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The Compton scattering of x-ray photons, assisted by a short intense optical laser pulse, is discussed. The
differential scattering cross section reveals the interesting feature that the main Klein-Nishina line is accompanied
by a series of side lines forming a broad plateau where up to O(103) laser photons participate simultaneously in
a single scattering event. An analytic formula for the width of the plateau is given. Due to the nonlinear mixing
of x-ray and laser photons a frequency-dependent rotation of the polarization of the final-state x-ray photons
relative to the scattering plane emerges. A consistent description of the scattering process with short laser pulses
requires to work with x-ray pulses. An experimental investigation can be accomplished, e.g., at LCLS or the
European XFEL, in the near future.
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I. INTRODUCTION

Compton scattering [1], i.e., the scattering of x or γ rays off
free electrons is one of the fundamental interaction processes
of photons with charged particles. A particular feature is the
dependence of the frequency ω′

KN of the scattered photon on
the angle ϑ , ω′

KN = ωX/(1 + ωX

m
[1 − cos ϑ]), in the initial rest

frame of the scattering particle with mass m. For linearly
polarized x rays the scattered photon polarization direction
is the same as for electric dipole radiation. These properties
become modified in laser-assisted Compton scattering X +
L + e → e′ + X′, where we suppose alignment of the x-ray
beam [X, frequency ωX ∼ O(keV)] and an intense optical
laser pulse [L, frequency ωL ∼ O(eV)]. The frequency ω′ of
the scattered photon X′ in the initial rest frame of the electron
e reads (with � = c = 1)

ω′(�,ϑ) = ωX + �ωL

1 + ωX+�ωL

m
(1 − cos ϑ)

. (1)

That means a nonlinear frequency mixing occurs with �

parametrizing the amount of energy and momentum absorbed
from the laser field in the scattering process. The quantity
� can be related to the number of involved laser photons,
in particular in the limit of infinite monochromatic plane
waves, where the values of � become discrete �N , with
integers N referring to the number of exchanged laser photons
(see Appendix for details). The value of � may be positive
or negative, leading to the formation of side bands in the
energy spectrum [2]. A similar effect has been observed also
for laser-assisted atomic processes [3,4]. Obviously, � = 0
recovers the laser-free scattering of an x-ray photon with
known Klein-Nishina (KN) kinematics. A large frequency
ratio � = ωX/ωL leads to a strong dynamical enhancement
of nonlinear multilaser photon effects such that many side
lines form a broad plateau reaching to |�| � 1. Although the
possibility of a strong enhancement was recognized in Ref. [2],
the shape of the spectrum in frequency space and the cutoff
values of �, in particular their angular dependencies, have
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never been calculated precisely to the best of our knowledge.
This gap will be filled in this paper, where we calculate the
frequency spectrum and provide a formula for the angular
dependence of the cutoff energies of the side-band plateau.

Observing the plateau of side lines within a certain
frequency interval determined by cutoff values with special
angular dependencies is a clear experimental signal for laser-
assisted Compton scattering of x rays, i.e., a new possibility
to observe O(103) multiphoton effects in strong-field QED. In
addition, as we shall show below, the polarization properties
of X′ represent a new feature. The nonlinear frequency mixing
leads to a frequency-dependent rotation of the polarization of
the final-state photons. This rotation does not affect the main
KN line (� = 0) and is useful to identify the side bands in an
experiment.

The basic scattering process can be understood qualitatively
in a classical picture, where the slow electron motion due to
the laser is described classically. For high-intensity laser fields
of the order of 1018 W/cm2 the motion of electrons becomes
relativistic and nonlinear, resembling a figure-eight motion
with a velocity component in the laser beam direction [5,6],
superimposed to the usual transverse motion. In this picture,
laser-assisted Compton scattering corresponds to the scattering
of x rays off accelerated charges, and the broadening of the
KN line occurs due to a time-dependent Doppler shift induced
by the figure-eight motion.

