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Faraday waves in collisionally inhomogeneous Bose-Einstein condensates
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We study the emergence of Faraday waves in cigar-shaped collisionally inhomogeneous Bose-Einstein
condensates subject to periodic modulation of the radial confinement. Considering a Gaussian-shaped radially
inhomogeneous scattering length, we show through extensive numerical simulations and detailed variational
treatment that the spatial period of the emerging Faraday waves increases as the inhomogeneity of the scattering
length gets weaker, and that it saturates once the width of the radial inhomogeneity reaches the radial width of
the condensate. In the regime of strongly inhomogeneous scattering lengths, the radial profile of the condensate
is akin to that of a hollow cylinder, while in the weakly inhomogeneous case the condensate is cigar shaped
and has a Thomas-Fermi radial density profile. Finally, we show that when the frequency of the modulation is
close to the radial frequency of the trap, the condensate exhibits resonant waves which are accompanied by a
clear excitation of collective modes, while for frequencies close to twice that of the radial frequency of the trap,
the observed Faraday waves set in forcefully and quickly destabilize condensates with weakly inhomogeneous
two-body interactions.
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I. INTRODUCTION

Over the past two decades ultracold quantum gases have
been an almost perfect playground for nonlinear scientists due
to their versatility and excellent experimental control. Bose-
Einstein condensates (BECs) have been particularly attractive
[1,2] for several reasons: the extreme tunability of their short-
range two-body interactions (using either magnetic or optical
Feshbach resonances), the existence of atomic species which
also possess long-range dipole-dipole interactions, the exper-
imental condensation of multicomponent systems (realized
with one atomic species in two or more distinct hyperfine states
or with several distinct atomic species) with tunable interstate
or interspecies interactions, and the possibility of modifying
the geometry of condensates almost at will [2]. Moreover, this
remarkable level of experimental control was accompanied by
an accurate theoretical description at mean-field level, using
the so-called Gross-Pitaevskii equation [3], which catalyzed
thorough investigations into the dynamics of the condensates
at (or close to) zero temperature.

Pattern formation in quantum fluids is a related research
topic which has been intensively studied and there are by now
experimental results on the emergence of Faraday patterns
in BECs [4] and 4He cells [5] subject to parametric drives,
as well as numerous theoretical studies on Faraday waves
in condensates with short-range interactions [6,7], dipolar
condensates [8], binary condensates with short-range inter-
actions [9], Fermi-Bose mixtures [10], and superfluid Fermi
gases [11]. Moreover, it has been shown that Faraday waves
can be suppressed in condensates subject to either resonant
parametric modulations [12] or space- and time-modulated
potentials [13,14], which is a widely studied topic [15–23].
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Furthermore, in the context of parametric excitations, the
formation of density patterns has been studied in expanding
ultracold Bose gases (either fully [24] or only partially
condensed [25,26]), and the spontaneous formation of density
waves has been reported for antiferromagnetic BECs [27].

