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Polarons in a dipolar condensate
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We consider a polaronic model in which impurity fermions interact with background bosons in a dipolar
condensate. The polaron in this model emerges as an impurity dressed with a cloud of phonons of the dipolar
condensate, which, due to the competition between the attractive and repulsive parts of the dipole-dipole
interaction, obey an anisotropic dispersion spectrum. We study how this anisotropy affects the Čerenkov-like
emission of Bogoliubov phonon modes, which can be directly verified by experiments in which a dipolar
Bose-Einstein condensate moves against an obstacle. We also study the spectral function of impurity fermions,
which is directly accessible to the momentum-resolved rf spectroscopy in cold atoms.
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I. INTRODUCTION

A conduction electron in an ionic crystal or a polar
semiconductor displaces nearby ions, thereby polarizing the
medium in the vicinity of the electron. An analogous picture
emerges when an impurity atom is immersed in an ultracold
atomic quantum gas containing atoms distinct from but capable
of interacting with the impurity atom. The impurity finds itself
surrounded by and traveling with its local disturbance, a cloud
of background atoms, forming a polaron. In recent years,
much effort has been focused on systems where both impurity
and background atoms are fermions (see [1,2] for a review),
inspired by the remarkable agreement between theoretical
predictions [3,4] and experimental findings obtained from
setups where a single spin-↓ impurity is immersed in a
sea of spin-↑ background atoms [5,6], a setting that has
a close resemblance to the Kondo problem in condensed-
matter physics [7,8]. The present work, however, concerns
polaron models where the impurity atoms are fermions but the
background atoms are bosons in a Bose-Einstein condensate
(BEC), in which density fluctuations of the BEC are described
by phonons. Recent years have also witnessed an increased
interest in such systems due largely to their similarity to the
electron-phonon system where the polaron picture [9] is central
to the understanding of colossal magnetoresistance materials
[10] and is believed to play a vital role in the physics of high-Tc

superconductivity in strongly correlated materials [11–13] and
in unconventional pairing mechanisms [14].

In this paper, motivated by recent experimental advance-
ment in achieving dipolar quantum gases consisting of either
heteronuclear molecules with electric dipoles [15,16] or atoms
with magnetic dipoles [17–20], we consider the aforemen-
tioned Bose polaron models except that the background atoms
are now bosons in a dipolar condensate. In a dipolar quantum
gas [21,22], the dipole-dipole interaction represents a control
knob inaccessible to nondipolar bosons. Thus, mixing dipolar
bosons with fermions opens up new possibilities. An important
consequence of the dipole-dipole interaction is that the phonon
spectrum of a dipolar condensate is no longer isotropic: one
can tune the dipolar interaction to lower the energy of a
phonon along some directions while simultaneously increasing
it along other directions [23], a phenomenon that a recent

experiment demonstrated using Raman-Bragg spectroscopy
in a dipolar chromium BEC [24]. Thus, impurity fermions
submerged in a dipolar condensate act as anisotropic polarons,
interacting with surrounding phonons. While many studies
exist in the literature concerning the polaronic Bose-Fermi
models, including those in Refs. [25–27] for large (continuous)
polarons, those in Refs. [28,29] for small (Holstein) polarons,
and some experimental developments [30–32], to the best
of our knowledge, none of them have seriously considered
polaron systems with background atoms that are dipolar
bosons. The purpose of our work here is to extend studies from
nondipolar to dipolar Bose-Fermi polaron models and develop
theoretical tools which allow us to gain, from investigations
in the weak-coupling limit, quantitative understanding of the
impurity polarons in the dipolar condensate.

In Sec. II, we present the Hamiltonian for the effective
polaronic model where density fluctuations of the dipolar
condensate are described by phonons, and we derive, in the
same section, the impurity self-energy, taking into consid-
eration only single-phonon-impurity scattering processes. In
Sec. III, we evaluate this self-energy on the mass shell and
use it to gain some quantitative insight into the physics of the
anisotropic polarons under consideration. A moving polaron
may emit phonons in much the same way that a moving charge
emits electromagnetic radiation or Čerenkov radiation when
its velocity exceeds a certain threshold [33,34]. In addition
to the effective mass, the self-energy will be used in Sec. III
to analyze the decay rate of the polaron and to understand
Čerenkov-like phonon emissions from an impurity in a dipolar
condensate [35]. In Sec. IV, we describe polarons using Fermi-
liquid theory, focusing, however, on spectral functions, which
can, in principle, be probed using the momentum-resolved rf
spectroscopy in cold atoms [36,37]. Finally, we conclude in
Sec. V.