In our approach we fully take into account the finite
lengths of both the x-ray and laser pulses, going beyond
infinite monochromatic plane wave approximation [2,7–13]
or the limit of long laser pulses and infinite x-ray waves
[14]. Pulse shape effects have been recently proved to have
a significant impact of the scattering spectra in nonlinear
Compton scattering [15–21], pair production [22–25], and
other strong-field QED processes [6,26].

Taking into account the finite pulse length is necessary as
we envisage a specific experimental setup involving a petawatt
class optical laser in combination with an x-ray free electron
laser, which both produce short femtosecond light pulses. In
some previous papers, relations for the cross section were
calculated either for small numbers of exchanged laser photons
N [7–9], or they were limited to nonrelativistic intensities
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D. SEIPT AND B. KÄMPFER PHYSICAL REVIEW A 89, 023433 (2014)

[2], or were restricted to the discussion of energy-integrated
angular distributions [10]; the partial cross sections have been
calculated for arbitrary values of N in terms of generalized
Bessel functions, e.g., in Ref. [11].

Our paper is organized as follows. In Sec. II we formulate
the matrix element for photon emission in the combined x-ray
and laser fields and discuss the physical significance of the
various terms occurring in a weak-field expansion in the x-ray
field. In Sec. III the leading-order contribution in the x-ray field
is evaluated and used to calculate an expression for the cross
section for laser-assisted Compton scattering. The essential
properties of the photon spectrum are discussed in Sec. IV
where we present results for the differential cross section as
well as the final photon polarization for a representative set
of parameters. High-order multiphoton effects are quantified
via an analytic formula for the cutoff values of the frequency
spectrum. We discuss and summarize our results in Sec. V
where we also address some aspects of an experimental
realization. Appendix provides a brief discussion on the limit
of infinitely long plane waves.

II. MATRIX ELEMENT

We describe the photon beams as a classical plane wave
background field with four-vector potential Aμ = A

μ

X(�φ) +
A

μ

L(φ), defining φ = kL · x ≡ k
μ

Lxμ with k
μ

L = (ωL,kL) and
k

μ

X = �k
μ

L . We consider orthogonal linear polarizations,
AX · AL = 0. The vector potentials are parametrized as
A

μ

j (φ) = maj

e
ε

μ

j gj (φ) cos φ, j ∈ {X,L}, with the modulus of
the electron charge e, normalized polarization vectors ε

μ

j

and invariant laser strength parameters aj . We emphasize the
appearance of the envelope functions gj accounting for the
finite pulse lengths Tj of both the x-ray and the laser pulses,
which are assumed to be synchronized temporally.

For the given background field Aμ we may work in the
Furry picture employing Volkov states [6,27]

	p(x,A) = e
−ip·x− i

2kL ·p
φ∫
dφ′[2ep·A(φ′)−e2A2(φ′)]

×
(

1 + e/kL /A

2kL · p

)
up , (2)

as nonperturbative solutions of the Dirac equation (i /∂ − e /A −
m)	p(x) = 0. The free Dirac spinors up fulfill (/p − m)up = 0
and are normalized to ūpup = 2m. Moreover, Feynman’s slash
notation /p = γμpμ is employed.

The S matrix for the emission of the photon X′ with
momentum k′ is given by

S = −ie

∫
d4x 	̄p′ (x,A)/ε′eik′ ·x	p(x,A), (3)

as depicted in Fig. 1(a). The nonperturbative expression (3),
in both aX and aL, is correct for arbitrary x-ray and laser
intensities, describing multiphoton processes for both the laser
and x-ray field. For instance, in the papers [8,28–31] situations
have been discussed where it is necessary to treat both field
on equal footing. However, even for present XFEL technology
aX � 1, and we may expand the S matrix into a power series
in aX to get

S = S0 + aX(S+1 + S−1) + O
(
a2

X

)
. (4)

(a) (b) (c) (d)

p p

k

−→
p p

k

+
p p

kX k
+

p p

k
kX

+

FIG. 1. (Color online) Expansion of the Feynman diagram (a) for
photon emission off a dressed electron (double zigzag line: electron
in the combined laser and x-ray field, plain double line: electron in
the laser background, wavy line: photon, and zigzag line: x-ray) for a
weak x-ray field in powers of aX , yielding spontaneous emission (b),
laser-assisted Compton scattering (c) and induced emission (d).