In this paper we focus on cigar-shaped condensates with
Gaussian-shaped radially inhomogeneous scattering lengths
subject to periodic modulation of the radial confinement.
Such systems are in the so-called collisionally inhomogeneous
regime [28] which can be achieved either by magnetic or
by optical means. Magnetic Feshbach resonances are well-
established experimental methods and have been used to study
the formation of ultracold molecules [29], the BEC-BCS
crossover [30], and the production of Efimov trimer states
[31], but the length scale for application of the Feshbach field is
usually larger than the size of the atomic BEC sample, so these
methods could not be used in reaching the collisionally inho-
mogeneous regime. Optical Feshbach resonances, however,
have been shown to allow fine spatial control of the scattering
length, and recent experimental results show modulations of
the s-wave scattering length on the scale of hundreds of
nanometers [32]. Furthermore, it has been shown that the
collisionally inhomogeneous regime supports a plethora of
new nonlinear phenomena such as the adiabatic compression
of matter waves [28,33], Bloch oscillations of matter-wave
solitons [28], atomic soliton emission and atom lasers [34],
dynamical trapping of matter-wave solitons [35–39], en-
hancement of transmissivity of matter waves through barriers
[35,36,40], formation of stable condensates exhibiting both
attractive and repulsive interatomic interactions [41–43], the
delocalization transition in optical lattices [44], spontaneous
symmetry breaking in a nonlinear double-well pseudopotential
[45], the competition between incommensurable linear and
nonlinear lattices [36,46], the generation of solitons [47,48]
and vortex rings [49], and many others.
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Here we show through extensive numerical simulations and
supporting variational calculations that the spatial period of the
Faraday waves which emerge in collisionally inhomogeneous
condensates depends strongly on the space modulation of
the scattering length. In particular, we show that the spatial
period increases as the inhomogeneity becomes weaker and
that it saturates once the width of the Gaussian-shaped
inhomogeneity approaches the radial width of the condensate.
As we will show, this behavior can be understood in terms of an
effective nonlinearity of the system, which reveals that the sys-
tem becomes more nonlinear as the inhomogeneity becomes
weaker, thereby exhibiting clearly observable Faraday waves
of longer spatial periods and shorter instability onset times.
In the regime of strongly inhomogeneous collisions, the radial
profile of the condensate resembles that of a hollow cylinder,
while in the weakly inhomogeneous case the condensate is
cigar shaped and has a Thomas-Fermi radial density profile.
The latter regime can be described using the usual variational
description of density waves in BECs [7], while for the former
we introduce a versatile trial wave function which describes
both the bulk properties of the condensate and the emergence
of the density wave.

The paper is structured as follows: in Sec. II we introduce
the Gross-Pitaevskii equation and detail the variational treat-
ment of density waves, and in Sec. III we present our numerical
and analytical results. Finally, Sec. IV gathers our concluding
remarks and gives an outlook for future research.

II. VARIATIONAL TREATMENT OF THE
GROSS-PITAEVSKII EQUATION

The ground-state properties and the dynamics of a three-
dimensional BEC at zero temperature are accurately described,
respectively, by the time-independent(

− �
2

2m
� + V (r) + g(r)N |ψ |2

)
ψ = μψ (1)

and time-dependent
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=
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ψ (2)

versions of the Gross-Pitaevskii equation (GPE). Here, μ is
the chemical potential of the system, N is the total number of
atoms in the BEC, and

V (r) = m

2

(
�2

ρρ
2 + �2

zz
2
)

(3)

represents the external confining potential, which may depend
on time through the frequencies �ρ = �ρ(t) and �z = �z(t).
The strength of the nonlinear interaction g is proportional to
the s-wave scattering length as ,

g = 4π�
2

m
as. (4)

and can be engineered to be spatially inhomogeneous (e.g., by
using optical Feshbach resonances), or time dependent (e.g.,
by harmonic modulation of the applied magnetic field close to
a Feshbach resonance), or both.

The previous GPEs can be solved numerically without
difficulty using readily available sequential FORTRAN codes

[50] or OpenMP-parallelized C codes [51] which implement
Crank-Nicolson methods, but other numerical approaches are
also available [52–57]. However, for analytical insights into
the dynamics of the condensate, such numerical calculations
are usually accompanied by variational or hydrodynamical
approaches [2]. Variational methods are particularly attractive
because one can simplify the dynamics of the condensate
to a coupled system of ordinary differential equations from
which one can analytically determine the frequencies of the
collective excitations, the speed of sound in the condensate,
the position of resonances, etc. To this end, one starts from the
Gross-Pitaevskii Lagrangian density

L(r,t) = �
2

2m
|∇ψ |2 + V (r,t)|ψ |2 + gN

2
|ψ |4, (5)

which is then minimized for a selected trial wave function that
captures the physics of the problem under scrutiny.

In our case, we consider a longitudinally homogeneous
cigar-shaped condensate, i.e., �z(t) = 0, whose radial fre-
quency is harmonically modulated in time,

�ρ(t) = �ρ0(1 + ε sin ωt), (6)

where ε is the modulation amplitude, and ω is the modulation
frequency. Furthermore, the scattering length is spatially
modulated in the radial direction such that the nonlinear
interaction has the form

g = g(ρ) = 4π�
2a(0)

m
e−ρ2/2b2 = g0 e−ρ2/2b2

, (7)

where a(0) = as |ρ=0 is the (constant) value of the s-wave
scattering length along the z axis, and b is the length scale
of the space modulation of the scattering length in the radial
direction.

