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Landau levels of molecules: Angular-momentum coupling between
cyclotron motion and core rotation
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In a high magnetic field of 3–7 T, nitric oxide (NO) molecules are excited by the double-resonance method
through the intermediate A 2�+F1(v′′ = 0,N ′′ = 0) level to the Landau levels in the energy region above the
zero-field ionization limit to the NO+ X 1�+(v+ = 0,N+ = 0) ion. By detecting NO+ ions, the photoionization
cross section through the Landau levels is determined as a function of the second laser’s frequency. The cross
section contains broad structures and fine structures. Fourier analysis of the cross section and classical trajectory
calculations of the Rydberg electron demonstrate that the broad structure is formed by the Landau level generated
by the cyclotron motion of the electron around the N+ = 0 core in a plane perpendicular to the field, while
the fine structure is formed by the Landau level generated by the three-dimensional cyclotron motion around
the excited N+ = 2 core. By simulating the energy structure of the Landau level, the electron’s orbital angular
momentum is confirmed to be decoupled from the core rotation in the Landau levels. From the selection rules of
the excitation, it is demonstrated that the Landau levels with the N+ = 0 core are excited using the s character in
the A 2�+ state, while those with the N+ = 2 core are excited using the d character. The dominant partial wave,
thus determined, explains well the starting direction of the classical trajectory.
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I. INTRODUCTION

The effects of a magnetic field on the structure and
dynamics of atoms and molecules have evoked continuous
interest for several decades. For explaining these effects, Fig. 1
schematically shows the energy structure of a Rydberg atom.
In a zero field [Fig. 1(a)], the l levels are nearly degenerate and
the level energy is given by −R/n2, where n is the principal
quantum number and R is the Rydberg constant. Distribution
of the closed classical trajectories (Kepler orbits) of the
ensemble is spherically symmetrical in a Coulomb field. In a
low magnetic field of less than approximately 1 T, the Lorentz
force acting on their electrons is several orders of magnitude
weaker than the Coulomb binding force. The external field
acts as a perturbation. In this case, the linear Zeeman effect
is observed, which is induced by the paramagnetic term
μBB(lZ + 2SZ)/�. Here the space-fixed Z axis is parallel to
the magnetic field of strength B, μB is the Bohr magneton, �

is the Planck’s constant, and lZ and SZ are the Z components
of the electron’s orbital angular-momentum l and the electron
spin S. The diamagnetic term (e2B2/8m)r2 sin2 θ dominates
the paramagnetic term for higher B or for high Rydberg states,
where e is the elementary electric charge, m is the mass of an
electron, and r,θ are the spherical coordinates of an electron.

For atoms, the quadratic Zeeman effect, which is induced
by the diamagnetic term, was observed in highly excited
alkali-metal atoms in a field of 2.7 T [1]. The diamagnetic
term mixes high l levels (l � 3) at lower n levels, all l levels at
higher n levels, and also n levels at far higher levels [2]. The
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energy structure is schematically shown in Fig. 1(b). Many
experimental [2,3] and theoretical studies [4–8] have reported
the quadratic Zeeman effect. As the magnetic field increases
further and dominates the Coulomb binding field, which is
realized by a field of a several ∼10 T for high Rydberg
atoms, the motion of a high Rydberg electron becomes
similar to cyclotron motion around the core. The quantized
energy levels thus formed by the diamagnetic term are called
Landau levels. The Landau levels spread to the energy region
above the zero-field ionization limit because of the Lorentz
force, that is, the diamagnetic term. The positive-energy
Landau level was first observed with Ba atoms in a field of
2.5 T [9]. Many experiments followed and confirmed that
the energy spacing of the Landau levels is 1.5 �ωc at the
zero-field ionization limit and decreases to �ωc as the level
energy increases to +∞ [10–14], where ωc = eB/m is the
cyclotron frequency. This variation in the energy spacing was
theoretically explained by application of the one-dimensional
Bohr-Sommerfeld quantization condition [15] or by wave
packet calculation [16] of the Rydberg electron’s motion,
which was considered to be rotation around the core in a
plane perpendicular to the field. The limit of infinite positive
energy indicates the case that a free electron is moving in
a magnetic field. Thus, the electron rotates with ωc, and the
corresponding energy levels are separated by intervals of �ωc

(pure Landau level) [15]. At this limit, many Landau levels are
degenerate [17]. The energy structure is schematically shown
in Fig. 1(e) together with the closed classical trajectories which
are in a plane perpendicular to the field.

At around the zero-field ionization limit, a new type of Lan-
dau levels was observed, having energy spacings of 0.64 �ωc,
0.39 �ωc,0.28 �ωc, etc. These Landau levels are associated
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FIG. 1. Energy diagrams of one ml sublevel of a Rydberg atom in a magnetic field of various strength are shown schematically in order to
explain the energy structure of the Landau level. (a) In a zero field, l levels are nearly degenerate and the level energy is given by −R/n2. Closed
classical trajectories (Kepler orbits) of the ensemble are shown. Distribution of the trajectories is spherically symmetrical in a Coulomb field.
The radius of the state is given by aBn2 (aB: Bohr radius). (b) In a low magnetic field, which means that the Lorentz force acting on the electron
is far weaker than the Coulomb binding force, the magnetic field acts as a perturbation. At lower n levels, nonpenetrating high l levels (l � 3)
are mixed and their degeneracy is removed by the quadratic Zeeman effect. At higher n levels, all l levels are mixed. At far higher levels, n

levels are mixed. (c) Energy structure at an intermediate magnetic field strength between (b) and (d). (d) In a high magnetic field, which means
that the Lorentz force is far stronger than the Coulomb force, Rydberg levels converge to many limits that correlate to the pure Landau levels
shown in (e). These Rydberg levels are known as quasi Landau levels. The Coulomb force acts as a perturbation which remove the degeneracy
of the pure Landau level. (e) In a limit of infinitely high magnetic field, the pure Landau levels are separated by equal energy intervals of
�ωc. Many Landau levels are degenerate. These levels correspond to the cyclotron motion of a free electron. Closed classical trajectories of
the ensemble are shown. These trajectories are in a plane perpendicular to the magnetic field (ν = 1 trajectory in Fig. 6). Distribution of the
trajectories is cylindrically symmetrical around the magnetic field.

