
PHYSICAL REVIEW A 89, 023615 (2014)

Ensemble master equation for a trapped-atom clock with one- and two-body losses
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An ensemble density matrix model that includes one- and two-body losses is derived for a trapped-atom
clock. A trapped-atom clock is mainly affected by one- and two-body losses, generally giving nonexponential
decays of populations; nevertheless, three-body recombination is also quantitatively analyzed to demonstrate
the boundaries of its practical relevance. The importance of one-body losses is highlighted without which
population trapping behavior would be observed. The model is written with decay constants expressed through
experimental parameters. It can complement, e.g., the ISRE (identical spin rotation effect) model to improve
its predictions: ISRE dramatically increases the ensemble coherence time, hence it enables one to observe the
influence of two-body losses on the interferometry contrast envelope. The presented model is useful for Ramsey
interferometry and is ready for immediate experimental verification in existing systems.
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I. INTRODUCTION

An atom clock has become the ultimate accurate exper-
imental tool since the invention of the method of separated
oscillatory fields by Ramsey in 1949 [1]. During the course
of technological advancement the miniaturization of the
atom clock has become a vibrant topic in navigation, space
positioning systems, communications, sensing applications,
and quantum memories [2–5] for which trapped-atom clocks
are being developed [4,6–9]. However, trapping ensues high
atomic densities whose many-body interactions via collisions
of atoms in the clock states become important [10]. In
the usual experimental settings the atomic density of an
ensemble reaches values where two-body interactions can
lead to apparent losses. Then ensemble evolution equations
acquire additional complexity via the inclusion of one- and
two-body losses that make exact analytical solution prohibitive
in treatment. For this reason one- or two-body loss only is
typically included [4,10–15]. However, achievable vacuum is
imperfect and differs noticeably between systems [16], and
the actual pressures during data acquisition range from 10−11

to 10−9 Torr, influencing the one-body decay rates. Albeit,
two-body losses alone lead to population trapping [[17, p.
102] and Eqs. (17)]. This implies that one-body processes
should be included in the model to avoid consequential errors
in measurement interpretation.

In this work an ensemble master equation with one- and
two-body inelastic collisional losses and a phenomenological
dephasing is derived by employing the open systems approach
and including interactions of the system with population and
phase damping reservoirs. Along the way a set of relevant
population decay laws can be extracted for a comprehensive
atom number relaxation analysis as special cases of the
ensemble master equation.

We first introduce the measurables N1, N2, and Pz usually
sought in an experiment in terms of the ensemble density
matrix elements and define the transition from atomic densities
to numbers of atoms. Then the interaction with the bath is
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described in the Markovian framework to account for the
loss of coherence associated with the particle loss. Further,
we introduce the phenomenological dephasing γd (and its
counterpart �d in the ensemble master equation) to account
for the phase differences that are not related to the population
loss. Finally, the ensemble master equation [Eqs. (17)] is
written with the decay constants defined purely in terms of
experimental parameters.

II. MASTER EQUATION WITH MANY-BODY LOSSES

The measurables are usually the normalized populations
N1/N , N2/N , where N = N1 + N2, or the normalized pop-
ulation difference Pz. In terms of atom numbers Nj and the
ensemble density matrix elements ρjj with state index j , Pz

can be expressed as

Pz = N1 − N2

N
= ρ11 − ρ22

ρ11 + ρ22
. (1)

To compare the model with the experimental observations of
N1 and N2, the thermal cloud densities are integrated over
space: Nj (t) = ∫

nj (t,r) d3r .
One-body losses, that can be measured, for example, in a

magnetic trap, are a sign of imperfect vacuum: hot background
atoms collide with the trapped ensemble transferring enough
momentum to the cold particles for them to escape from
the trap. The master equation is parametrized in this case
by the one-body decay rates �1 and �2 for the respective
states. Nonetheless, there is experimental evidence of a strong
influence of two-body inelastic collisions on the decay of
the populations [18]. To incorporate many-body collisions
into the model, the interaction of a field of bosons with
damping reservoirs needs to be considered. For this, a suitable
Markovian model setup is adopted from [19] and methods
from [13,20] are used in the following derivations. It is also
assumed that the particles that experience inelastic collisions
immediately leave the trap without interaction with the rest of
the ensemble.
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Most generally, the system-bath interaction is described by
the Markovian master equation:

∂ρ̂

∂t
= 1

i�
[Ĥ,ρ̂] +

∑
b∈B

Gb

∫
L̂b[ρ̂]d3r, (2)

where Ĥ is the system Hamiltonian, the commutator describes
the coherent evolution of the system, the interaction part is
further referred to as (∂ρ̂/∂t)loss, and B = {(b1,b2,...,bS)} is a
set of tuples each with a number of elements corresponding
to a number of states S interacting via simultaneous collisions
where each element contains a number of colliding particles
in a given state. Index b chooses one tuple (b1,b2,...,bj ,...,bS)
that describes all particles in all states interacting with the tuple
loss channel characterized by the constant Gb. The set element
bj is the number of colliding particles in state j . The cardinality
of the set |B| equals the number of loss channels. Interaction
with reservoirs via loss channel b is found by applying the
Lindblad superoperator to the density operator:

L̂b[ρ̂] = 2Ôbρ̂Ô
†
b − Ô

†
bÔbρ̂ − ρ̂Ô

†
bÔb. (3)

The operators Ôb define the collision of all of the particles in
all of the states defined by the corresponding tuple in terms of
the field operators:

Ôb =
S∏

j=1

�̂
bj

j (r). (4)

The field operators are expanded in terms of mode functions
ψjk(r) and single-mode operators as [21]

�̂j (r) =
∑

k

âjkψjk(r), (5)

where âjk is an operator that creates a particle in state
j , momentum mode k, at around location r and obeys
bosonic commutation relations. The arguments r will be
omitted hereafter for compactness: �̂j ≡ �̂j (r). The field
operators are defined in the standard way for creation �̂

†
j (r)

and annihilation �̂j (r) in state j ∈ {1,2,...,S} obeying the
commutation relation for identical bosons:

[�̂i(r),�̂†
j (r ′)] = δij δ(r − r ′). (6)

The unitary and the loss parts of Eq. (2) can be treated
independently. To compute a measurable corresponding to the
interaction part of Eq. (2), averages of the operator elements
should be found by evaluating the trace:

∂

∂t
〈�̂†

i �̂j 〉 = Tr

[(
∂ρ̂

∂t

)
loss

�̂
†
i �̂j

]
. (7)

By calculating the expectation values from Eq. (7) we arrive
at the following system of equations:

∂

∂t
〈�̂†

1�̂1〉 = −2G(1,0)〈�̂†
1�̂1〉 − 2G(1,1)〈�̂†

1�̂1�̂
†
2�̂2〉

− 4G(2,0)〈�̂†2
1 �̂2

1 〉, (8a)

∂

∂t
〈�̂†

2�̂2〉 = −2G(0,1)〈�̂†
2�̂2〉 − 2G(1,1)〈�̂†

1�̂1�̂
†
2�̂2〉

− 4G(0,2)〈�̂†2
2 �̂2

2 〉, (8b)

∂

∂t
〈�̂†

1�̂2〉 = −K1〈�̂†
1�̂2〉 − K2〈�̂†

1�̂2�̂
†
1�̂1〉

−K3〈�̂†
2�̂2�̂

†
1�̂2〉, (8c)

∂

∂t
〈�̂†

2�̂1〉 = −K1〈�̂†
2�̂1〉 − K2〈�̂†

1�̂1�̂
†
2�̂1〉

− K3〈�̂†
2�̂1�̂

†
2�̂2〉, (8d)

where the reservoir constants are absorbed in the following
scalars for compactness: K1 = G(1,0) + G(0,1), K2 = 2G(2,0) +
G(1,1), and K3 = 2G(0,2) + G(1,1). The field operators are or-
dered suitably for the physical interpretation: The average
〈�̂†

j �̂j 〉 corresponds to the density of particles in state j at
the position defined by the coordinate vector r . The aver-
ages 〈�̂†

i �̂j 〉 with i �= j carry phase difference information
between states i and j . Now that we see the identification
of the involved processes, the structure of Eq. (8c), for
example, shows there are three independent terms 〈�̂†

