublattices leading to a canting angle φ as explained
earlier. Due to the two-sublattice structure, the hole excitation
energies over this ground state are given by (see Appendix for
a derivation)

ωh
± = −y+/2 + μ ± [(

f A
10f

B
10 + ηf A

01f
B
01

)2
ε2

�k + y2
−/4

]1/2
,

where y± = �[f A
01/f

A
10 ± f B

01/f
B
10]. The CIAF phase melts

when ωh
−(k = 0) = 0, and a SS phase is formed; the corre-

sponding phase diagram agrees well with the numerical result
plotted in top left of Fig. 2. The CIAF phase also has two
gapped pseudospin excitations (bottom left of Fig. 5); their
analytical expression for general filling n0 per site is given in
the Appendix and reads

ω2 = β1 ±
√

β2
2 + (γ 2+ − γ 2−)ε2

�k , (17)

where the parameters can be expressed in terms of the
variational parameters of the wave functions in two sublattices,

β1 = 2�2n0[2 + cot2 2θA + cot2 2θB],

β2 = 2�2n0[cot2 2θA − cot2 2θB], (18)

γ± = −�
√

n0Vdi(sin 2θA ± sin 2θB)/(2J ).

In contrast to the DW phase, the CIAF pseudospin modes have
finite dispersion and the lower pseudospin mode is close to
the higher hole excitation branch. Consequently, the SS phase
above CIAF shows a “roton”-like structure resulting from the
hybridization of these modes.

D. Supersolid phase

One of the most interesting states of matter is the “su-
persolid phase,” which is yet to be observed in experiments.
Ultracold Rydberg atoms with long-range interaction are a
possible candidate for supersolidity. In the DW and CIAF
phases the lattice translational symmetry is broken due to the
van der Waals interaction. These insulating phases form the
backbone structure of supersolid phases. The DW melts due
to the particle-hole excitations and undergoes a second-order
transition to the SS phase. In this SS phase, the holelike
excitations are well separated in energy from the pseudospin
flip excitations; their dispersion is shown in the top right of
Fig. 5. Due to the hole excitations the CIAF phase melts and
a SS phase is formed through a continuous transition. Since
the CIAF phase has uniform density, the SS phase above it
has a relatively small density oscillation compared to that
above the DW phase. The SS phase above the CIAF phase,
in contrast to its counterpart obtained from the DW phase,
displays a preformed rotonlike structure resulting from the
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hybridization of these hole and pseudospin excitation branches
as depicted in bottom right of Fig. 5. Thus these SS phases can
be distinguished by their collective mode structure.

IV. CONCLUSION

The experimental verification of the collective modes and
the phase diagram predicted in this work would involve
standard experiments carried out on ultracold-atom sys-
tems [13,18,19]. Usual momentum distribution measurements
would differentiate between the predicted MI and the SS
or SF phases. The DW phase can be distinguished from
the CIAF and the uniform MI phases by the presence of a
checkerboard pattern showing odd and even occupation in
alternate sites belonging to different sublattices; such a pattern
can be easily measured in parity of occupation measurement
of individual sites [13]. The distinction between the SS
phases obtained by increasing J starting from CIAF and
DW phases would requires measurement of the dispersion
of the collective modes via lattice modulation or Bragg
spectroscopy experiments [19,20]. The SS phases would
display both a checkerboard pattern for occupation numbers
and a momentum distribution peak at k = 0 which would
distinguish it from other phases.

The details of the experimental parameters typically used
for experiments with Rydberg atoms in a lattice are as follows.
For a 1D lattice of such atoms with 100 sites, it has been
possible to excite 50 atoms in the Rydberg states, which leads
to a blockade radius of one or two lattice spacings with typical
lattice spacing of 0.4 μm [12]. We envisage a similar blockade
radius for the higher-dimensional lattices. The typical Rabi
frequency used is ∼200–500 kHz and the detuning � can
be varied to be small or large with respect to �. The dipole
interaction can be tuned between 0.5 and 10 MHz or higher,
leading to a ratio of Vdi/� ∼ 1–50. The hopping parameter
J can be easily varied between 1 and 100 kHz by varying
the lattice depth. We note that these parameters indicate that
the DW, CIAF, and SS phases can be easily obtained in
experiments. In this context, we would like to note that the
typical hopping time for the atoms (∼�/J ) is much larger than
the lifetime of the Rydberg atoms; thus the experiments are
typically carried out in the regime where the excited atoms are
frozen. This corresponds to the η = 0 limit of our analysis.