II. THE EFFECTIVE HAMILTONIAN AND IMPURITY
SELF-ENERGY

Let us now turn to the specific model of a cold-atom
mixture in which spin-polarized impurity fermions with mass
mF permeate in a dipolar condensate of bosons with mass
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mB . The condensate is confined in a sufficiently large trap
so that it is practically homogeneous. In addition, all dipoles
are assumed to point in the same direction as an external
(either electric or magnetic) field, which we take to be the
z direction. The interactions in this model are divided into a
short-range part and a long-range part. The former is described
by UBF = 4π�

2aBF /mBF [mBF = 2mBmF /(mB + mF )] and
UBB = 4π�

2aBB/mB , where aBF and aBB are, respectively,
impurity-boson and boson-boson s-wave scattering lengths.
The latter is described by UDD(q) = 8πd2P2(zq), which is the
dipole-dipole interaction between two bosons in momentum
space, with d being the induced dipole moment and P2(zq) ≡
(3z2

q − 1)/2 being the second-order Legendre polynomial,
where zq = cos θq and θq is the angle between momentum
�q and the dipole direction (along the z axis). To proceed,
we limit our study to near-zero temperature (T ≈ 0) where
one can approximate, within the Bogoliubov approximation,
the dipolar Bose gas as a uniform dipolar condensate of
number density nB plus a collection of phonons (due to density
fluctuations) that obey the dispersion spectrum [38,39]

�ωq = �vBq

√
1 + (ξBq)2 + 2εddP2(zq), (1)

where vB =
√

nBUBB/mB is the phonon speed in the absence
of the dipolar interaction, ξB = �/

√
4mBnBUBB is the healing

length, and εdd = 4πd2/(3UBB) measures the dipolar interac-
tion relative to the contact interaction UBB . As such, we are
led to an effective Hamiltonian

Ĥ =
∑

p

(ξp + nBUBF )â†
pâp

+ �

∑
q �=0

ωqβ̂
†
qβ̂q + 1√

V

∑
q �=0

gqρ̂q(β̂q + β̂
†
−q), (2)

which describes impurity fermions (of field operator âp and
density operator ρ̂q = ∑

k â
†
q+kâk) interacting with phonons

(of field operator β̂q) in a volume V . In Eq. (2), ξp = εp − μ is
the kinetic energy of a fermion, εp = �

2p2/2mF , relative to the

Fermi chemical potential μ, and gq = UBF

√
nB�q2/(2mBωq)

is a momentum-dependent coefficient measuring the impurity-
phonon coupling strength. In solid-state systems, phonon
dispersion due to lattice vibration can be divided into an
optical branch whose frequency remains almost independent
of the wave number and an acoustic branch whose frequency is
linearly proportional to the wave number [40]. Equation (2) is
the cold-atom analog of the Fröhlich Hamiltonian for electron-
acoustic-phonon systems since the Bogoliubov dispersion in
Eq. (1) asymptotes to that of an acoustic phonon [41] in the
limit of long wavelength. In the absence of the dipole-dipole
interaction, Eq. (2) has been employed, within the context
of cold atomic physics, to study polarons in the weak-
coupling limit [27,42], under self-localization [25,43,44], and
in the strong-coupling limit (using the Feynman path integral)
[26,45]. Having described our model in some detail, we now
adopt a unit convention in which � = 1 is implied (unless
keeping � helps to elucidate the physics).