with various three-dimensional closed classical trajectories of
the Rydberg electron [18–26]. Oscillator strengths to these
Landau levels were calculated by full quantum-mechanical
treatments and correspondence between the Landau level and
the closed classical trajectory was clarified [17,27,28]. At the
zero-field ionization limit, the Rydberg electron is restricted
by dominant Lorentz force and weak Coulomb force. Since
the Coulomb force acts as a perturbation, degeneracy of the
Landau levels shown in Fig. 1(e) is partly removed. The
resultant energy structure is schematically shown in Fig. 1(d)
(quasi Landau level). These perturbed levels correspond to the
three-dimensional classical trajectories. The relation between
the energy structure shown in Figs. 1(d) and 1(e) is similar to
those shown in Figs. 1(b) and 1(a). That is to say, the magnetic
field is the perturbation for Fig. 1(b), while the Coulomb field
is the perturbation for Fig. 1(d). Many studies on atoms are
reviewed in Refs. [29–33].

For molecules, however, the high external magnetic field
competes with not only the Coulomb binding field but also the
electric field between the nuclei (the “intramolecular field”).
Therefore, energy structure and dynamics are complicated
in a magnetic field even for diatomic molecules, which are

the simplest molecules. Hereafter, the discussion will be
limited to diatomic molecules and their Rydberg states. The
orbital angular-momentum l of an electron is coupled to
the internuclear axis for low n and low l levels [Hund’s
case (a) or (b), see inset (A) in Fig. 2]. As n increases, the
intramolecular field becomes less dominant, and l is coupled
to the rotation of the core represented by N+, which is the total
angular momentum of the core excluding electron spin [Hund’s
case (d), see inset (B) in Fig. 2]. For high n Rydberg states,
the external field is dominant; l is decoupled from N+, and
the angular momenta of both l and N+ are quantized along the
field [decoupled Hund’s case (d), see inset (C) in Fig. 2] [34].
Since the low l (�2) Rydberg electron penetrates the core, it
can exchange energy with the core and the core rotation (N+)
can be excited (N+-channel interaction). This interaction is
negligibly small for nonpenetrating high l (�3) levels [35,36].

Despite these interests, few experimental studies have been
conducted for high Rydberg molecules in a high magnetic
field because of experimental difficulties, which are described
in Ref. [37] in detail. Systematic experiments have so far been
conducted by only one research group using nitric oxide (NO)
molecules in a field of 0.93 T. The penetrating 7p Rydberg state
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FIG. 2. Schematic energy diagram of the NO molecule. The electronic configuration in its ground state is (1σ )2(2σ )2(3σ )2(4σ )2

(5σ )2(1π )4(2π )1 X 2�. In a zero field, rotational levels of the ground X 2�1/2 and the intermediate A 2�+ state are shown by successive
horizontal lines. Two adjoining lines express degenerate levels. The sign + or − beside the rotational level indicates parity π . Rydberg
electronic states converging to the NO+ X 1�+(v+ = 0,N+ = 0) or the NO+ X 1�+(v+ = 0,N+ = 2) ions are also shown by successive
horizontal lines, where E0 and E2 are the zero-field ionization limits to each ionic state, respectively. In a magnetic field, the X 2�1/2(v′′′ =
0,J ′′′ = 3/2,M ′′′

J = −3/2 to + 3/2) and the A 2�+F1(v′′ = 0,J ′′ = 1/2[N ′′ = 0],M ′′
J = −1/2 to + 1/2) magnetic sublevels are shown. A star

indicates the pure sublevel which contains only F1 component. Landau levels with the NO+ X 1�+(v+ = 0,N+ = 0) core and those with the
NO+ X 1�+(v+ = 0,N+ = 2) core are shown. For the Landau level of energy E with the N+ = 0 core, the Rydberg electron’s energy is given
by Eel = E, while that is given by Eel = E − (E2 − E0) for the Landau level with the N+ = 2 core. Two-color double resonance excitation
transitions to the Landau levels are shown by vertical arrows. On the left, the A 2�+(v′′ = 0,J ′′ = 5/2,3/2[N ′′ = 2],M ′′

J = −5/2 to + 5/2)
magnetic sublevels are shown. Five sublevels are degenerate. Note that in the present experiment, a single M ′′

J sublevel can be selected by
exciting from the N ′′ = 0 level of the intermediate A 2�+ state. Coupling schemes of the angular momentum corresponding to each electronic
state are shown in the insets. Inset (A): Hund’s case (b), (B): coupled Hund’s case (d), and (C): decoupled Hund’s case (d). Selection rules of
the transition are shown in a box.