1�̂2〉,
〈�̂†

1�̂2�̂
†
1�̂1〉, and 〈�̂†

2�̂2�̂
†
1�̂2〉 responsible for damping to

the associated population reservoirs. Each of the prefactors
to the operator averages on the right-hand side has a clear
physical meaning as a decay rate. We can establish an
identification of Gb to the corresponding decay rates by letting
2G(1,0) → γ1, 2G(0,1) → γ2, 2G(1,1) → γ12, 4G(2,0) → γ11, and
4G(0,2) → γ22, where on the right-hand side we have decay
rates. To distinguish the decay rates measured with thermal
atoms and Bose-Einstein condensate (BEC), later in the text
they are superscripted with “th” and “BEC,” correspondingly,
and the identity γ	 ≡ γ th

	 holds.
In the mean-field approximation the loss part of Eq. (2)

(∂ρ̂/∂t)loss with κ1 = γ1+γ2

2 , κ2 = γ11+γ12

2 , and κ3 = γ22+γ12

2
simplifies to the equations for the atomic densities:

∂n1

∂t
= −γ1n1 − γ12n1n2 − γ11n

2
1,

∂n2

∂t
= −γ2n2 − γ12n1n2 − γ22n

2
2,

∂n12

∂t
= −κ1n12 − κ2n1n12 − κ3n2n12,

∂n21

∂t
= −κ1n21 − κ2n1n21 − κ3n2n21.

(9)

III. PHENOMENOLOGICAL DEPHASING

Collisional dephasing caused by population loss appears
in the off-diagonal density operator elements naturally while
accounting for inelastic collisions between particles. However,
there are other mechanisms of dephasing not related to
population loss, e.g., elastic collisions or inhomogeneity of
the trapping potential. Such pure dephasing can be introduced
phenomenologically by adding other reservoirs for phase
damping of state 1 Rph1, state 2 Rph2, etc., to the total Hilbert
space by combining the subspaces of the system S, particle
damping reservoir R, phase damping reservoirs as well as the
coupling degrees of freedom that describe interactions between
them as S ⊕ R ⊕ SR ⊕ Rph1 ⊕ Rph2 ⊕ SRph1 ⊕ SRph2. The
Lindblad superoperator should then only couple the states
to Rph1 and Rph2, since states are phase sources. A suitable
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operator reads

Âj = �̂
†
j (r)�̂j (r) (10)

with the associated system-bath interaction written as

L̂j [ρ̂] = 2Âj ρ̂Â
†
j − Â

†
j Âj ρ̂ − ρ̂Â

†
j Âj . (11)

Owing to the fact that the reservoirs are statistically inde-
pendent, the loss term can be rewritten with an independent
dephasing summand:
(

∂ρ̂

∂t

)
loss

=
∑
b∈B

Gb

∫
L̂b[ρ̂]d3r +

S∑
j

Xj

∫
L̂j [ρ̂]d3r, (12)

where S is the number of states. The last summation is over
the set of reservoirs, each damping the phase of a dedicated
state j and characterized by a reservoir constant Xj . Omitting
the intermediate steps, the resulting equations for loss take the
same algebraic form as Eqs. (9) except that the scalar κ1 from
Eq. (9) now absorbs the phenomenological dephasing rate γd :

κ1 = γ1 + γ2 + γd

2
. (13)

The two reservoir constants have been absorbed into the pure
dephasing rate by applying the rule 2(X1 + X2) → γd . The fact
that γd appears as a scaling factor to only 〈�̂†

i �̂j 〉 elements
in Eqs. (8) with i �= j is physically justified: The state phase
can only be destroyed by coupling to the degrees of freedom
included in Rph1 ⊕ Rph2. This result suggests that the relative
phase between states 1 and 2 can be manipulated by γd .