The trial wave function that captures the dynamics of a
collisionally inhomogeneous BEC is chosen as

ψ(r,t) = φ(r,t){1 + [u(t) + iv(t)] cos kz}

= A(t)(1 + γρ2) exp

(
− ρ2

2w2(t)
+ iρ2α(t)

)
×{1 + [u(t) + iv(t)] cos kz}, (8)

where A(t) is chosen such that the density is normalized
to unity over one period of cos kz, i.e., over the interval
[−π/k,π/k]. Note that the trial wave function consists of the
radial envelope φ(r,t) that describes the collective dynamics
of the condensate, multiplied by a periodic function that
captures the emergence of longitudinal density waves. We
stress here that effectively one-dimensional systems like the
one we are investigating exhibit only one-dimensional patterns
(i.e., waves), which all look alike, independently of the spatial
inhomogeneity of the scattering length. Therefore, we focus
on the study of their spatial periods and the instability onset
times. The two- and three-dimensional systems, however,
are qualitatively different because in these cases the spatial
distribution of the scattering length impacts the geometry of the
excited patterns to the extent of having, for instance, transitions
from triangular to square patterns after small modifications of
the scattering length, and this will be the topic of a forthcoming
presentation.
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To arrive at the desired equations governing the dynamics,
one integrates the Lagrangian density over one spatial period of
the density wave and minimizes the ensuing (time-dependent)
Lagrangian through the classical Euler-Lagrange equations
[58], which yield in our case four ordinary differential
equations that correspond to minimizations with respect to
the variational parameters w(t), α(t), u(t), and v(t), and
one algebraic equation that corresponds to minimization with
respect to the parameter γ . The physical interpretation of the
variational parameters is quite simple: w(t) corresponds to the
width of the condensate, α(t) is the corresponding phase, and
u(t) + iv(t) is the complex amplitude of the density wave,
while γ is less transparent and measures the inhomogeneity
of the collisions. The spatial period of the grafted wave, i.e.,
2π/k, is determined by considering the necessary conditions
for the emergence of density waves, and therefore k is
not treated here as a variational parameter. The quality of
the variational results depends strongly on how accurately
the trial wave function describes the possible modes of the
condensates, and numerous other options are explored in the
literature (see Refs. [59–61] and references therein for the main
results).

Finally, let us also notice that improved accuracy usually comes
at the cost of cumbersome variational equations which are
hard to investigate by purely analytical means. Consequently,
instead of the general set of equations which describes both
the weakly and strongly inhomogeneous regimes, we focus in
the next sections on two distinct simplified sets of equations,
one for each regime. The good agreement with the numerical
results, presented in Sec. III, fully justifies the use of the
variational trial function (8). For simplicity, from now on we
will use the natural system of units (� = m = 1).

A. Weakly inhomogeneous collisions

The regime of weakly inhomogeneous collisions corre-
sponds to large values of the length scale b, such that the
exponential term in Eq. (7) is very close to unity. The stationary
density profile of the condensate obtained by numerically solv-
ing Eq. (1) shows a strong localization of the atoms around the
symmetry axis of the condensate, and one can safely investi-
gate its dynamics considering the variational parameter γ to be
small. Within this approximation we have the following varia-
tional equations for the dynamics of the bulk of the condensate:

γ = 4b2 + w̃2

4w̃2(8b6E1 + 16b4E2w̃2 + 4b2E2w̃4 + πw̃6)

{
8b4E3 + 4b2E3w̃

2 + π
(
1 − 16b4�2

ρ0

)
w̃4 + 8πb2�2

ρ0w̃
6 + π�2

ρ0w̃
8
}
,

(9)

ẅ(t) = 2π + ng0

2πw(t)3
− 2γ (2π + ng0)

πw(t)
− w(t)

2π (4b2 + w(t)2)3
{4b2[ng0 + 32πb4�ρ(t)2]

+ 2π�ρ(t)2w(t)6 + [ng0 + 96πb4�ρ(t)2]w(t)2 − 4[γ ng0 − 6πb2�ρ(t)2]w(t)4}. (10)