This corresponds to treating the field AX as a perturbation,
going to a single x-ray photon approximation. A similar
technique of expanding a Volkov wave function in a weak
field has also been used, e.g., in Refs. [12,13,32,33]. Here,
we first discuss the physical implications of that expansion
and give an interpretation for the individual terms of Eq. (4).
Details of the derivation are presented in the next section.

The lowest-order term S0 ∝ a0
X [see Fig. 1(b)] corresponds

to nonlinear optical-laser Compton scattering without any
participation of x-ray photon [34]. This scattering of laser pho-
tons off free electrons is named commonly nonlinear Thom-
son or Compton scattering, see, e.g., Refs. [15–19,35–37].
In the classical picture, this is the radiation due to the
accelerated figure-eight motion of the electron in the laser.
In the present context it may be dubbed spontaneous emis-
sion. Using moderately strong laser pulses with aL ∼ 1,
the nonlinear interaction with more than one photon has
been verified experimentally [38–40] via the observation of
harmonic radiation. In these experiments, only a rather small
number of O(2–5) laser photons was participating in a single
scattering event.

The leading-order process involving x-ray photons is
proportional to a1

X and consists of two terms which correspond
to the absorption [S+1, Fig. 1(c)] or the emission [S−1,
Fig. 1(d)] of a single x-ray photon from or to the initial beam.
The laser-assisted Compton scattering is described by S+1 with
the formal energy-momentum conservation

p + kX + �kL = p′ + k′ , (5)

which arises upon the integration in (3) together with introduc-
ing the auxiliary variable �; note that one still has to integrate
over �, therefore (5) has only three independent conservation
laws for the light-front components [16,19]

p⊥ = p′⊥ + k′⊥, p− = p′− + k′− . (6)

The light front is defined with respect to kL such that k+
L =

2ωL is the only nonvanishing light-front component of kL and
φ = ωLx− becomes the light-front time-evolution parameter.
By adopting a coordinate system in which the laser propagates
in the z direction the light-front components of any four-vector
read x± = x0 ± x3 and x⊥ = (x1,x2)T .

The fourth condition in (5), p+ + k+
X + �k+

L = p′+ + k′+,
furnishes a relation between the frequency ω′ and the variable
� via Eq. (1). This may also be turned around expressing � as
a function of k′ via

�(ω′,ϑ) = k′ · p − kX · (p − k′)
kL · (p − k′)

. (7)
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Thus, one can chose any of the two quantities ω′ or � to be the
independent variable defining the other one. The lower limit
of � is determined by the condition ω′ � 0, yielding � � −�.

The meaning of � is that it parametrizes the amount of
laser four-momentum kL absorbed in the scattering process
and it is the Fourier conjugate to the laser phase φ [22,41].
It can be considered as a continuous analog of the photon
number encountered for infinite monochromatic plane wave
fields [41,42], cf. also Appendix.

Due to the large frequency ratio the two partial processes
(b) and (c) are separated kinematically: While photons from
spontaneous emission S0 have typical energies of ω′ = O(eV)
[Eq. (1) with ωX = 0], the photons from laser-assisted Comp-
ton scattering S+1 are ω′ = O(keV). The induced process
S−1, related to double Compton scattering [43–45], is strongly
suppressed here in the keV frequency range due to the large
value of �.

III. CROSS SECTION FOR LASER-ASSISTED
COMPTON SCATTERING

Here we present the derivation of the matrix element
for laser-assisted Compton scattering S+1, which is needed
to calculate the corresponding cross section. To this end
we have to linearize expression (3) in aX and extract
the part representing the absorption of an x-ray pho-
ton from the field AX, i.e., a process with the formal
energy momentum conservation (5). For these purposes
it is convenient to split the integrand of S in Eq. (3)
into the pre-exponential term �(x) = (1 + e /A/kL