We note that this work presents a preliminary study of
the possible phases and collective excitations of correlated
Rydberg atoms in an optical lattice, based on a simplified
model. Due to the true long-range nature of van der Waals
interactions, various density-wave phases can form in between
the n = 0 MI phase and the DW phase with n = 1/2. These
insulating phases have a filling factor 1/n (where n is an
integer) and form a “devil’s staircase”-like structure [21].
Apart from the checkerboard pattern, a “stripe supersolid” may
form for next-nearest-neighbor interactions. Also the “roton”
minimum may shift to smaller momentum (instead of ±π )
due to true long-range interaction. In the real experimental
setup the lifetime and stability of these equilibrium phases are
very much dependent on the decay rate of the highly excited
Rydberg atoms. Such decay times increase with the principal
quantum number n′ of the atoms in the lattice and can thus be
made large. A typical experimental estimate of such a lifetime

can be as large as 50 μs for Rb atoms. A more accurate analysis
requires a time-dependent calculation including the decay time
of the Rydberg atoms which we do not attempt here.

To conclude, we have charted out the mean-field phase
diagram and computed the collective modes of laser-driven
Rydberg atoms. Our work, which is expected to be qualitatively
accurate for d � 2, has demonstrated the presence of SS,
CIAF, and DW phases of these atoms which have distinct
collective mode spectra. We note that the CIAF phase found
here constitutes an example of a translation-symmetry-broken
magnetic ground state in a d > 1 ultracold-atom system.
Possible extension of our work would involve study of the
effect of quantum fluctuations on the mean-field phase diagram
and a more detailed incorporation of the effect of the dipolar
interaction between the Rydberg atoms which is expected to
be important for Vdi 
 �,�,J,U . We have suggested several
experiments to test our theory.

APPENDIX

Here we provide the details of the analytical calculations
used to determine the phase boundaries and the collective
modes of the Rydberg atoms in an optical lattice in the hard-
core limit. To analyze the phases and the collective modes of a
system of Rydberg atoms described by H defined in Eq. (1), we
consider the hard-core bosons with U → ∞. In this limit the
Gutzwiller wave function at any site i can be written as |ψ〉i =
f i

00|0,0〉 + f i
1,0|1,0〉 + f i

01|0,1〉. The mean-field energy of the
system is given by

E[{f i}] = �
∑

i

[
f i∗

10 f i
01 + f i∗

01 f i
10

] −μ
∑

i

[∣∣f i
10

∣∣2 + ∣∣f i
01

∣∣2]

+�
∑

i

∣∣f i
01

∣∣2 + Vdi

2

∑
〈ij〉

∣∣f i
01

∣∣2|f j

01|2

− J
∑
〈ij〉

f i∗
00 f i

10f
j

00f
j∗
10 − Jη

∑
〈ij〉

f i∗
00 f i

01f
j

00f
j∗
01 .

(A1)

Using the time-dependent Gutzwiller wave function the action,
given by Eq. (7), becomes

S =
∫

dt

[
i
∑

i

{
f i∗

00 ḟ i
00 + f i∗

10 ḟ i
10 + f i∗

01 ḟ i
01

} − E[{f i}]
]

.

(A2)

The Schrödinger equation for f i(t) can be easily derived by
variation of Eq. (A2) with respect to f i∗(t) and yields Eq. (8).
To find the frequencies of the small fluctuations using Eq. (8),
we decompose each f i in two parts, f i(t) = f̄ i + δf i(t). The
steady-state solutions of Eq. (8) corresponding to the ground
state of the system are f̄ i , and δf i(t)’s are time-dependent
small amplitude fluctuations around the steady-state values.
We decompose these fluctuations in Fourier modes δf j =
e−iωt

∑
k ei�k· �Rj δf (�k) to obtain the collective frequencies ω(�k)

from the linearized dynamical equations [Eq. (8)]. For the
phases with two-sublattice structure, we have used the notation
f̄ j = f s + f aei �π · �Rj and λj = λs + λae

i �π · �Rj , where �Rj is the
position of lattice site j .
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1. State with n = 0

In this state, f̄00 = 1, f̄10 = 0, f̄01 = 0. From the steady-
state solution of the equation of motion we obtain λi = 0 for
all sites. The particle excitations can be obtained from the
linearized equations for δf :

ωδf10(�k) = �δf01(�k) − μδf10(�k) − ε�kδf10(�k), (A3)