IV. EXPERIMENTAL DECAY RATES

Unlike in the equations above, many-body relaxation rates
are usually not available in s−1 units, because in an experiment
one counts numbers of atoms rather than atomic densities
given in density units, e.g., cm3 s−1 for two-body losses.
Therefore a more practical version of Eqs. (9) should be found.
The preferred form is where ρii are normalized populations.
To convert Eqs. (9) to ρij the density equations are first
integrated over the density profile, then conversion rules for
decay constants are defined. The resulting equations for N or ρ

lose explicit spatial dependence and describe the ensemble as
a whole. They allow us to use the two-body decay rates in units
of cm3 s−1. Under the assumptions of rapid rethermalization
and constant temperature the cloud does not change its shape.
The number rate equations read

∂N1

∂t
= −γ th

1 N1 − kγ th
12N1N2 − kγ th

11N
2
1 ,

∂N2

∂t
= −γ th

2 N2 − kγ th
12N1N2 − kγ th

22N
2
2 ,

∂N12

∂t
= −κ1N12 − κ2N1N12 − κ3N2N12,

∂N21

∂t
= −κ1N21 − κ2N1N21 − κ3N2N21

(14)

with the auxiliary definitions where γd is also included:

κ1 = γ th
1 + γ th

2 + γd

2
, κ2 = k

γ th
11 + γ th

12

2
, κ3 = k

γ th
22 + γ th

12

2
(15)

where p ∈ {x,y,z}, k = (8π3/2σxσyσz)−1, and σp =
√

kBT

mω2
p

are

the cloud widths, ωp are the trap frequencies, T is the ensemble
temperature, m is the atomic mass, and kB is the Boltzmann
constant. The evolution of the ensemble density matrix is
governed by the equation (later � = 1)

∂ρ

∂t
= 1

i�
[H,ρ] +

(
∂ρ

∂t

)
loss

, (16)

where (∂ρ/∂t)loss describes ensemble losses. After normal-
ization of Eqs. (14) to N0 the final ensemble density matrix
elements with the unitary part of the ensemble master equation
[Eq. (16)] constructed from the two-level Hamiltonian in the
rotating wave approximation with one-body and two-body
losses and pure dephasing become

∂ρ11

∂t
=−�1ρ11−�12ρ11ρ22−�11ρ

2
11+

i

2
�(ρ12−ρ21),

∂ρ22

∂t
=−�2ρ22−�12ρ11ρ22−�22ρ

2
22−

i

2
�(ρ12−ρ21),

∂ρ12

∂t
=−κ1ρ12− κ2ρ11ρ12 − κ3ρ22ρ12

+ i

2
�(ρ11 − ρ22) + i�ρ12,

∂ρ21

∂t
=−κ1ρ21− κ2ρ11ρ21 − κ3ρ22ρ21

− i

2
�(ρ11 − ρ22) − i�ρ21

(17)

with the constants, where �d is the counterpart of γd :

κ1 = �1 + �2 + �d

2
, κ2 = �11 + �12

2
, κ3 = �22 + �12

2
.

(18)

�d plays the role of an extra degree of freedom to include
relative phase offsets between the states. �d is not associated
with the population loss and can incorporate miscellaneous
experimental imperfections. The decay constants are obtained
from the conversion, where N0 ≡ N (t = 0):

�1 = γ th
1 , �11 = kN0γ

th
11,

(19)
�12 = kN0γ

th
12, �22 = kN0γ

th
22,

and to account for the multiplicity of the colliding parti-
cles [22,23] we define γ th

	 = M! γ BEC
	 , where 	 is a subscript

for which M! is computed as follows [24]: 	 = 1 or 	 = 2
produce M! = 1! = 1, 	 = 11 or 	 = 12 or 	 = 22 produce
M! = 2! = 2, 	 = 111 produces M! = 3! = 6. Note, that the
one-body coefficients are the same in either representation,
i.e., �1 = γ th

1 = γ BEC
1 and �2 = γ th

2 = γ BEC
2 . Decay rates

measured with condensed atoms are M! smaller than those
measured with thermal atoms, where M is the number of
participating particles. This is attributed to the fact that the
condensed particle wave functions overlap at the collision
point resulting in unitary probability. Thermal-atom wave
functions, by contrast, are not the same and at the collision
point the probability turns out to be a factorial of the number
of colliding particles due to bosonic bunching [22,23].
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V. DISCUSSION

The Markov approximation is valid as long as the system
exhibits short memory. To apply it in the present derivation
we assumed that atoms do not return to the system once they
experience an inelastic collision. Also, the bath correlation
time for the damping process should be much shorter than the
characteristic time scales of interest in the system, e.g., the
inverse of coupling constants or the inverse of decay rates.
Otherwise the bath correlations may be preserved and the
Markov approximation breaks down.