2kL·p′ )/ε′(1 + e/kL /A

2kL·p )

and a phase factor F (x) = (p′ + k′ − p) · x − ∫
dφ ( ep·A(φ)

kL·p −
ep′ ·A(φ)

kL·p′ ) + ( e2

2kL·p − e2

2kL·p′ )
∫
dφ A2(φ), such that

S = −ie

∫
d4x ūp′�(x)upeiF (x) , (8)

where terms proportional to a2
X both in the exponent F and the

pre-exponential � can be dropped by virtue of aX � 1. We
need to linearize furthermore the phase exponent according to

eiF ≈ eiF0+iFX ≈ eiF0 (1 + iFX) , (9)

where F0 is the part of the phase of S independent of AX, i.e.,
∝ a0

X, and

FX = αX

∫
d(�φ) gX(�φ) cos(�φ) (10)

is linear in aX with

αX = maX

(
εX · p′

kX · p′ − εX · p

kX · p

)
. (11)

Multiplying with the pre-exponential we obtain up to linear
order in aX

�eiF ≈ �0e
iF0 + (�X + iFX�0) eiF0 , (12)

where �0 = ∑2
n=0 V L

n [gL(φ) cos φ]n is independent of AX,
and �X = V X

1 gX(kX · x) cos kX · x is linear in aX. The

pre-exponential coefficients are defined by

V
j

0 = /ε′, (13)

V
j

1 = maj

(
/εj /kj /ε

′

2kj · p′ + /ε′/kj /εj

2kj · p

)
, (14)

V
j

2 = m2a2
j ε′ · kj

2p · kjp′ · kj

/kj , (15)

where j ∈ (X,L) as above. In expression (12), the first term
gives rise to S0 and the second term is ∝ aX and contains
both S±1, since the real field AX contains both the amplitudes
for photon absorption and emission. Having linearized the
expressions in AX we may now go over to a complex field
via cos(kX · x) = (eikX ·x + e−ikX ·x)/2 → e−ikX ·x/2, selecting
only the amplitude for an x-ray photon in the initial channel,
yielding

S+1 ∝ 1
2

(
V X

1 gX − αX�0GX

)
eiF0−ikX ·x (16)

with GX = −iei�φ
∫ �φ

dτgX(τ )e−iτ and αX defined in (11).
Employing the slowly varying envelope approximation (see,
e.g., Ref. [18]) for the x-ray pulse means GX → gX. Physi-
cally, this approximation means neglecting a spatial displace-
ment of the electron due to the action of the x-ray field. The
order of magnitude of this effect is given by 1/ωXTX, which
is much smaller than unity for femtosecond x-ray pulses of
several keV frequencies.

Performing the space-time integrations in (8), the matrix
element S+1 for laser-assisted Compton scattering can be
written as

S+1 = −4ieπ3
∫

d� δ(4)(p + �kL + kX − p′ − k′)M(�)

(17)

with the amplitude

M(�) = ūp′

[
V X

1 C0(�) − αX

2∑
n=0

V L
n Cn(�)

]
up. (18)

and the coefficients V
j
n defined in (13)–(15). The functions Cn

in (18) are given by

Cn =
∫ ∞

−∞
dφ [gL(φ) cos φ]ngX(�φ)ei

∫ φ
dφ′ψ(φ′) (19)

with the dynamic phase

ψ(φ) = � + αLgL(φ) cos φ + βL[gL(φ) cos φ]2 (20)

having defined

αL = maL

(
εL · p′

kL · p′ − εL · p

kL · p

)
(21)

and

βL = m2a2
L

2

(
1

kL · p′ − 1

kL · p

)
. (22)

Upon performing the integration over d� in (17) the argument
of the amplitude M becomes a function of ω′ and ϑ , i.e.,
M(�(ω′,ϑ)), with �(ω′,ϑ) given by Eq. (7).
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The cross section

dσ

d�dω′ = r2
e

8π
∫ ∞
−∞dφ gX(φ)2

ω′|M(�(ω′,ϑ))|2
(kL · p)(kL · p′)

, (23)

depending on spin and polarization variables, is normalized to
the incident x-ray flux (re 
 2.8 fm is the classical electron
radius). Equation (23) is differential in the final photon
momenta. The final-state electron is supposed to remain
unobserved, i.e., the final electron momentum p′ is integrated
out and its value is fixed by Eq. (6). In the limit aL → 0, i.e.,
a vanishing laser field, we recover from (18) the KN matrix
element and from Eq. (23) the KN cross section [46], however,
both ones with the initial photon X described as a wave packet.