conformed to the intermediate coupling of Hund’s cases (b)
and (d). The 15p and the nonpenetrating 7f state conformed
to a Hund’s case (d). The 15f state conformed to a decoupled
Hund’s case (d). For these states, the N+-channel interaction
was negligibly small except for the 7p state [35,36]. In these
energy regions, the diamagnetic term is negligibly small at
0.93 T and the energy structure is completely explained
by the linear Zeeman effect. The experiment was extended
to the energy region of n = 35–50 at 0.93 T, where the
diamagnetic term is effective. Thus, l-level mixing and n-
level mixing were observed, and the energy structure was
explained well, including the quadratic Zeeman effect [38].
The energy structure in the −60 to −20 cm−1 region
observed at 0.93 T was explained successfully by calculating
semiclassical wave functions propagating along the closed

classical trajectories [39]. The number of theoretical studies is
also few about high Rydberg molecules in a high magnetic
field. The energy structure of a high Rydberg hydrogen
molecule was calculated by the multichannel quantum defect
theory (MQDT) including the paramagnetic term [34] and
the diamagnetic term [40]. The energy structure near the
zero-field ionization limit was calculated by the combined R

matrix and complex coordinate rotation method including the
diamagnetic term [41]. The magnetic field-induced structure of
the photoabsorption spectrum in the diamagnetic regime was
explained theoretically in terms of the inelastic diffractive
trajectories of Rydberg electron, which exchanges energy with
the molecular core [42–45].

All the above experiments were executed in energy regions
below the zero-field ionization limit and at not so high field
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(0.93 T). All the calculations were also executed for the
Rydberg levels below the limit except for Ref. [41]. Thus,
the periodic energy structure formed by the Landau level was
not reported. It is interesting to determine whether the coupling
between the cyclotron motion of the Rydberg electron and the
core rotation [Hund’s case (d): N = l + N+] can occur for
the positive-energy Landau levels. Here N is the total angular
momentum of the molecule excluding electron spin S. Also,
it is interesting to determine whether the cyclotron motion
penetrates the core and the N+-channel interaction can occur
in the Landau levels. These subjects can be solved by observing
rotational level structures of the Landau level. Nitric oxide
molecules are the best for such experiments because they can
be considered as one-electron molecules for their high Rydberg
states converging to the closed shell NO+ X 1�+ ions, and their
simple energy structure has been studied well. In magnetic
fields of up to 10 T, our research group excited NO molecules in
a gas flow, and the positive-energy Landau levels of molecules
were successfully observed [46]. However, their rotational
structures were not clearly observed because the transition
lines broadened owing to collision-induced line broadening.
Because of this result and the fact that the electron cloud of
the Landau level spreads to several hundred nanometers from
the core, collision-free conditions are necessary.

A new experimental setup having a molecular beam source
was built, and molecules under collision-free conditions were
thus prepared [37]. In the present study, using this setup, NO
molecules are excited to the positive-energy Landau levels
by the double-resonance method in a magnetic field of 0–7 T.
Measuring the rotational structures of the Landau levels is
tried.

II. EXPERIMENT

Figure 3 shows schematically the experimental setup. A
magnetic field was generated by a superconducting magnet
(10 T). The direction of the field was parallel to the axis
(“field axis”) of its bore of 100 mm diameter. The field was
homogeneous at “field center.” A pulsed supersonic beam of

NO molecules with 180 μs pulse duration, 10 Hz repetition
rate, and 3 atm stagnation pressure was generated by an orifice
of 300 μm diameter and a conical skimmer of 700 μm diameter
placed 20 mm downstream. The beam propagated along the
field axis in a tube mounted in the bore.

Figure 2 shows a schematic energy diagram of the NO
molecules. An excimer laser (wavelength: 308 nm, pulse
duration: 25 ns, repetition rate: 10 Hz) pumped Coumarin
440 dye laser. The radiation was frequency doubled into
UV radiation (wavelength: 226 nm, bandwidth 0.18 cm−1,
pulse energy: ∼0.1 mJ/pulse) in a β-barium borate (BBO)
crystal. At the field center, the UV radiation was focused
and crossed the molecular beam at right angles. The UV
radiation was linearly polarized parallel to the magnetic
field. It acted as a pump laser to excite the NO molecules
from the ground X 2�1/2(v′′′ = 0,J ′′′ = 3/2,M ′′′

J = −1/2)
rotational sublevel to the intermediate A 2�+F1(v′′ = 0,J ′′ =
1/2 [N ′′ = 0],M ′′

J = −1/2) sublevel. Here v is the vibrational
quantum number; J and MJ denote the quantum numbers
associated with the total angular momentum J of the molecule
and its projection on the Z axis, respectively; N denotes the
quantum number associated with N . The pulse energy of the
pump laser was reduced to suppress the two-photon ionization
to a negligible level. A probe laser (wavelength: 325–333 nm,
bandwidth: 0.18 cm−1, pulse energy: ∼0.5 mJ/pulse) was gen-
erated by frequency doubling of DCM dye laser pumped by an-
other excimer laser (wavelength: 308 nm, pulse duration: 20 ns,
repetition rate: 10 Hz) in a potassium-dihydrogenphosphate
(KDP) crystal. The probe laser propagated antiparallel to the
pump laser and was linearly polarized perpendicular to the
field. The laser pulse was focused on the molecular beam
and irradiated it simultaneously with the pump laser. The
probe laser further excited the NO A 2�+F1(v′′ = 0,J ′′ =
1/2 [N ′′ = 0],M ′′

J = −1/2) molecules by the double reso-
nance method to the Landau levels in the energy region above
the zero-field ionization limit E0 to the NO+ X 1�+(v+ =
0,N+ = 0,M+

N = 0) ions. Here M+
N denotes the quantum

number associated with the projection of N+ on the Z axis.
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FIG. 3. Experimental setup is schematically shown. Details of the setup are described in Ref. [37].
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at 0 T. The horizontal axis is the level energy E relative to the zero-field ionization limit E0 to the NO+ X 1�+(v+ = 0,N+ = 0) ion. The
energy E2 is the zero-field ionization limit to the NO+ X 1�+(v+ = 0,N+ = 2) ion. (b) Photoionization cross section from the intermediate
A 2�+F1(v′′ = 0,J ′′ = 1/2[N ′′ = 0],M ′′

J = −1/2) sublevel at 3 T. The energy of the ν = 1–3 Landau levels is shown by the vertical bar. For
clarity, bars are not shown in a low energy region, which are shown completely in Fig. 8. Note that the symbol ν denotes the type of the Landau
level. Do not confuse it with the vibration of the molecule denoted by v. The illustration in the inset defines the “broad structure” and the “fine
structure” in the cross section. (c) Photoionization cross section at 6 T. (d) Photoionization cross section at 7 T.