The polaron effect arises from the impurity-polaron in-
teraction which modifies the self-energy and hence the bare
propagator of the impurity. Thus, much of the information

FIG. 1. Feynman diagrams for the self-energy of an impurity
(fermion) interacting with background bosons.

about the properties of an impurity can be learned from its
self-energy. At zero temperature, this self-energy can be con-
veniently obtained from the nonzero-temperature Matsubara
results by setting T = 0. In the weak-coupling regime, the
Matsubara self-energy for impurity fermions, up to second
order in the Bose-Fermi interaction UBF , reads


(p,iωn) = UBF nB − 1

βV

∑
q,iqm

g2
q

×D0(q,iqm)G0(p − q,iωn − iqm), (3)

where the first term is due to the interaction of the impurity
fermions with the condensed bosons (Fig. 1, left) and the
second term accounts for all single-phonon-impurity scattering
processes and can thus be read off directly from the Feynman
diagram involving one phonon (Fig. 1, right). In Eq. (3),
G0(p,iωn) = (iωn − ξp)−1 and D0(q,iqm) = 2ωq[(iqm)2 −
ωq]−1 are the Matsubara Green’s functions for noninteracting
fermions and phonons, respectively, with ωn and qm being
fermion and boson Matsubara frequencies, which are odd
and even multiples of π/β = πkBT , respectively. Analytic
continuation of 
(p,iωn) leads to the retarded self-energy

R(p,ω) = 
(p,ipn → ω + i0+), which, at zero temperature
and in the single (attractive) impurity limit, is given by


R(p,ω) = UBF nB + 1

V

∑
q

×
(

g2
q

ω − ξp−q − ωq + i0+ + mFBU 2
FB

2n−1
B mF εq

)
. (4)

In leading to Eq. (4), we have omitted an important step which
we now explain. It goes back to Eqs. (2) and (3), where UBF

should really be written as U ′
BF , a parameter introduced to

model the Bose-Fermi interaction; our use of UBF instead of
U ′

BF is to simplify notation. U ′
BF is connected to UBF , up to

the second order in UBF , through [26]

U ′
BF = UBF + U 2

BF

V

∑
q �=0

mBF

q2
, (5)

according to the Lippmann-Schwinger equation for the two-
body vacuum T matrix [46] that describes the scattering
between a boson and a fermion. Upon its substitution in Eq. (3),
the linear term in Eq. (5) becomes the first term in Eq. (4), while
the second-order term in Eq. (5) is the origin of the last term
in Eq. (4), which serves as a renormalization factor regulating
the ultraviolet divergence known to exist in the integration for
the self-energy in Eq. (3).

This self-energy [Eq. (4)], which, strictly speaking, is
valid only in the weak-coupling regime, allows us to explore
the subject in a conceptually intuitive and mathematically
simplified manner. The ensuing results are expected to capture
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all qualitative features about the anisotropic polarons, provided
that the impurity-phonon coupling is still much lower than the
critical value for self-localization [25,43,44,47,48].

In what follows, we will use Eq. (4) or, equivalently,

Re 
R(p,ω) = UBF nB +
∫

d3q

(2π )3

×
(

P
g2

q

ω − ξp−q − ωq
+ mFBU 2

FB

2n−1
B mF εq

)
(6)

and

Im 
R(p,ω) = −π

∫
d3q

(2π )3
g2

qδ(ω − ξp−q − ωq) (7)

to study polarons in the dipolar condensate where P stands for
the principal value.

III. POLARON DESCRIPTION ON THE MASS SHELL AND
ČERENKOV TYPE OF PHONON EMISSIONS

In order to build some analytical insight, we first estimate
the self-energy using the polaron energy ω on the mass shell,
ω = ξp, and use this self-energy to characterize the polarons
of interest. In this limit, we find that at small momenta where
Im 
R(p,ξp) = 0, the impurity energy

Ep = εp + Re 
R(p,ξp) (8)

is approximated as

Ep ≈ E�
0 + p2

‖/2m�
F || + p2

⊥/2m�
F⊥, (9)

where p‖ and p⊥ are, respectively, the momentum component
along the dipole direction (axial momentum) and that normal to
the dipole direction (radial momentum) and m�

F || and m�
F⊥ are,

respectively, the axial and radial effective polaron mass, the
only two surviving elements in the mass tensor. Let q̄ = qξB ,
p̄ = pξB , m̄B = mB/mF , and ω̄q = ωq/(�/mF ξ 2

