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In this paper we consider dipolar quantum gases in a quasi-one-dimensional tube with dipole moment
perpendicular to the tube direction. We deduce the effective one-dimensional interaction potential and show
that this potential is not purely repulsive, but rather has an attractive part due to high-order scattering processes
through transverse excited states. The attractive part can induce bound states and cause scattering resonances.
This represents the dipole-induced resonance in low dimension. We work out an unconventional behavior of
low-energy phase shift for this effective potential and show how it evolves across a resonance. Based on the
phase shift, the interaction energy of spinless bosons is obtained using the asymptotic Bethe ansatz. Despite the
long-range nature of dipolar interaction, we find that the behavior is similar to a short-range Lieb-Liniger gas
emerging at the resonance region.

DOI: 10.1103/PhysRevA.89.023604 PACS number(s): 67.85.Jk, 03.75.Nt, 05.30.−d

I. INTRODUCTION

Nowadays, there is a major effort in cold-atom physics to
achieve degenerate gases of stable polar molecules, using stim-
ulated Raman adiabatic passage technique [1]. Polar molecules
possess a permanent electric dipole moment, which can be
polarized and tuned by external electric fields. Their dipole
interaction strength can be tuned as strong as comparable to
or even larger than the Fermi energy of free gases or the
confinement energy in a confined geometry [2]. Unlike the
Coulomb or van der Waals interaction, the dipole interaction
is highly anisotropic. Thus, realizing polar molecular gases
provides unique many-body systems of strong and anisotropic
interactions.

Since ultracold quantum gases are dilute systems, many
previous studies of such systems teach us an important
lesson that understanding the two-body problem is crucial for
revealing properties of many-body physics. For instance, for
a short-range isotropic interaction between atoms, the 1/r

behavior of the short-range two-body wave function leads
to universal Tan relations for many-body systems [3]; an
understanding of confinement-induced resonance [4] is the
basis for discovering the super-Tonks gas [5]. For the dipole
interaction, in three-dimensional (3D) free space, the two-body
problem has been solved in a number of works [6–10], which
reveals a dipole-induced s-wave resonance (DIR). That is
to say, although to the first-order Born approximation, the
dipole interaction has no net effect in the s-wave scattering
channel, the anisotropic nature of the dipole interaction allows
coupling to higher partial wave channels, through which a
strong effective attractive potential is generated in the s-wave
channel. Such an attractive potential can support the bound
state and cause s-wave scattering resonance. Benefiting from
the insight of the two-body solution, intriguing properties of
fermion superfluids across a DIR have been studied [11,12].
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The two-body problem with dipole interaction in the
confined quasi-1D system has been extensively studied in a
number of previous works [13–17]. Among many of these
studies a commonly used model is to take a purely attractive
or repulsive potential along the 1D tube [14], as can be
deduced from the lowest transverse mode approximation.
However, with the experience in the 3D case, one may
wonder whether this commonly used model is always valid,
in particular, when the dipole interaction is strong enough to
compare with the confinement energy. The studies beyond the
1/z3 potential include Refs. [15,16], respectively emphasizing
the short-range scattering parameter modified by the dipole
interaction [15] and exploring the scattering properties when
the dipole moment is parallel to the 1D tube [16].

In this work, we consider the situation that the dipole
moment is perpendicular to the 1D tube, where the lowest
transverse mode approximation gives a purely repulsive
potential (with a 1/z3 tail), while our studies reveal effects
beyond this approximation. We focus on the low-density limit
and discover interesting behaviors of the scattering phase shift
to effectively characterize this system. Our main results are
summarized as follows.

(i) Instead of a purely repulsive potential, the effective
1D scattering potential is found to contain an attractive part
at an interparticle distance of the order of the confinement
length. Such a potential induces bound states and gives rise
to scattering resonances, which are insensitive to short-range
details.