The symbol “+” on the quantum number indicates that it is
associated with the NO+ X 1�+ core. Only Landau levels with
v+ = 0 core were produced because of the highly diagonal
Franck-Condon factors. Since the electron is not bounded in
the direction parallel to the magnetic field in the positive-
energy Landau level, the molecules ionized after a while.

A pulsed extraction electric field of 1.4 kV/cm strength and
100 μs duration, which rose 1 μs after laser excitation, was
generated between stainless steel plates with openings covered
with a high-transmission (>90%) stainless steel mesh. NO+
ions produced through the Landau levels or by direct ionization
were accelerated parallel to the field axis by the extraction field.
This parallel extraction prevented the ions from experiencing a
Lorentz force. The ions were detected by a microchannel plate
(MCP, Hamamatsu, F4655-11X). By the gated time window, a
boxcar integrator (Stanford Research Systems SR250) selected
the NO+ ion current (time-of-flight method) and integrated it.
The integrated ion current was normalized by the pulse energy
of both lasers. Considerable attention was given to the stability
of experimental conditions, such as pulse energy of the laser,
molecular beam density, and detector efficiency. Details of this
setup are given in Ref. [37].

III. RESULTS

A. Experimental results

The ion current, which is proportional to the photoioniza-
tion cross section from the intermediate A 2�+ state, was mea-
sured as a function of the probe laser’s frequency. Figure 4(a)

shows the result at zero magnetic field. The horizontal axis
shows the level energy E relative to the zero-field ionization
limit E0. The photoionization cross section is negligibly small
below the limit E0 and nearly constant above E0. This is
contribution of direct ionization. Figure 4(b) shows the cross
section in a magnetic field of 3 T. In the positive-energy region,
the cross section contains a periodic broad structure with an
average energy spacing of 3.7 cm−1, which is contribution
of the ionization through the Landau level, in addition to the
constant term by direct ionization. Figures 4(c) and 4(d) show
the cross sections at 6 and 7 T, respectively. The energy spacing
of the broad structure increases, in proportion to field strength.
These cross sections contain fine structures (0.5–1 cm−1 width)
that also appear, but are not striking, at 3 T. The measurement
was repeated several times to confirm that all fine structures
were observed at the same energy.

Figure 5 shows a Fourier transformation of the cross section.
The horizontal axis shows time T normalized by the cyclotron
period of a free electron TC = 2πm/eB. Peaks appear at the
same T/TC in all the fields. The highest peak, marked as ν =
1 at T/TC = 0.76–0.79, is a transformation from the broad
structure in the cross section shown in Figs. 4(b)–4(d). The
second highest peak (ν = 2) appears at a little less than TC

apart from the ν = 1 peak. The third (ν = 3) and following
peaks (ν = 4,5) appear with spacings equal to TC, while the
latter do not appear clearly except at 6 T. The ν = 2,3,(4,5)
peaks are transformations from the fine structures in the cross
section.
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These peaks were observed in the Landau levels of atoms
and were well explained [18–20,23]. Figure 6 shows classical
trajectory calculations of the Rydberg electron explaining
these peaks. The insets show the geometries of the calculation,
where the Z axis is along the magnetic field. Inset (P) shows
the geometry in which two positive +e charges are placed
along the X axis at intervals of 0.106 nm on both sides of
the origin, which is the equilibrium internuclear distance of
the NO+ X 1�+ core. Inset (T) shows a closeup of the core.
The valence electron cloud distributed along the internuclear
axis is approximated by 11 negative charges −e/11 placed at
equal intervals (0.0106 nm) along the X axis. Inset (Q) or (R)
shows the similar geometry, except that the internuclear axis
is along the Y or Z axis, respectively. Instead of rotating the
core, these geometries (P)–(R) are adopted for simplicity. Inset
(S) shows the atomic case, in which a positive charge +e is
placed at the origin. Figures 6(a) and 6(a′) show the trajectory
at B = 7 T, calculated for an electron starting near the origin
with starting polar angle θ0 = 90◦. The energy of the electron
Eel is +100 cm−1, and the Z component of angular-momentum
lZ is +1 × � (J s) (see the caption of Fig. 6 for the detailed
initial condition). The electron returns to the origin and a closed
trajectory is formed. Four trajectories with geometries (P)–(S)
are overlapped and no difference is found in the recurrence
time of the trajectory. Similar calculations are repeated for
B = 3,6 T. The calculated recurrence times T/TC are listed
in Table I. They are in agreement with the T/TC of the ν = 1

peaks in Fig. 5 for all the fields. This result indicates that the
broad structure in the cross section in Fig. 4 corresponds to
the closed classical trajectory in a plane perpendicular to the
magnetic field (named as “ν = 1 trajectory”).