B) or

ω̄q = q̄

√
1 + q̄2 + 2εddP2(zq)/(2m̄B) (10)

be the scaled quantities corresponding to q, p, mB , and ωq in
the so-called polaron unit system. Taylor expanding Eq. (6) up
to the second order in the momenta, we find that

m�
F || = mF /(1 − α�

||), m�
F⊥ = mF /(1 − α�

⊥), (11)

where

α�
‖ = 2α


∫
dq̄

∫ +1

−1
dzq

q̄6z2
q

ω̄q(ω̄q + q̄2/2)3
, (12a)

α�
⊥ = α


∫
dq̄

∫ +1

−1
dzq

q̄6
(
1 − z2

q

)
ω̄q(ω̄q + q̄2/2)3

. (12b)

In Eqs. (12),

α
 = α

32π

1

m̄B

(
1 + 1

m̄B

)2

(13)

is the coefficient expressed in terms of

α = a2
BF / (aBBξB) , (14)

which is a (dimensionless) polaronic coupling constant
[26,42]. The ability to enhance α in Eq. (14) by tuning s-wave
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FIG. 2. (Color online) (a) α|| and (b) α⊥ as a function of mB/mF

for different εdd = 0 (black), 0.3 [blue (dark gray)], and 0.8 [red (light
gray)]. (c) γ �

p‖ and (d) γ �
p⊥ as a function of p for different εdd when

mB/mF is fixed to 21. Note that because of the rich existence of
atomic elements and their isotopes in nature, for practical purposes
one can regard the mass ratio as a tunable parameter. The special case
of mB/mF = 21 in (c) and (d) corresponds to the mass ratio in the
6Li and 40K86Rb mixture.

scattering lengths via Feshbach resonance [49–51] has been
the main motivation behind the recent upsurge of activity in
exploring polaronic physics in Bose-Fermi mixtures of cold
atoms.

Figures 2(a) and 2(b) illustrate how α⊥ and α|| change
with the mass ratio mB/mF for different values of the dipolar
interaction εdd . As a function of mB/mF (for fixed εdd ),
α|| behaves similarly to α⊥: both increase appreciably with
mB/mF . As a function of εdd (for fixed mB/mF ), α|| behaves
oppositely to α⊥: as εdd increases (but staying less than 1,
beyond which the dipolar condensate is unstable), α|| decreases
while α⊥ increases. To account for this anisotropy, we first note
from Eq. (12) that contributions to α|| and α⊥ stem primarily
from axial phonons (with zq being close to 1) and radial
phonons (with zq being close to 0), respectively. In a dipolar
condensate in which the attractive (head-to-tail) interaction
competes with the repulsive (side-to-side) interaction, tuning
the dipolar interaction εdd (towards 1) serves to reduce
the energy cost of the radial phonons while simultaneously
increasing the energy cost of the axial phonons. As a result,
at a very low impurity energy, such a tuning amounts to
resonantly enhancing the interaction between the impurity and
the radial phonon, on one hand, and off-resonantly suppressing
the interaction between the impurity and the axial phonon, on
the other hand. In turn, this results in α|| and α⊥ changing in
opposite directions in response to the change in the dipolar
interaction, leading to the mass anisotropy in the polarons.

Let us now turn our attention to the imaginary part of the
self-energy Im 
R(p,ξp) on the mass shell and use it to obtain
the spontaneous decay rate of an impurity polaron (in the sense
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of Fermi’s golden rule), γ �
p = −Im 
R(p,ξp). Physically,

when the imaginary part of the self-energy is nonvanishing,
the energy of the impurity dissipates by spontaneous emission
of phonons in the same sense of Čerenkov radiation [33,34],
where a charged particle emits electromagnetic radiation,
when moving at a velocity higher than the phase velocity
of light in a dispersive background medium. The speed of
the phonon thus created depends on zq, the cosine of the
angle between phonon momentum q and the dipole direction,
according to

vB(zq) = lim
|q|→0

ωq

|q| = vB

√
1 + 2εddP2(zq). (15)

The momentum of the emitted phonon, dictated by energy
conservation as represented by the Dirac δ function in Eq. (7),
has magnitude

q̄ = 2p̄yq

1 − m̄−2
B

−
√

(2p̄yq)2 + (
1 − m̄−2

B

)
[1 + 2εddP2(zq)]

m̄B

(
1 − m̄−2

B

) , (16)

which is a function of not only zq but also yq, the cosine of the
angle between phonon momentum q and impurity momentum
p.