(ii) Because of the 1/z3 tail of the dipole potential, the
phase shift of the asymptotic two-body wave function at
long distance exhibits an unconventional form, as cot δk ∝
−kD[2η + ln(CkD)], where k is the relative momentum, D

is the dipole length, C is a constant, and η is a dimensionless
parameter that incorporates the interplay effect of both the
confinement and dipole interaction.

(iii) An asymptotic Bethe ansatz calculation based on the
unconventional phase shift shows that, despite the long-range
nature of the dipolar interaction, near the resonance region
the behavior of spinless bosons is similar to a short-range
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Lieb-Liniger gas, which can be simply characterized by a
coupling constant.

II. ONE-DIMENSIONAL EFFECTIVE POTENTIAL

We consider a one-dimensional system along the ẑ direction
with strong harmonic confinement in the transverse xy plane
and the dipole moment d lies in xy plane perpendicular to the
ẑ direction, as shown in Fig. 1(a). The Hamiltonian for the
relative motion of the two-body problem is given by(

− �
2

2μ
∇2 + 1

2
μω2ρ2 + V (r)

)
ψ(r) = Eψ(r), (1)

where μ = m/2 is the reduced mass, ρ =
√

x2 + y2 is the
transversal radius, ω is the frequency of the transverse
harmonic potential, and V (r) = Va(r) + Vd(r) is shown in
Fig. 1(b). Here Va denotes the potential on an atomic scale
and Va(r) is chosen as a square-well potential Va(r) = −V0

for r < r0 for simplicity. In addition, r0 is much smaller
than the confinement length a⊥ = √

�/μω. The dipole part
Vd(r) = d2(1 − 3 cos2 ξ )/r3 for r > r0, where ξ is the angle
between d and r. The dipole length D = μd2/�

2 can be tuned
to be comparable to or even larger than a⊥.

If we fix d in the xy plane, say, d = dx̂ (defined as the fixed
dipole model), the rotational symmetry around ẑ is broken,
which makes the numerical calculation quite involved. To
reduce the numerical complexity, we first consider a simpler

FIG. 1. (Color online) (a) Schematic of our system. (b)
Schematic of the two-body interaction potential along ẑ with x =
y = 0 fixed. (c) Numerical solution of the lowest eigenstates as a
function of D/a⊥. Here Ekz = E − �ω is the kinetic energy in the z

direction. We take r0 = 0.1a⊥ and V0 = −136�ω for the short-range
square-well potential. The sample size is L = 60a⊥ along z. The
solid horizontal lines are noninteracting energy levels and the dashed
horizontal lines are energy levels with phase shift π/2.

model, in which d is rapidly rotating around ẑ with frequency
much larger than any other energy scale in the problem (defined
by the rotating dipole model) as considered in Ref. [15].
Upon time averaging, the rotational symmetry around ẑ is
restored and the effective dipolar interaction becomes Vd =
d2(3 cos2 θ − 1)/2r3, where θ is the angle between r and ẑ.
With the knowledge obtained from the rotating dipole model,
our discussion will later return to the fixed dipole model since
it is more realistic.

We numerically solve the rotating dipole model with
a discrete variable representation [18–20] in a cylindrical
box. We consider s-wave scattering and the corresponding
even-parity eigenstates. Thus, in the rest of this paper we
only consider a wave function at z > 0. The eigenspectrum
is plotted as a function of D/a⊥ in Fig. 1(c). We find that
as D/a⊥ increases, the energy levels will decrease visibly at a
certain window of D/a⊥ and eventually at larger D/a⊥ a series
of bound states appears in sequence. We have also found that
the positions for the onset of bound states are insensitive to
changing V0 with r0 fixed, which only modifies the atomic
potential part. Rather, the onsets of bound state are sensitive to
changing r0 with V0 fixed, which modifies not only the atomic
potential but also the cutoff length scale of the dipole part.
This strongly indicates that the bound state originates from the
dipolar interaction rather than the potential on an atomic scale.