ωδf01(�k) = �δf10(�k) − (μ − �)δf01(�k) − ηε�kδf01(�k),

(A4)

which leads to the particle excitations with two internal
degrees, given by

ωk = ±
√

{� + (1 − η)ε�k}2/4 + �2

+ �

2
− μ − (1 + η)ε�k/2, (A5)

where ε�k = 2J
∑d

i=1 cos(ki). The instability of this phase takes
place for k = 0, leading to the formation of a homogeneous
SF phase. The phase boundary is given by

(μ + Jz)(μ − � + Jηz) = �2. (A6)

2. DW state with n = 1/2

This DW state has a two-sublattice structure and the wave
function is given by |1,0,1,0, . . .〉. The sites of sublattice
B are empty and f B

00 = 1. The particles at sublattice A are
in linear superposition of the ground state and the Rydberg
state, with f A

10 = cos θ and f A
01 = − sin θ . The minimization

of E[{f i}] gives tan 2θ = 2�/�. From the steady-state
condition obtained from equating the right-hand side of
Eq. (8) to zero, we can fix the Lagrange multipliers to be
λA = −μ + �/2 −

√
�2/4 + �2 and λB = 0. In momentum

space the linearized equations for fluctuations can thus be
written as

− ωδf ∗+
00 (�k) = −2f S

10ε�kδf
−
10(�k) − 2ηf S

01ε�kδf
−
01(�k)

− 2λSδf
∗+
00 (�k),

ωδf −
10(�k) = �δf −

01(�k) − μδf −
10(�k) − 2f S

10ε�kδf
∗+
00 (�k),

ωδf −
01(�k) = �δf −

10(�k) − (μ − �)δf −
01(�k)

+ 4Vdiz
∣∣f S

01

∣∣2
δf −

01(�k) − 2ηf S
01ε�kδf

∗+
00 (�k),

(A7)

where δf ±(�k) = δf (�k) ± δf (�k + �π ) and λS = (λA + λB)/2.
We note that δf i∗ satisfies similar equations with ω replaced
by −ω. In the atomic limit, for J = 0 we obtain the particle
(hole) excitations of sublattice B (A) analytically from the
above equations. Removing a particle from sublattice A (hole
excitation) costs an energy Eh = μ +

√
�2 + �2/4 − �/2.

This is the eigenvalue of fluctuations δf +
00. The particle

excitations in sublattice B can be obtained by diagonalizing
the single-site atomic Hamiltonian written in the basis of
|1,0〉 and |0,1〉 states. Particle excitation in two internal
states has energy Ep± = −μ + x/2 ±

√
x2/4 + �2 with x =

4Vdizf
S2
01 + �. These are the eigenvalues corresponding to

the fluctuations f −
01 and f −

10 in Eq. (A7). For nonvanishing

J the eigenvalues can be obtained by numerically solving the
cubic equation. For a second-order transition to the SS phase,
the phase boundary can be obtained from the condition of
vanishing eigenvalue at k = 0 and the analytical expression can
be obtained from the determinant of the eigenvalue equations
which can be read off from Eq. (A7),

2λS[μ(μ − x) − �2]

= 4J 2z2
[
2η�f S

10f
S
01 + η2f S2

01 μ + f S2
10 (μ − x)

]
, (A8)

where x = 4Vdizf
S2
01 + �. From the expressions of Ep±

and Eh written earlier and using f10 = cos(θ ) and f01 =
− sin(θ ), it can be shown that this condition is equiv-
alent to EhEp+Ep− = (zJ )2[η� sin 2θ + (x − μ) cos2 θ −
μ(η sin θ )2], which is used in the main text.

3. Uniform MI phase with n = 1

In this phase each site contains exactly one particle, which
is a linear superposition of the ground state and the excited
state. In this phase, one has at each site f00 = 0, f10 = cos θ ,
and f01 = sin θ , and θ can be obtained by minimizing the
energy,

E/N = � sin 2θ + Vdiz

2
sin4 θ + � sin2 θ. (A9)

The Lagrange multiplier is given by λ = �f01/f10 − μ. The
excitation energy corresponding to the fluctuation δf00 is
given by

ωδf00(�k) = −[(|f10|2 + η|f01|2)ε�k + λ]δf00(�k). (A10)

The transition from uniform Mott insulator to SF takes
place due to the instability at k = 0 at Jz(|f10|2 + η|f01|2) =
μ − �f01/f10. The spin excitations can be obtained from the
linearized equations,

ωδf10(�k) = �δf01(�k) − (μ + λ)δf10(�k), (A11)