When the electron has a nonzero Z component (0◦ <

θ0 < 90◦) of the starting velocity, solutions are sought for
trajectories with an electron starting near the origin and
returning there, changing θ0 as variable for the same Eel and
lZ . Figures 6(b), 6(b′) or 6(c), 6(c′) show the closed trajectory
along which the electron rotates around the Z axis two or
three times and returns to the origin, respectively. Similar
calculations are repeated for B = 3,6 T. No difference is found
in these results with the four core geometries (P)–(S). The
recurrence times of these trajectories are also listed in Table I.
All calculated recurrence times T/TC are in agreement with
the T/TC of the peaks in Fig. 5. This result indicates that the
fine structure in the cross section shown in Fig. 4 corresponds
to the three-dimensional closed classical trajectory (named as
“ν = 2 trajectory” etc.). For the ν = 3 trajectory, since the
second rotation is executed at Z > 160 nm, the motion is
purely cyclotronlike with the period TC. This is the reason that
peaks of ν = 3,4,5, . . . appear with spacings equal to TC in
Fig. 5.

In a classical calculation, the starting angle θ0 to form a
closed trajectory is a continuous function of Eel except for the
ν = 1 trajectory. The recurrence time T , and thus, the energy
spacing between the Landau levels generated by this electron’s
motion, which is given by 
Eel = h/T , is a continuous func-
tion of Eel as well. Here h = 2π�. The classical calculation
gives only the energy spacing but not the absolute value of
the level energy [17,47]. Similar trajectory calculations are
repeated with several Eel and lZ = ±1 × � (J s) at B = 3,
6, and 7 T. The obtained scaled energy spacing given by

Eel/(2μBB) = TC/T is shown by a mark in Fig. 7. The
horizontal axis is the scaled energy Eel/B2/3. The functional
relation between 
Eel/(2μBB) and Eel/B2/3 is independent
of B. This is because the following relations are demonstrated
by employing the appropriate scaling transformations for
the Hamiltonian including the Coulomb potential energy,
the paramagnetic term, and the diamagnetic term. (i) The
recurrence time T is proportional to B−1. (ii) Thus, the energy
spacing 
Eel (= h/T ) is proportional to B. (iii) The electron’s
energy Eel is proportional to B2/3 [23]. These relations also
prove that the recurrence peaks appear at the same T/TC in
all the fields in Fig. 5, and the calculated recurrence time
T/TC is independent of B in Table I. In Fig. 7 the relation
between 
Eel/(2μBB) and Eel/B2/3 is fitted by the fourth
or fifth order polynomial function for each field. Results are
shown by solid curves in Fig. 7. In the limit of Eel → +∞,
the energy spacing 
Eel/(2μBB) of the “ν = 1 Landau level”
approaches 1. This is because the electron becomes free of
the Coulomb force, and its motion becomes cyclotron motion
of a free electron. As Eel decreases to 0 cm−1, the Coulomb
force increases, and thus 
Eel/(2μBB) increases to 1.5. These
results are in agreement with the calculation by the Bohr-
Sommerfeld quantization condition applied to atomic Landau
levels [15].

In order to determine the energy structure of the Landau
levels, the photoionization cross section shown in Fig. 4 is
fitted by the function I (E), which is a superposition of the
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FIG. 6. Classical trajectory calculations of the Rydberg electron having the energy Eel = +100 cm−1 and the Z component of angular-
momentum lZ = +1 × � (J s) at B = 7 T, where the Z axis is along the magnetic field. The initial position is the place which is 0.1 nm away
from the origin for the atomic core. It is 0.2 nm away from it for the molecular core. Since the starting azimuth angle can be set arbitrarily, the
electron starts in the XZ plane in all the calculations. Four trajectories calculated with geometries (P)–(S) are overlapped. (a) ν = 1 trajectory,
which is in a plane perpendicular to the magnetic field. (a′) Projection of the ν = 1 trajectory onto XY plane. (b) ν = 2 trajectory, along which
the electron rotates around the Z axis two times and returns to the origin (three-dimensional trajectory). Note that the electron comes back along
the Z axis by the Coulomb force. (b′) Projection of the ν = 2 trajectory. (c) ν = 3 trajectory. The electron rotates three times. (c′) Projection
of the ν = 3 trajectory. (P) Geometry of the molecular core, where the internuclear axis is along the X axis. (Q) Similar to (P), except that the
internuclear axis is along the Y axis. (R) Similar to (P), except that the internuclear axis is along the Z axis. (S) Geometry of the atomic core.
(T) Closeup of the molecular core.

Gaussian function:

I (E) =
[
a0 +

3∑
ν=1

∑
ml

aν

∑
NL

G
(
E; Eel

ν,ml,NL
+ Sν,�ν

)]

× [1 − b1 exp{b2(E − b3)}], (1)

TABLE I. Recurrence time T/TC of the closed classical trajec-
tory. For 7 T, the trajectory is shown in Fig. 6. The energy Eel of
the Rydberg electron is shown in the parentheses. This is nearly the
center energy of the cross section that is Fourier transformed (see the
caption of Fig. 5). No difference is found in the recurrence time T/TC

with the four core geometries (P)–(S) shown in Fig. 6.

3 T 6 T 7 T
ν (Eel = +70 cm−1) (Eel = +100 cm−1) (Eel = +100 cm−1)

1 0.80 0.79 0.78
2 1.72 1.70 1.69
3 2.71 2.70 2.69
4 3.71 3.70 3.69

where the ν = 1–3 Landau levels are included; ml denotes
the sublevel of the Landau level corresponding to lZ =
±1 × � (J s), and takes +1 and −1; NL denotes the Landau
level of energy Eel

ν,ml,NL
. Note that the zero point of Eel

ν,ml,NL

is the energy where the energy of the electron Eel in the
Landau level is zero. Here G(E; Eel