The anisotropy in the emitted phonons leads to the
anisotropy in the decay rates. For an axial polaron, we use
the usual spherical coordinate system in which the zenith
points to the z direction along which the axial impurity
moves [Fig. 3(a)]. In this coordinate system, since both the
momentum and dipoles are oriented along the z direction,
zq = yq = cos θq, where (θq,φq) are the usual polar and
azimuthal angles. An analysis of Im 
R(p,ξp) then finds the
axial decay rate is given by

γp‖ = �

mF ξ 2
B

πα
�

(
p̄ −

√
1 + 2εdd

2m̄B

)

×
∫ 1

cos θm

q̄5dzq∣∣(q̄ − p̄yq)q̄ωq + ω2
q + q̄4

(2m̄B )2

∣∣ , (17)

where θm will be defined in Eq. (19). For a radial polaron, we
adopt a different spherical coordinate system where the zenith

FIG. 3. (Color online) (a) The spherical coordinate system in
which the zenith points to the z axis and (b) the spherical coordinate
system in which the zenith points to the y axis. (a) and (b) are used
to study phonon emissions by an impurity with momentum (thick red
arrow) along the axial and radial directions, respectively.

points to the y direction along which the radial impurity is
assumed to move [Fig. 3(b)]. In such a coordinate system,
yq = cos ϑq and zq = sin ϑq cos ϕq, where (ϑq,ϕq) are the
polar and azimuthal angle of this new coordinate system. A
similar analysis of Im 
R(p,ξp) then finds the radial decay rate
is given by

γp⊥ = �

mF ξ 2
B

πα
�

(
p̄ −

√
1 − εdd

2m̄B

) ∫ 2π

0

dϕq

2π

×
∫ 1

cos ϑm

q̄5dyq∣∣(q̄ − p̄yq)q̄ω̄q + ω̄2
q + q̄4

(2m̄B )2

∣∣ , (18)

where ϑm will be defined in Eq. (20). Again, q̄ in both Eqs. (17)
and (18) is defined in Eq. (16) and has the physical meaning of
being the magnitude of the momentum of an emitted phonon.
Figures 2(c) and 2(d) plot γ �

p‖ and γ �
p⊥ as functions of p. The

physical meanings of the other terms are explained as follows.
The Heaviside step function �(x) implements the Landau

criterion for superfluidity, where the elementary excitations are
the anisotropic phonons of a dipolar condensate. Thus, for an
impurity traveling along the axial direction, dissipation takes
place only when its velocity v exceeds the sound velocity
at zq = 1 or vB(1) = vB

√
1 + 2εdd [Eq. (15)], a condition

equivalent to p̄ >
√

1 + 2εdd/2m̄B in the polaron unit system.
A similar analysis shows that for an impurity traveling along
the radial direction where zq = 0, dissipation takes place only
when p̄ >

√
1 − εdd/2m̄B .

The angles θm [in Eq. (19)] and ϑm [in Eq. (20)] have
the physical meaning that the phonon modes emitted by the
supersonic impurity along the axial (z) direction are within the
cone of the polar angle (relative to the z axis),

θm = cos−1

√
1 − εdd

(2p̄m̄B)2 − 3εdd

, (19)

and those emitted by the supersonic impurity along the radial
direction are within the cone of the polar angle (relative to the
y axis),

ϑm = cos−1

√
1 − εdd + 3εdd sin2 ϕq

(2p̄m̄B)2 + 3εdd sin2 ϕq
. (20)

As one may verify, the sine of the angle π/2 − θm

(π/2 − ϑm) equals the ratio of the speed of sound to that
of an axial (radial) polaron. Thus, by definition, π/2 − θm