For the density wave, the variational equations have the forms

u̇(t) = k2v(t)

2
, (11)

v̇(t) = −
(

k2

2
+ 4b2ng0

πw(t)2[4b2 + w(t)2]

)
u(t) . (12)

In the previous equations, w̃ is the equilibrium width
of the condensate obtained from Eq. (10) with ε = 0
(i.e., �ρ = �ρ0), E1 = 8π + 3ng0, E2 = 3π + ng0, and
E3 = 2π + ng0, while n is the longitudinal density of the
condensate. The above equations represent the truncated
version of the full set of Euler-Lagrange equations obtained
by neglecting terms of the order O(γ 2).

The important point for our analysis is that Eqs. (11)
and (12) can be cast into a Mathieu-like equation where the
parametric drive is due to the time dependence of w(t), namely,

ü(τ ) + u(τ )[AW(k,ω) + εBW(k,ω) sin 2τ ] = 0, (13)

where ωt = 2τ , and the coefficient AW(k,ω),

AW(k,ω) = 2k2

ω2

(
k2

2
+ 4b2ng0

πw̃2(4b2 + w̃2)

)
, (14)

will be relevant for calculation of the spatial period of Faraday
patterns. The density waves described by this equation emerge

due to the periodic modulation of the strength of the confining
potential, which in turn generates periodic oscillations of the
radial width of the condensate w(t), and thereby serves as an
effective parametric drive in Eq. (13).

General solutions of Eq. (13) are not known analytically,
but for small values of the modulation amplitude ε the equation
reduces to a pure Mathieu equation whose solutions are well
known [62]. The Faraday waves observed experimentally [4,5]
correspond to the most unstable solutions, which are first
excited, and their dispersion relation k(ω) is obtained from
the condition AW(k,ω) = 1 [62], which yields

kF,W =
⎧⎨
⎩

√
ω2 + 16b4n2g2

0

π2w̃4(4b2 + w̃2)2
− 4b2ng0

πw̃2(4b2 + w̃2)

⎫⎬
⎭

1/2

.

(15)

From this expression, the spatial period of Faraday waves is
calculated as p = 2π/kF,W.

B. Strongly inhomogeneous collisions

The regime of strongly inhomogeneous collisions, i.e.,
strongly spatially modulated interactions, corresponds to small
values of the parameter b. It is qualitatively different from the
regime of weakly inhomogeneous collisions as the condensate
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has a stationary density profile akin to that of a hollow
cylinder. This is due to the fact that the interaction energy
decreases when the condensate is further away from the
longitudinal axis, where it has a maximum, while the potential
energy increases with increase of the radial distance from
the longitudinal axis. Therefore, the ground state, which
has a minimal total energy, is found in between, with

the maximal density of the condensate at some distance
from the longitudinal axis, depending on the strength of
inhomogeneity.

To describe analytically the condensate in the regime of
strong inhomogeneity, we consider γ to be large, such that the
corresponding Euler-Lagrange equations for the bulk of the
condensate can be truncated to

γ = 2

w̃2

{
1024b8

w̃2
+ 1280b6 + 160b2w̃4 + 8b4

(
80 + 3ng0

π

)
w̃2 + 20w̃6 + w̃8

b2

}{
1024b8

w̃2
+ 32b6

(
40 − 3ng0

π

)
+ w̃8

b2

+ 128b4
(
5 + 8b4�2

ρ0

)
w̃2 + �2

ρ0w̃
12

b2
+ 160b2

(
1 + �2

ρ0w̃
4 + 8b4�2

ρ0

)
w̃4 + 20

(
1 + �2

ρ0w̃
4 + 32b4�2

ρ0

)
w̃6

}
, (16)

ẅ(t) = 1

3w(t)3
− 2

3γw(t)5
− �ρ(t)2w(t) + 256b12ng0

πE4w(t)3
+ 128b10ng0

πγE4w(t)3
+ 384b10ng0

πE4w(t)
+ 192b8ng0

πγE4w(t)
, (17)

while for the density wave the equations are truncated to

u̇(t) = k2

2
v(t), (18)

v̇(t) = −
(

k2

2
+ 384b10ng0

πw(t)2[4b2 + w(t)2]5

)
u(t), (19)

where E4 = (4b2 + w(t)2)6. Equation (16) is correct up to
terms of the order O(γ −4), while the other equations are
correct to to terms of the order O(γ −2). As before, n represents
the longitudinal, radially integrated density of the condensate.