We emphasize the finite x-ray pulse length TX encoded
in gX. Without gX, the integral C0 would diverge as 1/� for
� → 0, even after a regularization similar to Ref. [16]. This is
no issue for nonlinear Compton scattering since there � = 0
implies ω′ = 0 [18]. Here, however, � = 0 denotes the KN line.
The behavior of C0 at � = 0 can be related to the scattering of
x-ray photons during the time interval outside the laser pulse,
where no laser photons are exchanged. The time integrated
probability for that partial process grows ∝ TX for large TX

while the probability for the scattering inside the laser pulse
stays finite for finite TL. This leads to a relative suppression
of the influence of the laser pulse for large values of TX. In
Ref. [14], where laser-assisted Compton scattering was studied
in a pulsed laser field combined with infinite monochromatic
x-ray waves, the authors introduced a short finite observation
time to fix this issue. In our approach, working with finite
x-ray pulses from the beginning, we naturally obtain consistent
results, where the value of TX is related to the specific
experimental conditions.

IV. PROPERTIES OF THE SPECTRUM

In the following we calculate the spectrum of laser-assisted
Compton scattering numerically for a representative choice of
parameters to exhibit the essential features.

A. Choice of parameters

The following numerical results are for an experiment,
which could be realized when combining an XFEL (e.g.,
LCLS or European XFEL) with an optical laser. That means,
despite of the coherence properties, the XFELs are considered
as sources of short, almost monochromatic x-ray photon
pulses. For the sake of definiteness we specify ωX = 5 keV
for the x rays as well as an 800 nm Ti:Sapphire laser, i.e.,
ωL = 1.55 eV. The planned Helmholtz international beam line
for extreme fields (HIBEF) [47] at the European XFEL [48]
will provide such a setup. We envisage laser intensities I ∼
1018 W/cm2, where aL = 0.68

√
I [1018 W/cm2]. The optical

laser pulse length is set to TL = 20 fs and the x-ray pulse length
is taken as TX = 50 fs (both FWHM values), in agreement
with routinely achieved optical laser pulses and XFEL design
[48]. For convenience we use a cos2 profile [44] for gL and a
Gaussian for gX.

In the following we calculate the photon spectra for laser-
assisted Compton scattering in the rest frame of the initial
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FIG. 2. (Color online) Differential cross section (left panel in a
log scale) as a function of ω′ for the fixed observation direction
ϑ = 90◦ and ϕ = 45◦ for aL = 0.3. The vertical dotted lines depict
the cutoff values (25), (26). The right panel shows, in a linear scale,
the spectrum with 100 eV (rms Gaussian shape) resolution (red solid
curve); for a comparison, the plain KN line without the laser is
depicted as green dashed curve.

electron and focus on photon energies ω′ = O(keV) in the
vicinity of the KN line.

In an actual experiment one could employ low-energy
electrons emitted from an electron gun [38]. The results
from the electron rest frame can be boosted to the laboratory
frame using Lorentz transformations. For low electron kinetic
energies Ekin � m, e.g., the frequencies are transformed
as ω′

lab 
 ω′[1 + v
2 (1 + cos ϑ)], where v = √

2Ekin/m and
scattering angles close to ϑ = π/2 transform as ϑlab 
 ϑ + v.

B. Energy spectra

The unpolarized differential cross section is exhibited in
Fig. 2 as a function of the frequency ω′ for a fixed observation
direction ϑ = 90◦ and ϕ = 45◦. The scattering angle ϑ is
measured with respect to the beam axis kL; the azimuthal
angle ϕ with respect to εL. In the left panel of Fig. 2, for
aL = 0.3 many side lines form a roughened plateau, where the
main KN line sticks out being very narrow as compared to the
width of the plateau. The plateau spans the range 4−6 keV,
corresponding to the order of 1 keV/ωL ∼ 650 exchanged
laser photons, despite of aL < 1. The right panel depicts
the spectrum, averaged with a detector resolution of 100 eV,
on a linear scale. While the KN line becomes broader, the
plateau is clearly visible and the roughness is averaged out
(red curve). Compared to Compton scattering without the laser
(green dashed curve), the peak height of the Klein Nishina
line is reduced to half of its value (see also the discussion in
Sec. IV D).