ν,ml,NL
,�ν) = exp[−(E −

Eel
ν,ml,NL

)2/2�2
ν ] is a Gaussian function with center Eel

ν,ml,NL

and width �ν , excluding normalization factor. The Gaussian
function is used for mathematical convenience. Energy shift Sν

is introduced to cope with the rotational energy of the core. The
coefficient a0 is a strength of direct ionization and aν(ν = 1–3)
is a strength of ionization through the Landau level. All
coefficients a0–a3 are assumed to be constant against E. This
assumption needs the second term [1 − b1 exp{b2(E − b3)}],
which reproduces the rising of the cross section at the limit E0.
By the fitting, Eel

ν,ml,NL
, a0–a3, Sν, �ν, b1–b3 are determined

under the condition that Eel
ν,ml,NL

satisfies the relation, which
is given by the solid curve in Fig. 7, between energy
spacing 
Eel (= |Eel

ν,ml,NL
− Eel

ν,ml,NL−1|) and energy Eel

023427-7



YASUYUKI KIMURA AND KEN TAKAZAWA PHYSICAL REVIEW A 89, 023427 (2014)

0 20 40 60

0.5

1

1.5

electron's energy E el/B2/3 (cm-1/T2/3)

en
er

gy
 s

pa
ci

ng
 Δ

E
 e

l /(
2μ

B
B

) 

 7(T) ml =+1 
 7(T) ml =-1
 6(T) ml =+1
 6(T) ml =-1
 3(T) ml =+1
 3(T) ml =-1

ν =1

ν =2

ν =3

ml =+1

ml =-1

ml =+1

ml =-1

ml =+1

ml =-1

re
cu

rr
en

ce
 ti

m
e 

T
/T

C

1

2

0.67

FIG. 7. Marks show the variation in the scaled energy spacing

Eel/(2μBB) of the Landau level, with the scaled energy Eel/B2/3

of the Rydberg electron. The symbol ml = ±1 denotes the sublevel
of the Landau level corresponding to lZ = ±1 × � (J s), respectively.
They are obtained by the trajectory calculations. In almost all cases,
the initial position for the trajectory calculation is the place which
is 0.1 nm away from the origin for the atomic core. It is 0.2 nm
away from it for the molecular core. For the ν = 3 levels, the initial
position’s distance from the origin is larger (�0.5 nm) for low
electron’s energy Eel (i.e., small θ0). Curves are the fitted results
of the relations between 
Eel/(2μBB) and Eel/B2/3 by the fourth
order polynomial function (ν = 1 level) or by the fifth order one
(ν = 2,3 levels). The order of the polynomial function is determined
empirically. Three curves for B = 3,6,7 T are overlapped. Note
that Eel = E for the Landau level with the N+ = 0 core, and
Eel = E − (E2 − E0) for the Landau level with the N+ = 2 core,
where E is the level energy of the Landau level.

(=[Eel
ν,ml,NL

+ Eel
ν,ml,NL−1]/2). The number of the independent

fitting parameters, which include six energies Eel
ν,ml,NL

, is 19
(see the caption of Fig. 8 for the fitting procedure). Figure 8
shows the resultant I (E) with the measured cross section.
All the broad and the fine structures of the cross section are
successfully reproduced for all the fields. The determined
energy Eel

ν,ml,NL
+ Sν of the Landau levels is shown by the

vertical bar in Figs. 4 and 8. The determined coefficient aν ,
width �ν , and shift Sν are listed in Table II. The width �1 is
larger than others. This is because a lot of (nearly degenerate)
ν = 1 Landau levels lie closely [17] [see Figs. 1(d) and 1(e)].
The shift S1 is zero, while the averages of S2 and S3 are
11.9 and 12.0 cm−1, respectively. The energy spacing between
the X 1�+(v+ = 0,N+ = 2) and the X 1�+(v+ = 0,N+ = 0)

TABLE II. Coefficient aν , width �ν , and energy shift Sν deter-
mined by fitting the measured cross section shown in Fig. 4 to Eq. (1).
The coefficient aν is normalized by a1. Trivial parameters a0 and b1–b3

are not listed.

3 T 6 T 7 T
�ν Sν �ν Sν �ν Sν

ν aν (cm−1) (cm−1) aν (cm−1) (cm−1) aν (cm−1) (cm−1)

1 1.00 0.7 0.0 1.00 0.8 0.0 1.00 1.0 0.0
2 0.30 0.2 11.7 0.47 0.2 11.8 0.70 0.3 12.1
3 0.15 0.2 12.5 0.10 0.2 11.4 0.20 0.3 12.2
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FIG. 8. Black curve shows the calculated photoionization cross
section I (E) given by Eq. (1). Gray curve shows the measured
cross section that is the same as shown in Fig. 4. The energy of
the ν = 1–3 Landau levels is shown by the vertical bar (black:
ml = +1, gray: ml = −1). The energy E0 and E2 are the zero-field
ionization limits to the NO+ X 1�+(v+ = 0,N+ = 0) ion and that to
the NO+ X 1�+(v+ = 0,N+ = 2) ion, respectively. The level energy
E is related to the electron’s energy Eel by E = Eel + (E2 − E0) for
the Landau level with the N+ = 2 core. The shape of the Landau
resonance depends on the relative position of the energy of the
ml = +1 component of the ν = 1 Landau level, the energy of the
ml = −1 component of the ν = 1 level, and the average energy
of the ml = ±1 components of the ν = 2 level. (a) Result at 3 T.
(b) Result at 6 T. (c) Result at 7 T. (∗) The fitting method will be
explained briefly, assuming that five levels of the ml = +1 component
of the ν = 1 Landau level are contained in the photoionization cross
section, for simplicity. The electron’s energies Eel

ν,ml ,NL
for these

levels satisfies Eel
1,+1,1 < Eel

1,+1,2 < Eel
1,+1,3 < Eel

1,+1,4 < Eel
1,+1,5. (i) A

trial initial value of the highest electron’s energy Eel
1,+1,5 is given.