Therefore, to understand how the dipole interaction could
induce bound states, we shall deduce an effective one-
dimensional interaction potential V1d(z). Previously, one com-
monly used approach was to assume that molecules always
stay in the lowest transverse confinement mode φ0(ρ) and this
single-mode approximation (SMA) gives

V SMA
1d

(
z

a⊥

)

=
∫ ∫

dx dy Vd(r)φ2
0(ρ)

= �
2

μ

D

a3
⊥

[√
π

(
1 + 2

z2

a2
⊥

)
ez2/a2

⊥erfc

(
z

a⊥

)
− 2

z

a⊥

]
. (2)

Here the SMA is applied outside the short-range cutoff r0 [21].
As expected, V SMA

1d (z) is a purely repulsive potential and
behaves as (�2/μ)D/z3 for large z/a⊥ � 1 and this potential
cannot support any bound state. Alternatively, we can deduce
V1d(z) from the numerical solution of the eigenfunction ψ(ρ,z)
and eigenvalue E in the following way. Noting that the overall
weight of ψ(ρ,z) on the lowest transverse mode φ0(ρ) is nearly
unity in a quite wide range of z/a⊥ [see the inset of Fig. 2(a)],
we can therefore define a projected 1D wave function ψ1d(z) =∫

dx dy φ0(ρ)ψ(ρ,z). Assuming that ψ1d(z) satisfies a 1D
Schrödinger equation [−(�2/2μ)d2/dz2 + V1d(z)]ψ1d(z) =
(E − �ω)ψ1d(z), we obtain V1d as

V1d(z) = �
2

2μ

d2

dz2 ψ1D(z)

ψ1D(z)
+ E − �ω, (3)

In Fig. 2(a) we compare V1d with V SMA
1d and find that in the

region z/a⊥ � 1 these two potentials agree very well, whereas
at a short distance when z/a⊥ � 1, V1d starts to deviate from
V SMA

1d and finally V1d becomes attractive. This is because the
dipole interaction increases strongly at a short distance and
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FIG. 2. (Color online) Effective potential for the (a) rotating
dipole model and (b) fixed dipole model at D/a⊥ = 1.825. The
inset of (a) shows the weight of ψ(ρ,z) on the lowest transverse

mode, i.e., ρ0 = |ψ1d(z)|2∫ |ψ(ρ,z)|2d2ρ
. Different lines in (a) correspond to

the SMA and MMA with 5, 10, and 20 modes included, and
the full three-dimensional numerical results. In (b) the blue solid
line corresponds to the MMA with 10 modes and the dashed line
corresponds to the D/z3 potential.

can overcome the confinement potential and the higher-order
scattering processes via higher transverse modes give rise to
attraction. The enhanced short-range attraction with increasing
D/a⊥ reduces energies of scattering states and finally leads to
bound states, as shown previously in Fig. 1(c). In particular,
when a bound state starts to emerge near the threshold, the
low-energy scattering behavior will be dramatically modified
and V SMA

1d fails to describe the low-energy physics.
Nevertheless, the SMA can be improved by including

higher transverse modes. Considering Ĥρ = − �
2

2μ
(∂2

x + ∂2
y ) +

1
2μω2ρ2 + V (r) and expanding Ĥρ in the harmonic oscil-

lator eigenbasis φi(ρ) as H
ij
ρ (z) = ∫

dx dy φi(ρ)Ĥρφj (ρ),
the matrix Hρ(z) can be diagonalized by a unitary trans-
formation X†(z)Hρ(z)X(z) = �(z). Using an adiabatic ap-
proximation [10], the multimode approach (MMA) gives an
effective potential V MMA

1d (z) = �00(z). In Fig. 2(a) we also
compare V MMA

1d (z) with V1d and we find that V MMA
1d (z) can

reproduce the short-range attraction reasonably well, as long as
one keeps sufficient modes. Therefore, we conclude that the
MMA provides the correct physical understanding for the 1D
effective potential. As the underlying physics of the MMA is
so generic, it can also be applied to the fixed dipole model.
An effective potential for the fixed dipole model is obtained as
shown in Fig. 2(b) with the MMA. Similar to the rotating dipole
model, it coincides with D/z3 when z � a⊥ and gradually
becomes attractive when z � a⊥. The following discussion is
based on such an effective 1D potential, which can be applied
to both two models.