To find the relevant multiphoton parameter for the process in
Fig. 1(c) we determine the cutoff values �±, beyond which the
amplitude drops exponentially fast, via the stationary phase
method by requiring that there are no stationary points φ�

on the real axis, i.e., ψ(φ�) = 0 [see Eq. (20)] has no real
solutions. Abbreviating f = gL(φ) cos φ we find

f (φ�) = − αL

2βL

±
√

α2
L

4β2
L

− �

βL

, (24)

which has no real solutions for φ� if (i) the term under the
root becomes negative or (ii) there are no real solutions when
calculating the inverse function f −1. The cutoff values are
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determined at maximum intensity at the center of the pulse,
thus, we may set gL → 1 here and condition (ii) turns into
|f | � 1. We find

�− = �ξ−
1 − ξ−

, (25)

�+ =
{

�ξ+
1−ξ+

, for ϑ � ϑ� ,

�ξ0

1−ξ0
, for ϑ > ϑ�

(26)

with

ξ0 = sin2 ϑ cos2 ϕ

2 − 2 cos ϑ
, (27)

ξ± = a2
L

2
(cos ϑ − 1) ± aL sin ϑ | cos ϕ| (28)

and

cos ϑ� = a2
L − cos2 ϕ

a2
L + cos2 ϕ

. (29)

For aL < 1, the cutoff values are of the order �aL for most
observation angles. Thus, for moderately strong laser fields
and a large frequency ratio the relevant multiphoton parameter
is �aL. This is in severe contrast to the spontaneous process
S0 depicted in Fig. 1(b), where the multiphoton parameter is
aL [49].

C. Angular spectra

The plateau has a pronounced dependence on the azimuthal
angle ϕ, see left panel of Fig. 3. A strong reduction of the
plateau width is observed at ϕ = 90◦, i.e., perpendicularly to
the laser polarization, where �+ = 0. The broadest plateau
is found close to the laser polarization direction which is
perpendicular to the x-ray polarization where up to 1000 laser
photons participate. The polar angle distribution (right panel)
shows a forward-backward asymmetry. For large scattering
angles ϑ > 90◦ the emission with � > 0, i.e. ω′ > ω′

KN is
suppressed. The cutoff values (25), (26), depicted by dotted
curves, coincide with the numerical results. From our analysis
of the angular spectra we propose to choose as observation
direction ϑ = 90◦ and an azimuthal angle not too close to
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FIG. 3. (Color online) Frequency vs angle correlations of the
cross section as a function of the azimuthal angle for fixed ϑ = 90◦

(left panel) and as a function of ϑ for fixed ϕ = 45◦ (right panel)
for aL = 0.3. The cutoff values (25), (26) are depicted by the dotted
curves. The color scale represents log10(dσ/d�dω′ [mb eV−1sr−1]).

ϕ = 90◦, e.g., as discussed above in Fig. 2, to optimize the
width of the plateau.

D. Energy integrated cross section

Numerically we find that the energy integrated cross section
equals the KN cross section [50], i.e.,∫

dω′ dσ

d�dω′ = dσKN

d�
. (30)

A qualitative argument for this behavior is provided by a
classical model, where the total emitted power Ė is given
by the Larmor formula yielding

Ė = − e4

6πm2
(A′

L · A′
L + A′

X · A′
X) , (31)

where primes denote derivatives with respect to φ. The first
term in brackets corresponds to the spontaneous emission
process and the second term refers to the laser-assisted
Compton scattering of x-ray photons S+1. The latter part is
independent of the laser intensity. Such a redistribution in
phase space with marginal impact on the total probability has
been found also for other laser-assisted processes [51].