(ii) The energies Eel
1,+1,4, Eel

1,+1,3, Eel
1,+1,2, and Eel

1,+1,1 are calculated
numerically in this order, so that they satisfy the relation which
is given by the solid curve in Fig. 7. (iii) Trial initial values of
S1, a0–a1, �1, and b1–b3 are given. (iv) Equation (1) is calculated
using Eel

1,+1,1–Eel
1,+1,5 and S1, a0–a1, �1, b1–b3, and fitted to the

measured photoionization cross section shown in Fig. 4 by changing
seven parameters of S1, a0–a1, �1, b1–b3. (v) Changing the value
of Eel

1,+1,5, the procedures (ii) and (iv) are repeated and the best
values Eel

1,+1,5, S1, a0–a1, �1, b1–b3 are determined. In this stage,
best energies Eel

1,+1,1–Eel
1,+1,4 are determined simultaneously. In this

example, the number of the independent fitting parameters is 8,
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level of the NO+ core is 11.9 cm−1 [48]. Therefore, the core
state of the ν = 1 Landau level is N+ = 0 and those of the
ν = 2,3 levels are N+ = 2. Note that the shift Sν can be
determined uniquely because the energy spacing 
Eel is not
constant against Eel, as shown in Fig. 7. Since the Gaussian
functions for the ml = ±1 sublevels overlap for the ν = 2,3
levels, level energy of these sublevels shown in Figs. 4 and 8
has an uncertainty. Therefore, rigorously determined values
are the energy of the ml = +1 sublevel of the ν = 1 level,
the energy of the ml = −1 sublevel of the ν = 1 level, and
the average energy of the adjacent ml = ±1 sublevels of the
ν = 2,3 levels. The ν = 2,3 levels are observed below the
limit E2 because of rotational autoionization (N+-channel
interaction) through the open N+ = 0 channel [49]. In the
future, measurements detecting energy-analyzed electrons will
provide another proof of the assignment to the core state (N+).

The conclusion of this subsection is the following. The
broad structure in the cross section in Fig. 4 is formed by the
ν = 1 Landau level having the N+ = 0 core and corresponding
to the classical trajectory in a plane perpendicular to the
magnetic field, while the fine structure is formed by the ν =
2,3 Landau levels having the N+ = 2 core and corresponding
to the three-dimensional classical trajectories. Note that the
number ν is used in common to distinguish the peak in
the Fourier transformation shown in Fig. 5, the type of the
classical trajectory shown in Fig. 6, and the type of the Landau
level.

B. Assignment of the Landau levels

The A 2�+ state of the NO molecules is a Rydberg state,
which has s character of 94%, p character of 0.3%, and d

character of 5% [50–52]. Since the coupling of S with l is
weak in this state, leading to a strong decoupling of S from
the internuclear axis toward the external field, the A 2�+ state
conforms to spin-decoupled Hund’s case (b) [35]. The basis
set is [35,53]

|A 2�+; S ′′M ′′
Sη′′′′N ′′M ′′

N 〉 = |S ′′M ′′
S 〉|η′′′′〉|N ′′M ′′

N′′〉.
(2)

The first ket represents the electron spin. The second ket
represents the radial part of the electronic state. The last
ket represents the angular part of molecular rotation. The
electronic part of the core and the vibrational part are omitted.
Here S and MS denote the quantum numbers associated with S
and SZ , respectively;  and MN denote the quantum numbers
associated with the projection of l on the internuclear axis
and the projection of N on the Z axis, respectively. The
quantum number η stands for the radial electronic part. Parity
of the basis state (2) is given by π ′′ = (−1)N

′′
[35]. In a zero

field, all quantum numbers S ′′,M ′′
S ,η′′,′′,N ′′,M ′′

N are good

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
FIG. 8. (Continuted) while the number of the fitting parameters
determined is 12. In the case shown in this figure, where the ml = ±1
components of the ν = 1–3 Landau levels are contained, the number
of the independent fitting parameters is 19. They are six Eel

ν,ml ,N
max
L

(ν = 1,2,3; ml = +1,−1) and S1–S3, a0–a3, �1–�3, b1–b3, where
Nmax

L is the number of the Landau levels contained.

quantum numbers, and M ′′
S sublevels are degenerate. In a

magnetic field, N ′′ levels are not mixed by the linear Zeeman
effect [54] and the quadratic Zeeman effect is negligibly
small for the A 2�+ state. Therefore, all quantum numbers
remain good quantum numbers in a magnetic field. Therefore,
selection rules for the transition from the A 2�+F1(v′′ =
0,J ′′ = 1/2 [N ′′ = 0],M ′′

J = −1/2) sublevel to the Landau
level can be evaluated using this basis set. The sublevel of
M ′′

S = −1/2 and M ′′
N = 0 is selected in the experiment. Parity

π ′′ of the sublevel is +1.
When NO molecules were excited from the A 2�+ state

in a zero field or in a low magnetic field below 1 T,
transitions to high Rydberg np and nf states were ob-
served [35,36]. The latter transition is due to the strong
transition moment to nf state [50,52]. From this result, the
small p character in the A 2�+ state is hereafter ignored.
The vibrational selection rule for the transition from the
A 2�+ state to the high Rydberg state is 
v = 0, because
of the highly diagonal Franck-Condon factors caused by the
Rydberg character of the A 2�+ state. In the high Rydberg
state of NO molecules, S is decoupled from l , and thus,
from the molecular frame [35]. In the following Secs. III C
and III D, the energy structure (rotational structure) of the
Landau levels is simulated assuming two angular-momentum
coupling scheme, i.e., decoupled Hund’s case (d) and coupled
Hund’s case (d). By comparing the simulated energy structure
with the structure determined experimentally in Sec. III A and
shown in Fig. 8, the angular-momentum coupling scheme of
the Landau level will be determined.