III. LOW-ENERGY PHASE SHIFT

When z � a⊥, the wave functions can be solved pertur-
batively in two different regions. In region I, z � D, and in
region II, z � 1/k. The wave function for z � a⊥, where the
potential deviates from D/z3, will not be studied explicitly;
instead, it determines the boundary condition for region II.

In region I, we take ψI(z) = Ak[cot δkW (kz) − V (kz)],
where Ak is a normalization factor and W (kz) and V (kz) are
two independent solutions that can be expanded as W (kz) =∑

n(kD)nWn(kz) and V (kz) = ∑
n(kD)nVn(kz) when the

D/z3 term is treated as a perturbation for z � D. To zeroth or-
der we have ψI(z) ∝ cos(kz + δk) and thus W0(kz) = cos(kz)
and V0(kz) = sin(kz), where δk is the phase shift. To the next
order, we find W1(ξ ) and V1(ξ ) (ξ denotes kz) as

W1(ξ ) = −Ci(2ξ ) sin ξ + 1

2
cos ξ

[
1

ξ
+ 2 Si(2ξ ) − π

]
,

(4)

V1(ξ ) = −Ci(2ξ ) cos ξ + 1

2
sin ξ

[
1

ξ
− 2 Si(2ξ ) + π

]
,

where Ci(z) = − ∫ ∞
z

cos t
t

dt and Si(z) = ∫ z

0
sin t

t
dt . Up to

O(ξ ), by expanding ψI(z) in terms of ξ , we have

ψI(z) = Ak

(
cot δk − kD

z

D
− kD

2
cot δk{1 − 2γE

− 2[ln(2kD) + ln(2z/D)]}
)

, (5)

where γE is Euler’s constant.
In region II, when z � 1/k, we can treat the k2ψ(z) term

as a perturbation. To O(kz), we only need to consider the
zero-energy solutions of the D/z3 potential, with the general
form given by

ψII(z) =
√

z/D[K1(2
√

D/z) + ηI1(2
√

D/z)], (6)

where K1 and I1 are, respectively, the regular and irregular
solutions for the D/z3 potential. Their relative coefficient η is
determined by potential details at short range, which can be
tuned by D/a⊥ in the present model (see the inset of Fig. 4). In
the following discussion of low-energy physics, η serves as an
independent input parameter, which describes the effect of the
short-range potential on the long-range physics. If the potential
is close to a pure D/z3 potential, η → 0; if the short-range part
is about to form a bound state, η → +∞; and if a bound state
has been formed near the threshold, η → −∞. By expanding
ψII(z) at large z/D, one obtains

ψII(z) = z

2D
− ln(z/D)

2
+ η + γE − 1

2
+ O(D/z). (7)

Finally, for low-energy scattering kD � 1, we require ψI(z)
of Eq. (5) and ψII(z) of Eq. (7) to behave in the same way
in their overlap region D � z � 1/k. Thus, by equating
the relative coefficients of z/D, ln(z/D), and constant terms
between Eqs. (5) and (7), we can obtain two coupled equations
for Ak and cot δk , the solution of which gives the low-energy
behavior of the phase shift

cot δk = −kD[2η + ln(CkD)], C = 2e3γE−3/2. (8)

To verify this phase shift we numerically solve the 1D
Schrödingier equation with a boundary condition at short
distance z∗ (�D). In this case, the boundary condition can
be satisfied by a given η for the zero-energy solution. From
the numerical solution we can extract δk from the asymptotic
two-body wave function behavior at a large distance. We plot
cot δk as a function of kD and compare it with the formula 8)
in Fig. 3 and find that they agree reasonably well for sufficient
low energies [22]. The logarithmic correction reflects the
long-range nature of the dipole interaction.
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FIG. 3. (Color online) Plot of cot δk determined by numerics
(blue dashed lines) compared with the analytical formula (8) (red
solid lines) for (a) η = 1, (b) η = −1, (c) η = 10, and (d) η = −10.