To quantify the fraction of photons scattered into the side
bands, in particular for the observation direction used in Fig. 2,
we define the side-band cross section as that part of the
spectrum which is at least by ±ωL/2 away from ω′

KN. (A
variation of the discrimination value in the range 0.25–0.75 ωL

leads to a relative uncertainty of �5%.) For small values of
�aL � 1, the side-band fraction scales as a2

L. For larger values
of aL, the main line is weakened, see right panel in Fig. 2.
(For monochromatic waves, where gX,L → 1, also a negative
lowest-order aL corrections to the main line has been found
[8,9]). The side-band cross section increases with aL up to
aL ∼ 0.01, where it saturates at 30 mb sr−1. This value should
be compared to the corresponding KN cross section (without
the laser) of 39 mb sr−1, proving that a large fraction of the
photons is emitted into the side bands.

E. Polarization

Due to the nonlinear mixing of optical laser photons with
the incident x-ray photon the polarization of the photon
X′ is rotated as compared to Compton scattering without
the laser. The rotation angle is frequency dependent. This
rotation can be quantified experimentally by measuring the
Stokes parameter P2, which we calculate as P2 = (w45◦ −
w135◦ )/(w45◦ + w135◦ ), where wχ denotes the triple differential
cross section of photons with their polarization vector having
an angle of χ with respect to the scattering plane. For
instance, for the observation angles of Fig. 2 the photon X′
is polarized perpendicular to the scattering plane without the
laser, which means P2 = 0. This result is changed in laser-
assisted Compton scattering. In Fig. 4 the Stokes parameter P2

is exhibited as a function of ω′ for aL = 0.3. The value of P2 is
zero at the KN line and increases with increasing distance from
it, i.e., in the region where more laser photons are involved.
The maximum value of P2 corresponds to a rotation angle
of 5◦ towards kL. In the classical picture, the figure-eight
orbit in the laser field has a component in the directions of
kL, which is transferred to the polarization of the photon X′.
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FIG. 4. (Color online) Rotation of the polarization of the scat-
tered photon, quantified via the Stokes parameter P2 as a function of
ω′ for the same observation direction as in Fig. 2.

The energy dependent polarization rotation can be used to
identify unambiguously the final-state photons emerging from
the multiphoton process.

V. DISCUSSION AND SUMMARY

A clear and easily observable signature of laser-assisted
Compton scattering of x-ray photons is provided by the side
lines accompanying the main Klein-Nishina line forming a
broad plateau. Due to the difference of scales of the photon
energies of x-ray and optical laser, nonlinear effects are
strongly enhanced as compared to the spontaneous emission
of radiation in a pure laser field. The relevant multiphoton
parameter is �aL, which can be large even for laser fields
with intensities of the order of 1018W/cm2. The optimal
conditions to observe the side-band plateau with an x-ray
camera are achieved for aL � 1. Such intensities are achieved
routinely with a 200 TW laser in relatively large spot sizes of
w0 = O(100 μm) and pulse lengths of TL = 20 fs. We do not
expect that spatially inhomogeneous laser spots influence the
cutoff values since they are sensitive to the maximum laser
intensity in the spatiotemporal profile of the pulse. However,
the shape of the plateau will certainly change. The optical
photons emerging from spontaneous emission process, i.e.,
the nonlinear Compton process exhibited in Fig. 1(b), can
be efficiently filtered out by a thin foil which is otherwise
transparent for x rays.

A very useful signal for the nonlinear frequency mixing
is the frequency-dependent rotation of the polarization of the
final-state photons. The polarization can be measured by using
x-ray polarizers. A polarization purity of the order of 10−10 has
been achieved recently [52]. The technique of a polarization
veto can be used to shield the plain KN photons (arising for
unsynchronized X and L pulses) or shield the � = 0 KN-like
photons. For optimal conditions, the x-ray pulse length TX

and the laser pulse length TL should be of the same order of
magnitude. The synchronization of optical and x-ray pulses to
the level of femtoseconds has been achieved experimentally
[53], approaching the subfemtosecond level [54]. Numerically,
the spectra are insensitive to a temporal offset between the two
pulses of the order of a few femtoseconds.