ωδf01(�k) = �δf10(�k) − (μ − � + λ)δf01(�k)

+Vdiz|f01|2δf01(�k) + Vdif
2
01(ε�k/J )

× [δf01(�k) + δf ∗
01(�k)]. (A12)

The energy of these excitations can be easily calculated to
yield

ω2 = �2

[
f 2

01

f 2
10

+ f 2
10

f 2
01

− 2Vdif10f01ε�k
�J

+ 2

]
. (A13)

4. Canted Ising antiferromagnetic phase with n = 1

In this phase each site has one particle but this phase has
antiferromagnetic order. In this phase we have two sublattice
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values of f10 and f01. Fluctuation of f00 is given by

ωδf00(�k) = −βε�kδf00(�k) − λsδf00(�k) − λaδf00(�k + �π ),

(A14)

ωδf00(�k + �π) = βε�kδf00(�k + �π ) − λsδf00(�k + �π)

− λaδf00(�k), (A15)

with β = (|f s
10|2 − |f a

10|2) + η(|f s
01|2 − |f a

01|2). The Lagrange
multipliers are λs = �(f A

01/f
A
10 + f B

01/f
B
10)/2 − μ and λa =

�(f A
01/f

A
10 − f B

01/f
B
10)/2. The hole excitation energy is

given by

ωh
± = −λs ±

√
β2ε2

�k + λ2
a. (A16)

A straightforward substitution for β, λs , and λa in Eq. (A16)
leads to Eq. (6) used in the main text.

The phase boundary can be obtained from the insta-
bility of the above excitation at k = 0, β2z2 = λ2

s − λ2
a .

The spin modes can be obtained from the fluctuations δf10

and δf01,

ωδf10(�k) = �δf01(�k) − (μ + λs)δf10(�k)

− λaδf10(�k + �π ), (A17)

ωδf01(�k) = �δf10(�k) − (μ − � + λs)δf01(�k)

− λsδf01(�k + �π ) + Vdiz(|f s
01|2 + |f a

01|2)

× δf01(�k) − Vdiz(2f s
01f

a
01)δf01(�k + �π )

+Vdi(|f s
01|2 − |f a

01|2)[ε�k/J ]

× [δf01(�k) + δf �
01(�k)]. (A18)

A similar set of equations can be obtained for δf (�k + �π )
(replacing �k → �k + �π in the above equations) and for δf ∗
(taking the complex conjugate of the above equations and
replacing ω by −ω).

The spin modes can also be obtained for a CIAF phase with
general filling 〈n〉 = n0 from a simple variational calculation.

The variational wave function at the ith site can be written as

|ψ〉i = cos θi |n0,0〉 + eiφi sin θi |n0 − 1,1〉. (A19)

The Lagrangian is given by

L =
∑

i

[
φ̇i sin2 θi + �

√
n0 sin 2θi cos φi

+U (n0 − 1)(cos2 θi + λ sin2 θi)
]

+Vdi

2

∑
i 	=j

sin2 θi sin2 θj + U

2
(n0 − 1)(n0 − 2). (A20)

From variation of the Lagrangian we obtain following equa-
tions:

θ̇i = −�
√

n0 sin φi, (A21)

sin 2θiφ̇i + 2�
√

n0 cos 2θi cos φi + Vdi sin 2θi

∑
δ

sin2 θi

+U (λ − 1)(n0 − 1) sin 2θi = 0. (A22)

After linearization and eliminating δφ, we obtain

ω2δθ�k = β1δθ�k + γ+ε�kδθ�k + β2δθ�k+�π
+ γ−ε�kδθ�k+�π , (A23)

ω2δθ�k+�π = β1δθ�k+�π − γ+ε�kδθ�k+�π + β2δθ�k
− γ−ε�kδθ�k, (A24)

where
β1 = 2�2n0[2 + cot2 2θA + cot2 2θB],

β2 = 2�2n0[cot2 2θA − cot2 2θB], (A25)

γ± = −�
√

n0Vdi(sin 2θA ± sin 2θB)/(2J ).

The excitation energy of spin modes are thus given by

ω2 = β1 ±
√

β2
2 + (γ 2+ − γ 2−)ε2

�k . (A26)

This completes our derivation of the excitation spectra of the
different phases of the hard-core bosons. We would like to note
that we expect the qualitative nature of the spectra to remain
unchanged for large U/� 
 1 where the particle modes with
ni > 1, neglected in the hard-core limit, are gapped out and
do not play an essential role in determining the low-energy
properties of the system.
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