The next crucial step is to cast the last two equations into a
single Mathieu-like equation,

ü(τ ) + u(τ )[AS(k,ω) + εBS(k,ω) sin 2τ ] = 0, (20)

where again ωt = 2τ , and the coefficient AS(k,ω) has the form

AS(k,ω) = 2k2

ω2

(
k2

2
+ 384b10ng0

πw̃2(4b2 + w̃2)5

)
. (21)

The most unstable solution of the above Mathieu equation
is again given by the condition AS(k,ω) = 1, yielding

kF,S = 1√
πw̃2(4b2 + w̃2)5

{ − 384b10ng0

+
√

Cb20n2g2
0 + π2w̃4(4b2 + w̃2)10ω2

}1/
2, (22)

where the constant C has a value C = 147 456 and w̃ is the
equilibrium width of the condensate obtained from Eq. (17)
for ε = 0 (i.e., �ρ = �ρ0). As before, the spatial period of
emerging Faraday waves is calculated as p = 2π/kF,S.

The dispersion relations for the case of weak inhomo-
geneity, Eq. (15), and for the case of strong inhomogeneity,
Eq. (22), represent the main contributions of this paper, and
we show in the next section that they accurately describe the
properties of density waves in realistic condensates, despite the
simplifications that have been used in the variational approach.

III. RESULTS

In this section we compare the variational results from
the previous section with numerical results for a realistic

condensate with N = 2.5 × 105 atoms of 87Rb loaded into
a magnetic trap with frequencies �ρ0 = 160 × 2π Hz and
�z = 7 × 2π Hz. First, by means of a standard imaginary-time
propagation, using the split-step semi-implicit Crank-Nicolson
method [51], we determine the ground state of the condensate
for the case of a constant scattering length as = 100.4a0,
and calculate the radial width of the condensate. This radial
width, hereafter designated b0, is found to be b0 = 1.86 μm
for given parameters of the system, and serves as a referent
length scale for values of the inhomogeneity parameter b in
Eq. (7). Second, using the same imaginary-time propagation
method, we determine the ground state of the condensate for
a number of values of b, ranging from small (b = b0/4) to
large (b = 4b0), as well as for the limit of homogeneous
interactions (b → ∞). For each calculated ground state, we
numerically simulate the real-time dynamics [51] and monitor
the emergence of Faraday patterns in the radially integrated
density profiles for parametric drives of the form �ρ(t) =
�ρ0(1 + ε sin ωt), where ε and ω represent the modulation
amplitude and frequency.

In Figs. 1(a) and 1(b) we show the radial density profile
for z = 0 and the full ρ-z density profile of the ground
state for b = 4b0, which corresponds to the case of weakly
inhomogeneous collisions. Figure 1(c) gives the subsequent
time evolution of the radially integrated (column) density
profile of the condensate after modulation is switched on, with
ε = 0.1 and ω = 250 × 2π Hz. Figures 1(a) and 1(b) show
a clear Thomas-Fermi density profile, while the variational
result obtained from the equilibrium solution of Eqs. (9)
and (10) significantly overestimates the peak density and
underestimates the radial extent of the condensate. Despite
these quantitative differences, we will see that the proposed
ansatz captures the main features of the emergence of density
waves. These become fully visible around 200 ms after the start
of modulation, as can be seen in Fig. 1(c). In order to determine
the spatial period of emerging Faraday patterns, in Fig. 1(d)
we show the Fourier spectrum in the spatial domain of the
radially integrated density profile at 250 ms after modulation
is switched on. Note that due to the longitudinal component
of the magnetic trap the peaks in the Fourier spectrum always
have finite widths, which indicates the presence of a range of
periods instead of a single one.
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FIG. 1. (Color online) Weakly inhomogeneous collisions, inhomogeneity parameter b = 4b0. (a) Radial component of the density profile
at z = 0 for the condensate ground state. The full red line shows the GPE numerical results, while the dashed blue line corresponds to the
variational results. (b) Full ρ-z density profile of the ground state of the condensate. (c) Time evolution of the radially integrated longitudinal
density profile obtained with the modulation amplitude ε = 0.1 and the modulation frequency ω = 250 × 2π Hz. The Faraday wave becomes
fully visible after 200 ms. (d) Fast Fourier transform (FFT) spectrum of the longitudinal density profile of the condensate at t = 250 ms. The
peak at kF,W = 0.60 μm−1 corresponds to the Faraday wave, yielding a spatial period of p = 2π/kF,W = 10.5 μm.