(π/2 − ϑm) is the Mach angle, or, equivalently, cos θm (cos ϑm)
is the inverse of the Mach number [52], which is a figure of
merit well known in the study of shock waves, examples of
which include sonic booms generated by supersonic flights
[52], bow and stern waves created by high-speed boats [53],
Čerenkov radiation [33,34] emitted by charged particles, and,
more recently, Bogoliubov phonons emitted by atoms in
superfluids [54–59]. In contrast to the axial impurity which
preserves the cylindrical symmetry so that the cone of the
polar angle θm [Eq. (19)] is independent of the azimuthal
angle, the radial impurity breaks the cylindrical symmetry so
that the cone of the polar angle ϑm [Eq. (20)] is now a function
of azimuthal angle ϕq, which can only occur in systems
with anisotropy.
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The invariance under Galilean transformations implies that
one can test this anisotropy by letting a dipolar condensate
move against a stationary impurity (for example, in the form
of a localized optical potential of a far-detuned laser beam
[60,61]). The emitted phonons are expected to form, behind
the impurity, a conical wave front of fixed aperture π/2 − θm

when moving along the axial direction and one of varying
aperture π/2 − ϑm [in the fashion of Eq. (20)] when moving
along the radial direction [35].

IV. SPECTRAL FUNCTIONS AND POLARONS
ACCORDING TO FERMI-LIQUID THEORY

We propose to probe the polarons in BECs using the same
rf spectroscopy that was successfully applied to explore the
BEC-BCS crossover [62] in resonant Fermi gases [63] and
fermionic polaron physics in highly imbalanced Fermi gases
[5,37]. In rf spectroscopy, an rf field of amplitude �L and
frequency ωL is applied to promote impurities to the excited
(final) hyperfine state |e〉 that lies above the impurity state |g〉
by an energy �ωeg , a process described by the Hamiltonian

Ĥrf = ��L

2

∫
d3r[e−iωLt ψ̂†

e (r)ψ̂g(r) + H.c.], (21)

where ψ̂g,e(r) are the relevant annihilation operators. The rf
signal, which is the rate at which the population in the final
state changes, is given by

I = −2

(
�L

2

)2

Im χ (μ − μe − ωL), (22)

within linear response theory (in which Ĥrf is treated as
a small perturbation), where μe is the chemical potential
of the final state and Im χ (ω) is the Fourier transform
of the retarded time-ordered correlation function, −i�(t −
t ′)〈[ψ̂†

e (r,t)ψg(r,t),ψ̂†
g(r′,t ′)ψe(r′,t ′)]〉, averaged over both r

and r′ [64,65]. In the case where the final-state interaction is
negligible, one can express, within the Matsubara (imaginary-
time) formalism, the rf signal as I (ω) ∝ ∫

d3p I0(p,ω) in terms
of the momentum-resolved current,

I0(p,ω) =
(

�L

2

)2

A(p,ξp − ω)f (ξp − ω), (23)

where ω = ωL − ωeg is the rf detuning, f (x) = (eβx + 1)−1 is
the Fermi distribution function which becomes a step function
�(−x) in the limit of zero temperature, and A(p,ω) is the spec-
tral function satisfying the sum rule

∫ +∞
−∞ dω A(p,ω)/2π =

1. The momentum-resolved rf spectroscopy [36,37] is the
cold-atom analog of the angle-resolved photoemission spec-
troscopy in solid-state physics [66]. It measures I0(p,ω) and
thus allows the spectral function, A(p,ω) = −2 Im G(p,ω +
i0+), to be accessed experimentally, where G(p,iωn) is the
Matsubara Green’s function determined by Dyson’s equation
G−1(p,iωn) = G−1

0 (p,iωn) − 
(p,iωn). In terms of the re-
tarded self-energy, the spectral function A(p,ω) takes the form

A(p,ω) = −2 Im 
R(p,ω)

[ω − ξp − Re 
R(p,ω)]2 + Im 
R(p,ω)2
. (24)
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FIG. 4. (Color online) (a) Contour plot of the spectral function
(log[A(p,ω − μ)]) of axial polarons in the (p,ω) space. The free
Fermi dispersion relation is plotted as a thin white line. The plots on
the right show how the spectral function changes with ω for polarons
with axial momentum of 0.5 (b), 1 (c), and 1.5 (d). The parameters
used are εdd = 0.95, mF = 6u, mB = 10mF , aBB = 200a0, aBF =
−500a0, and nB = 1020 m−3, where u is the atomic mass and a0 is the
Bohr radius. Note that in this work, we are interested in the physics of
mobile impurities. Thus, α is chosen to be below the critical value for
self-localization. In the considered example, α = 0.48. In producing
these diagrams, a small but finite number is used to approximate 0+.