To quantitatively assess the effect of three-body recombi-
nation, a suitable physical system can readily be implemented
in spin-1 systems such as one of the stretched states of the
hyperfine ground state of 87Rb, F = 1. In this system two-body
collisions are prohibited and for a thermal cloud with rapid
rethermalization we arrive at the rate equation for the number
of atoms N (t), with k111 = (2π

√
3)−3(σxσyσz)−2:

∂N

∂t
= −γ1N − γ111 k111 N3. (20)

Integrating Eq. (20) with respect to t and choosing the
physically justified solution gives the following exact result:

N (t) =
[(

N−2
0 + k111

γ111

γ1

)
e2γ1t − k111

γ111

γ1

]−1/2

, (21)

where N0 ≡ N (0) is the initial population at t = 0. It is
particularly interesting that in 133Cs, e.g., it is possible to
find a pair of levels for two-state interferometry that both
experience intrastate collisions, that is, the corresponding
two-body decay processes should not differ as much as in
a system of one stretched state and one unstretched state.
In such a system the visibility is enhanced. However, γ111

is very small; the reported values measured in a BEC are
in the order of 5.4 × 10−30 cm6 s−1 [14,22]. It follows
from Eq. (21) and lifetime measurements, e.g., in [17], that
for typical experimental parameters the molecular formation
due to three-body recombination is a negligible loss process
which only becomes apparent at temperatures close to Tcrit

for N0 > 106, pressures an order of magnitude lower than
the usual achievable (i.e., in the order of 10−12 Torr), and
trapping times over minutes. The N0 uncertainty expressed
as the standard deviation of the atom number fluctuations
σN scales with N0 and causes an increase of �f/f via the
collisional shift as �fc = 2�(a22 − a11)σNn0/m practically
limiting N0 in trapped-atom clocks to units of 104 [25,26].

Therefore, in most high-precision experiments with thermal
atoms γ111 can safely be disregarded.

Many-body collisions lead to the products of the ensemble
density matrix elements in Eqs. (17) that generally give non-
exponential decays of populations [27]. The model accounts
for the collisions of atoms in different orientations through the
decay constants for practicality: In this case extra constants
arising from the angular momentum conservation algebra are
absorbed in the decay rates. By examining the structure of the
presented equations and their extended versions [17] one can
develop an informal procedure to construct the loss part of the
master equation under the same approximations for arbitrarily
many participating bodies, provided the bunching coefficients
are determined [24], and bypass the direct invocation of
quantum field theory. Using the relations of Eqs. (19) the rates
reported for thermal atoms and a condensate in s−1 can readily
be inserted to the model. The ensemble model also allows one
to include phase noise by statistical averaging of Pz over a
given phase distribution what is noticeably more difficult to
do via field theory than via Eqs. (17).

It is important to incorporate one- and two-body losses into
the master equation as the trapped-atom clock operates best in
the ISRE regime: ISRE dramatically increases the coherence
time making it possible to observe the influence of two-body
losses on the Ramsey contrast at long evolution times [11]. The
till-now reported ISRE model [4,11,12] has been used with
two correction factors to two of the three model parameters:
1.6 to �0 and 0.6 to ωex; the lateral elastic collisional rate
γc has not been corrected. The high data and data-fitting
accuracies [4,11] with yet very large correction factors are
suggestive of an additional decoherence mechanism missing
in the ISRE model. A Ramsey model governed by Eqs. (17)
may be able to bridge the gap by including the relevant
collisional losses in the system. The two models provide
a more comprehensive understanding of ensemble coherent
dynamics over long evolution times in a trapped-atom clock,
in particular regarding the interferometric contrast decay. The
developed model should find its applications in Ramsey-type
interferometries with trapped thermal ensembles. It can be
verified in contemporary experimental systems exploring
quantum dynamics.
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