This effect is even more pronounced in the case of strongly
inhomogeneous collisions (i.e., for small values of b), as we
can see in Fig. 2(d). This Fourier spectrum corresponds to
the radially integrated density profile of a condensate for
b = b0/4, again calculated 250 ms after the modulation is
switched on. The full real-time dynamics of the condensate
is depicted in Fig. 2(c), where we clearly observe that such
strongly inhomogeneous collisions in the radial direction
decrease the longitudinal extent of the condensate by a factor
of 2, as compared to the case of weak inhomogeneity (b = 4b0)
in Fig. 1(c). The redistribution of atoms in the condensate for
the case of strong inhomogeneity is shown in Figs. 2(a) and
2(b), where we immediately observe that the condensate has a
radial density profile akin to that of a hollow cylinder.

When analyzed by Fourier transformation in the time
domain, the density waves which appear in Figs. 1(c) and 2(c)
have an intrinsic frequency equal to half that of the drive ω, and
therefore can be identified as Faraday waves. We have verified
this numerically for all values of b under scrutiny. In Fig. 3
we show the spatial period of the observed Faraday waves
for ω = 250 × 2π Hz as a function of inhomogeneity scale
b and compare the numerical results with the analytic ones
obtained in the previous section. Due to the finite widths of the
peaks in the Fourier spectra from which the spatial periods are
determined numerically, we have associated an error bar with
the average spatial period by taking the width of the dominant
peak into account. The variational results shown in Fig. 3

are obtained from Eq. (15) for weak inhomogeneity (blue
circles, designated var. weak) and from Eq. (22) for strong
inhomogeneity (red triangles, designated var. strong), using an
overall longitudinal Thomas-Fermi (TF) approximation which
accounts for the intrinsic longitudinal inhomogeneity of the
density profile.

To this end, for z ∈ [−L,L] we consider the longitudinal
TF density profile of the form

n(z) = 3
L2 − z2

4L3
, (23)

and n(z) = 0 otherwise, and determine the average spatial
period of the density wave from the corresponding wave vector
defined as

k̄ = 1

2L

∫ L

−L

k(z) dz. (24)

This kind of improvement has been used already to capture
quantitatively the dynamics of density waves in cigar-shaped
condensates of 87Rb [7,61]. The longitudinal TF extent of
the condensate 2L is determined as follows. First, the wave
function in the time-dependent GPE (2) is assumed to have
the simple separated form ψ(r,t) = φ(ρ)f (z,t), where we
have neglected all radial dynamics so that the function φ(ρ)
is the stationary radial component of ψ , while the function
f (z,t) describes purely longitudinal dynamics. Second, the
right-hand and the left-hand sides of the time-dependent GPE
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FIG. 2. (Color online) Strongly inhomogeneous collisions, inhomogeneity parameter b = b0/4. (a) Radial component of the density profile
at z = 0 for the condensate ground state. The full red line shows the GPE numerical results, while the dashed blue line corresponds to the
variational results. (b) Full ρ-z density profile of the ground state of the condensate. (c) Time evolution of the radially integrated longitudinal
density profile obtained with the modulation amplitude ε = 0.1 and the modulation frequency ω = 250 × 2π Hz. The Faraday wave becomes
fully visible after 200 ms. (d) Fast Fourier transform (FFT) Fourier spectrum of the longitudinal density profile of the condensate at t = 250 ms.
The peak at kF,S = 1.16 μm−1 corresponds to the Faraday wave, yielding a spatial period of p = 2π/kF,S = 5.4 μm.