Figure 4(a) showcases a typical contour plot of A(p,ω − μ)
for an axial impurity. The key features of this diagram can be
captured in terms of the Fermi-liquid parameters. The peak
position Ep is the root to the equation

Ep − μ = ξp + Re 
R(p,Ep − μ), (25)

involving the real part of the self-energy. In the region close
to p = 0, the peak position is approximated as a quadratic
function of momenta, Ep ≈ E0 + p2

‖/2m∗
F || + p2

⊥/2m∗
F⊥. The

curvature close to p = 0 is inversely proportional to the effec-
tive mass, m∗

F ||,⊥ = mF Z−1
0 [1 + ∂εp‖ ,⊥ Re 
R(p,ω)]−1, where

Z0 = [1 − ∂ω Re 
R(p,ω)]−1 is the quasiparticle residue,
εp‖,⊥ = p2

‖,⊥/2mF is the kinetic energy, and every term in
m∗

F ||,⊥ is evaluated at p = ω = 0.
The ω intercept of the peak line in Fig. 4(a) with the vertical

axis determines the ground-state polaron energy E0. In the
single-polaron limit, E0 = μ, where the chemical potential μ

is determined self-consistently from μ = Re 
(0,0) [67] or

μ = UBF nB +
∫

d3q
(2π )3

(
g2

q

μ − εq − ωq
+ mFBU 2

FB

2n−1
B mF εq

)
.

(26)

It has been well established that highly imbalanced Fermi
systems support not only attractive [3–6] but also repulsive
[68–72] polarons. Likewise, repulsive polarons are also ex-
pected to exist in our system when UBF is tuned on the
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repulsive side of the Feshbach resonance, but the repulsive
polarons are highly unstable [73]. In this work, consistent
with the assumption that led to the self-energy in Eq. (4), we
limit our investigation to systems with attractive Bose-Fermi
interaction (UBF < 0) where polarons are always attractive.
The ω intercept in Fig. 4(a) indicates a polaron energy
(or rather a binding energy) of E0 = −0.276 (�2/mF ξ 2

B),
which is in agreement with the one determined from
Eq. (26).

The existence of a negative polaron energy creates, for
small momenta, a gap between the polaron peak dispersion
curve and the impurity-phonon scattering continuum [light
blue (light gray) region], a region defined to be above
ωc(p) = min (εp−q + ωq), where q covers all the possible
phonon momenta. For an impurity with a momentum below
a certain threshold pc [≈0.88 in Fig. 4(a)], the impurity-
phonon interaction is coherent, and the spectral function
describing the peak is then a δ-like function as in the case
of free fermions. For an impurity with a momentum above
pc the polaron peak line enters the continuum where the
phonon states become energetically available for impurity
scattering (and at very large momenta, as expected, the
polaron peak line asymptotes to the free-impurity dispersion).
The impurity scattering involving the phonon emissions then
causes the peak line to be broadened, as illustrated in
Figs. 4(b)–4(d).

It is well known that the gap shown in Fig. 4(a) can
cause the calculation using Fermi-liquid theory (equivalent
to the Tamm-Dancoff approximation) to be quite different
from the calculation using the on-mass-shell approximation
(also known as the Rayleigh-Schrödinger approximation)
[74]. In the present problem, this same gap has an added
consequence of diminishing the role that anisotropy plays
in Fermi-liquid theory. In a future study, we plan to tailor
Feynman’s path-integral formalism [75] to explore the polaron
physics in our model; as a superior all-coupling approximation,
Feynman’s method would not only extend the current study
to the strong-coupling regime but would also help arbitrate
between the two approaches just mentioned.