IV. MANY-BODY SYSTEM OF SPINLESS BOSONS

Hereafter we study a many-body system of spinless dipolar
bosons with an asymptotic Bethe ansatz [23]. The asymptotic
Bethe ansatz only makes use of the scattering phase shift to
obtain the thermodynamics of a system with finite density.
Following the standard procedure [23], we obtain kjL =
2πIj − 2

∑
i �=j δ((kj − ki)/2), where Ij are quantum numbers

and δ(k) is the two-body phase shift obtained in Eq. (8).
In the thermodynamic limit one obtains a Fredholm-type
equation

ρ(k) = 1

2π
+ 1

π

∫ B

−B

∂δ
(

k−q

2

)
∂k

ρ(q)dq. (9)

The density and the energy density are, respectively,

n =
∫ B

−B

ρ(k)dk, E =
∫ B

−B

k2ρ(k)dk. (10)

The solution of Eqs. (9) and (10) gives E/EF as a function of
Dn for different η, with EF the energy density for identical
fermions with the same density. In Fig. 4 we display how the
energy density behaves across a resonance.

We find for all η that the energy density approaches the
Tonks limit, i.e., E/EF → 1, in the dilute limit of Dn → 0,
because the phase shift δk → π/2 when k → 0. Near a
resonance when |η| is sufficiently large, as long as kD � e−|η|,
the 2η term dominates over the logarithmic term in Eq. (8) and
the phase shift can be well approximated as cot δk = −kDη.
This gives a nearly-energy-independent interaction constant
g1d = �

2/μDη and the interaction parameter γ = 1/ηnD.
Here γ decreases with D for η > 0 and increases for η < 0. As
shown in Fig. 4, for positive η, the energy density E decreases
as D increases, similar to the usual Lieb-Liniger gas [24];
for negative η, this system is in the super-Tonks region and
E increases with D [25]. Finally, once away from resonance,
when |η| is small, the logarithmic term dominates over the 2η

term in Eq. (8) as long as kD � 1. In this region, the physics
cannot be analogous to that with a zero-range interaction since
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FIG. 4. (Color online) Energy density of spinless bosons as a
function of Dn for different η. Here n is the density of 1D bosons,
EF is the energy density for identical fermions with the same density,
and η can be tuned by D/a⊥ in the quasi-1D model, as shown in the
inset.

the logarithmic term prevents defining an energy-independent
interaction constant. In this region, we numerically find
that the energy density almost stays static around EF with
varying Dn.

V. CONCLUSION

Our discussion here can be straightforwardly generalized to
the quasi-2D case, where the dipole moment is perpendicular
to the 2D plane. A previous study of this system pointed out
a similar behavior as a short-range attraction of the effective
potential [26]. However, it was also observed that the induced
scattering resonances in quasi two dimensions is extremely
narrow [27] in comparison to the quasi-1D case discussed
in this paper. This is because it is naturally more difficult to
form a bound state in two dimensions than in one dimension
for a given potential (here with both repulsive and attractive
parts), as the kinetic energy cost (at short range) of a bound
state is higher in higher dimensions. As a result, it requires
a larger dipole moment D to generate strong enough short-
range attraction for scattering resonances. In turn, the larger
D enhances the repulsive barrier at an intermediate distance
of two dipoles and makes the coupling between the scattering
state and bound state much weaker [28]. That is to say, the
irregular part of the wave function is not important except for a
very narrow range of the dipole moment. A pure 1/ρ3 repulsive
potential works much better in two dimensions compared to
the 1D case discussed in this paper.
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