are multiplied by 2πρ φ(ρ) and integrated over the radial
coordinate ρ. This yields the one-dimensional time-dependent
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from the Fourier analysis of the solution of the time-dependent GPE;
red triangles and blue circles correspond to the variational prediction
of the spatial period obtained as 2π/k̄, with k̄ given by Eq. (24).
The red triangles are obtained using the dispersion relation (22) for
strong inhomogeneity, while the blue circles are obtained from the
dispersion relation (15) for weak inhomogeneity.
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(
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2

2m

∂2

∂z2
+ 1

2
�zz

2 + g1DN |f̃ |2
)

f̃ , (25)

where the effective one-dimensional interaction is

g1D = g0

∫ ∞

0
dρ 2πρ φ(ρ)4e−ρ2/2b2

, (26)

and the function f is rescaled by a phase factor so as
to include the contribution from integration of the radial
component of the trapping potential, which only shifts the
overall chemical potential. In the third step, we apply
the standard TF approximation for the GPE (25) and obtain
the longitudinal extent of the BEC,

2L =
(

12Ng1D

�2
z

)1/3

, (27)

where g1D is computed using the stationary radial wave
function obtained from Eqs. (9) and (10) in the case of weakly
inhomogeneous collisions, and Eqs. (16) and (17) for the
strongly inhomogeneous case.

In our numerical simulations we have seen Faraday waves
for all nonresonant drives (i.e., when the ratio ω/�ρ0 is not an
integer number). The resonant and near-resonant dynamics of
the condensate differs from the nonresonant one in two ways:
first, the emergence of density waves is accompanied by the
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FIG. 4. (Color online) Time evolution of the radially integrated
longitudinal density profile obtained with the modulation amplitude
ε = 0.1 and the modulation frequency ω = 160 × 2π Hz for (a) b =
4b0; (b) b = b0; (c) b = b0/4. The excited collective modes soften
for smaller values of b.

excitation of a collective mode (an effect which is particularly
strong for weakly inhomogeneous collisions) and second, the
intrinsic frequency of the density wave is equal to that of the
drive, not half its value. In Fig. 4 we illustrate the resonant
dynamics of a collisionally inhomogeneous condensate for
b = 4b0, b = b0, and b = b0/4 for a driving frequency ω =
�ρ0 = 160 × 2π Hz. The collective excitation is similar to
that obtained experimentally by Pollack et al. [63] in that both
have oscillations of the longitudinal extent of the condensate.
However, in our case the radial extent is roughly constant

apart for small-amplitude oscillations triggered by the periodic
modulation of the radial component of the trap. Effectively,
we have a one-dimensional collective oscillation mode in the
longitudinal direction, while the dynamics of the radial extent
is determined by the external drive.

When comparing the dynamics for different values of the
inhomogeneity parameter b in Fig. 4, the main conclusion is
that the collective dynamics softens for strongly inhomoge-
neous collisions (i.e., small values of b), which means that the
instability onset times of the resonant waves increase as the
inhomogeneity of the collisions gets stronger and also that
the amplitudes of the longitudinal oscillations get smaller.
Note also that the localization of the two-body collisions
(and therefore the nonlinearity) close to the symmetry axis
of the system (ρ = 0) effectively turns the condensate into
a linear system, so that nonlinear features such as the
aforementioned excitation of collective modes and density
waves are substantially slowed down. In fact, one can easily
quantify the effective nonlinearity by integrating out the radial
component of the interaction factor g. If we take into account
Eq. (7), the resulting collisional factor is found to be

g∗ =
∫ ∞

0
dρ 2πρ g(ρ) = 2πg0b

2, (28)

which shows that the effective nonlinear interaction depends
quadratically on b. This means that for strong inhomogeneity
(small b) the bulk of the condensate reaches an effectively
linear regime (small g∗) in which nonlinear effects fade out.
The effective nonlinearity of the system increases with b and
so does the spatial period of the Faraday waves, which are
intrinsically nonlinear waves. In other words, as the system
departs from the linear regime and becomes more nonlinear
(increasing b), the Faraday waves become more visible and
have increasing spatial period, as well as smaller instability
onset time such that they can be easily identified.