V. CONCLUSION

In conclusion, we have considered a polaronic model in
which impurity fermions interact, via the short-range s-wave
scattering potential, with background bosons in a dipolar
condensate where bosons interact via both short- and long-
range interactions. We have described such a model with a
Fröhlich type of Hamiltonian where the role of phonons is
played by density fluctuations of dipolar bosons. The polaron
in this model emerges as an impurity dressed with a cloud of
phonons which, due to the competition between the attractive
and repulsive part of the dipole-dipole interaction, obey an
anisotropic dispersion spectrum. Taking into consideration
only the single-phonon-impurity scattering processes, we
have constructed a self-energy capable of capturing the main
polaronic features of our model operating in the weak-coupling
regime. We have described the polaron using the self-energy
on the on-mass-shell, discussing, in particular, how anisotropy
affects the Čerenkov radiation of Bogoliubov phonon modes,
which can be directly verified by experiments in which a dipo-
lar BEC moves against an obstacle. We have also described
the polaron in the spirit of Fermi-liquid theory, focusing on the
spectral function for the impurity fermions, which is directly
accessible to the momentum-resolved rf spectroscopy in cold
atoms. Finally, we stress that while this work concentrates on
the three-dimensional dipolar Bose-Fermi mixture, it can be
generalized to its two-dimensional analog where the polaron
physics may be greatly enriched by the existence of a “roton”
minimum structure in the phonon spectrum of the dipolar BEC
[76,77].

Note added. Recently, we were informed of Ref. [78]
by its authors, who use a variational approach to calculate
the spectral properties and rf spectroscopy of polarons in a
nondipolar BEC.
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[38] K. Góral, K. Rza̧żewski, and T. Pfau, Phys. Rev. A 61, 051601(R)

(2000).
[39] S. Giovanazzi, A. Görlitz, and T. Pfau, Phys. Rev. Lett. 89,

130401 (2002).
[40] C. Kittel, Introduction to Solid State Physics (Wiley, New York,

1986).
[41] F. M. Peeters and J. T. Devreese, Phys. Rev. B 32, 3515 (1985).
[42] W. Casteels, J. Tempere, and J. T. Devreese, Phys. Rev. A 84,

063612 (2011).
[43] D. H. Santamore and E. Timmermans, New J. Phys. 13, 103029

(2011).
[44] A. A. Blinova, M. G. Boshier, and E. Timmermans, Phys. Rev.

A 88, 053610 (2013).
[45] W. Casteels, J. Tempere, and J. T. Devreese, Phys. Rev. A 86,

043614 (2012).

[46] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, New York, 1994).

[47] R. M. Kalas and D. Blume, Phys. Rev. A 73, 043608 (2006).
[48] M. Bruderer, W. Bao, and D. Jaksch, Eur. Phys. Lett. 82, 30004

(2008).
[49] E. Tiesinga, B. J. Verhaar, and H. T. C. Stoof, Phys. Rev. A 47,

4114 (1993).
[50] S. Inouye, M. R. Andrews, J. Stenger, H.-J. Miesner, D. M.

Stamper-Kurn, and W. Ketterle, Nature (London) 392, 151
(1998).

[51] E. Timmermans, P. Tommasini, M. Hussein, and A. Kerman,
Phys. Rep. 315, 199 (1999).

[52] E. Mach and P. Salcher, Sitzungsber. Akad. Wiss. Wien 95, 764
(1887).

[53] G. B. Whitman, Linear and Nonlinear Waves (Wiley, New York,
1974).

[54] B. Damski, Phys. Rev. A 69, 043610 (2004).
[55] I. Kulikov and M. Zak, Phys. Rev. A 67, 063605 (2003).
[56] A. M. Kamchatnov, A. Gammal, and R. A. Kraenkel, Phys. Rev.

A 69, 063605 (2004).
[57] L. Salasnich, N. Manini, F. Bonelli, M. Korbman, and A. Parola,

Phys. Rev. A 75, 043616 (2007).
[58] I. Carusotto, S. X. Hu, L. A. Collins, and A. Smerzi, Phys. Rev.

Lett. 97, 260403 (2006).
[59] Y. G. Gladush, G. A. El, A. Gammal, and A. M. Kamchatnov,

Phys. Rev. A 75, 033619 (2007).
[60] A. Amo, S. Pigeon, D. Sanvitto, V. G. Sala, R. Hivet, I. Carusotto,

F. Pisanello, G. Leménager, R. Houdré, E. Giacobino et al.,
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