A slight misalignment of the x-ray and laser beams due to
axis offsets or focusing effects does not lead to qualitatively

new effects: The Oleinik resonances [7] for nonparallel
beams (see, e.g., Refs. [55–58]) are suppressed by the large
frequency ratio � and for a small angular misalignment
� � 1 between the x-ray and laser beams. A slight misalign-
ment of the polarizations, εX · εL �= 0, causes laser-intensity-
dependent modifications of the total cross section of the order
O(εX · εL) � 1.

Such experiments can be performed at LCLS or at the
European XFEL combining the x-ray facility with an optical
laser system, e.g., as planned in HIBEF [47]. One could
employ low-energy electrons emitted from an electron gun as
in the experiment [38]. However, the electron energy cannot
be too low since low-energy electrons are expelled from high-
intensity regions due to the ponderomotive force. We found
numerically that for electron kinetic energies as low as Ekin =
500 eV the electrons can penetrate the focus and the maximum
deflection angle is below 0.8◦. This is due to the fact that the
transverse ponderomotive force, which is responsible for the
deflection, is proportional to the gradient of the laser intensity
and scales as ∝ a2

L/w0, where aL is rather small and the laser
spot size w0 is large. Consequently, electrons with kinetic
energies of a few hundred eV are suitable for such experiments.

In conclusion, studying the laser-assisted Compton scatter-
ing of x rays will significantly advance our understanding
of strong-field QED scattering processes in the O(103)
multiphoton regime.
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APPENDIX: LIMIT OF INFINITE MONOCHROMATIC
PLANE WAVES

In this Appendix we discuss briefly the limit of infinite
monochromatic plane waves (IPW), TX,TL → ∞. In this case,
characterized by gL,X → 1, the integral in the exponents of the
functions Cn, Eq. (19), is given by∫

dφ ψIPW(φ) = �φ + αL sin φ + βL

2
φ + βL

4
sin 2φ. (A1)

Owing to the periodicity of the monochromatic field, the
integrand of the Cn can be expanded in a discrete Fourier
series, excluding the nonperiodic terms in (A1), such that the
integrals Cn turn into a sum over discrete partial amplitudes.
For instance, for C0 we find

CIPW
0 =

∞∑
N=−∞

2πδ(� − N + βL/2)JN (αL,βL) (A2)

with amplitudes

JN (αL,βL) =
∞∑

s=−∞
JN−2s(−αL)Js(−βL/4) (A3)

and the Bessel functions JN . Similar relations can be found
for all integrals CIPW

n . Thus, in the limit of infinite plane waves
the variable � becomes a discrete �N = N − βL/2, with integer
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values of N , due to δ(� − N + βL/2). The term βL/2 can be
absorbed into the electron momenta leading to the occurrence
of the field-dressed quasi-momentum

p̃ = p + m2a2
L

4kL · p
kL , (A4)

and similarly for p′. The formal energy momentum conserva-
tion (5) turns into

p̃ + kX + NkL = p̃′ + k′ , (A5)

where N can be considered as number of laser photons
exchanged during the scattering process, as pointed out, e.g.,
in [19,41] for nonlinear Compton scattering. Solving (A5) for
the frequency ω′ gives

ω′
N (ϑ) = ωX + NωL

1 +
(

ωX+NωL

m
+ a2

L

4

)
(1 − cos ϑ)

, (A6)

i.e. discrete frequencies ω′
N with an intensity dependent red-

shift quantified by the term a2
L/4 in the denominator [11].

Integrating over d� in (17) and exploiting the delta
distributions in the functions CIPW

n , the amplitude M , Eq. (18),
becomes a sum of discrete partial amplitudes

MIPW =
∑
N

MN . (A7)

The same is true for the cross section

dσIPW

d�
=

∑
N

dσN

d�
, (A8)

as known from the literature, e.g., [8,9,11]. The dependence on
ω′ in (23) is replaced by a sum over discrete values of N . This
shows that our results for pulsed plane waves, in particular
(17), (18), and (23), contain also the known case of infinite
plane waves in the proper limit.
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