One additional important conclusion that stems from the
results of our numerical simulations is that there are substantial
qualitative differences between the Faraday waves which
emerge at different driving frequencies. The spatial period of
the wave and its intrinsic frequency are enough to distinguish
between the Faraday waves excited by nonresonant drives.
However, for driving frequencies close to ω = 2�ρ0 = 320 ×
2π Hz (i.e., the second harmonic of the radial frequency of
the trap) this is not the case. The observed waves have the
spatial period and the frequency typical for Faraday waves,
but emerge more violently and have a dynamics similar to that
of resonant waves. This observation is particularly relevant
for weakly inhomogeneous collisions, as previous analytical
and numerical studies of Faraday waves focused chiefly on the
spatial period and the frequency of the waves and compared the
theoretical results with the available experimental data from
Ref. [4]. In Fig. 5 we show the radially integrated density
profile for b = b0 and b = b0/4. Note that the emergence of
the Faraday wave is accompanied by the excitation of a clear
collective mode for b = b0/4, as we see in Fig. 5(b), while
for b = b0 the dynamics is so forceful that, just after the wave
sets in, the condensate quickly becomes unstable, as can be
seen in Fig. 5(a). In fact, we have observed the same violent
destabilization of the condensate after the Faraday wave sets
in throughout the whole regime of weakly inhomogeneous
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FIG. 5. (Color online) Time evolution of the radially integrated
longitudinal density profile obtained with the modulation amplitude
ε = 0.1 and the modulation frequency ω = 320 × 2π Hz for (a) b =
b0; (b) b = b0/4. In (a) the condensate destabilizes violently after the
Faraday wave sets in, while in (b) the destabilization is slower and
one can clearly see the formation and subsequent evolution of the
Faraday wave.

collisions, with almost no quantitative differences between
b = b0 and the limit of homogeneous interactions b → ∞.

IV. CONCLUSIONS

We have studied the emergence of Faraday and resonant
waves in cigar-shaped, collisionally inhomogeneous Bose-
Einstein condensates subject to periodic modulations of the
radial confinement. Using extensive numerical simulations
and detailed variational calculations, we have shown that
for a Gaussian-shaped radially inhomogeneous scattering
length the spatial period of the emerging Faraday waves
increases as the inhomogeneity decreases, and that it reaches
a saturation plateau once the width of the Gaussian-shaped
inhomogeneity is close to the radial width of the condensate.
The increase of the spatial period of the Faraday waves can
be understood in terms of the effective nonlinearity of the

system, which shows that the system becomes more nonlinear
as the inhomogeneity becomes weaker, thereby exhibiting
clearly observable Faraday waves of longer spatial periods
and shorter instability onset times. Investigations into the
density profile of the condensate have shown that for strongly
inhomogeneous collisions the radial profile of the condensate
is akin to that of a hollow cylinder, while for the case of
weak inhomogeneity the condensate is cigar shaped and has a
Thomas-Fermi radial density profile. Finally, we have shown
that for modulation frequencies close to the radial frequency of
the trap the condensate exhibits resonant waves accompanied
by excitation of collective modes, while for frequencies close
to twice the radial frequency of the trap the observed Faraday
waves set in forcefully and are accompanied by energetic
collective modes which quickly destabilize the condensate for
weakly inhomogeneous collisions.

As a natural extension of this work, we plan to investigate
the dynamics of density waves excited through parametric
resonance in cigar-shaped condensates subject to thermal
fluctuations. The interaction of the condensate with the
thermal cloud is particularly relevant for long-time-scale
analysis, when the depletion of the condensate due to the
external drives can no longer be ignored. We also plan to
study two-dimensional (pancake-shaped) condensates, which
exhibit a rich variety of density patterns, and where one
could try to control the stability of patterns and even generate
spatiotemporal chaos by tuning the parametric drive (e.g., the
frequency and number of harmonics), or the spatial patterns of
inhomogeneous collisions (e.g., square or hexagonal), or both.
Furthermore, we are planning to study the ramifications arising
out of collisionally inhomogeneous interactions on Faraday
waves in vector BECs.
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