C. Assignment by decoupled Hund’s case (d)

In this subsection the first model of the angular-momentum
coupling for the Landau level will be discussed, where the
coupling of l with N+ is weak or the magnetic field is high
enough; thus, l is decoupled from the core rotation N+ by the
field [decoupled Hund’s case (d)] [50]. The basis set for the
Landau level is [35]

|Ryd(D); SMSηlmlN
+M+

N +〉
= |SMS〉|ηl〉|lml〉|N+M+

N +〉. (3)

The second ket |ηl〉 and third ket |lml〉 represent the radial part
and angular part of the Rydberg electron’s state, respectively.
The last ket represents the angular part of the core rotation. The
electronic part of the core and the vibrational part are omitted.
Here l and ml denote the quantum numbers associated with l
and lZ , respectively. The symbol “+” on the quantum number
indicates that it is associated with the NO+ X 1�+ core. Parity
of the basis state (3) is given by π = (−1)l+N+

[55].
The matrix element of the transition moment μl′′ from the

l′′ component in the A 2�+ state to the basis state (3) is [35]

〈A 2�+; S ′′M ′′
Sη′′′′N ′′M ′′

N |μl′′
p |Ryd(D); SMSηlmlN

+M+
N +〉

∝ (−1)N
′′+N+−′′−M ′′

N +ml δS ′′SδM ′′
S MS

×
√

(2l′′ + 1)(2l + 1)(2N ′′ + 1)(2N+ + 1)

×
(

l 1 l′′

0 0 0

)(
l 1 l′′

−ml p ml − p

)
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×
(

N+ l′′ N ′′

M ′′
N − ml ml −M ′′

N

)

×
(

N+ l′′ N ′′

−+ −′′ + + ′′

)
, (4)

where l′′ denotes the quantum number associated with
the electron’s orbital angular-momentum l in the A 2�+
state. Here l′′ is not a good quantum number, and l′′ can

take 0 or 2 [50–52]. The l′′ levels are not mixed by the linear
Zeeman effect and the quadratic Zeeman effect is negligibly
small for the A 2�+ state. The symbol p denotes polarization
of the photon absorbed during this transition, which is p = +1
and p = −1 in the present experiment. The selection rules for
this transition are 
l = ±1,
ml = ±1,
π = ±1, and the
triangle condition �(N+l′′N ′′), which is given by |l′′ − N ′′| �
N+ � l′′ + N ′′.

The matrix element of the paramagnetic interaction Hpara =
μBBlZ/� in the basis set (3) is

〈Ryd(D); S ′M ′
Sη

′l′m′
lN

+′
M+′

N +′ |Hpara|Ryd(D); SMSηlmlN
+M+

N +〉 = μBBδSS ′δMSM ′
S
δηη′δll′δmlm

′
l
δN+N+′ δ

M+
N M+′

N
δ++′ ml.

(5)

The electron spin part 2μBBSZ/� is omitted because S is decoupled in both A 2�+ state and high Rydberg state. The
matrix element is diagonal in the basis set. No linear Zeeman effect occurs in the NO+ X 1�+ core. Therefore, all quantum
numbers remain good quantum numbers. The selection rules for this interaction are 
η = 0,
l = 0,
ml = 0,
N+ = 0, and

M+

N = 0, where, for clarity, only important selection rules are written. The matrix element of the diamagnetic interaction
Hdia = (e2B2/8m)r2 sin2 θ is

〈Ryd(D); S ′M ′
Sη

′l′m′
lN

+′
M+′

N +′ |Hdia|Ryd(D); SMSηlmlN
+M+

N +〉

= e2B2

8m
δSS ′δMSM ′

S
δN+N+′ δ

M+
N M+′

N
δ++′ 〈η′l′|r2|ηl〉〈l′m′

l| sin2 θ |lml〉

= e2B2

12m
δSS ′δMSM ′

S
δmlm

′
l
δN+N+′ δ

M+
N M+′

N
δ++′ 〈η′l′|r2|ηl〉

×
[
δll′ − (−1)ml

√
(2l + 1)(2l′ + 1)

(
l′ 2 l

−ml 0 ml

)(
l′ 2 l

0 0 0

)]
. (6)

The angular part 〈l′m′
l| sin2 θ |lml〉 mixes levels with the selec-

tion rules 
l = 0,±2 and 
ml = 0. The radial part 〈η′l′|r2|ηl〉
mixes levels with the selection rules 
η = all and 
l = all.
Therefore, the radial part does not disturb the selection rules
induced from the angular part. This was confirmed through
many experiments in which the selection rule 
l = 0,±2 was
clearly observed in the quadratic Zeeman effect of Rydberg
atoms [2,56]. The quadratic Zeeman effect can be ignored for
the core. Therefore, the selection rules for this interaction are

η = all,
l = 0,±2,
ml = 0,
N+ = 0, and 
M+

N = 0.
The total selection rules for the paramagnetic and diamagnetic
interactions are 
η = all,
l = 0,±2,
ml = 0,
N+ = 0,

and 
M+
N = 0.

The Landau level is formed by the interactions (5) and (6).
For the Landau level of atoms, the angular part of the
wave function is represented by the spheroidal wave func-
tion [12,57,58], which can be expressed by linear combinations
of the spherical harmonics Ylml

(θ,ϕ) [57]. Thus, the wave
function can be expressed by linear combinations of Ylml

(θ,ϕ).
In this expansion, the coefficient of Ylml

(θ,ϕ) is a function of
r . Thus, it can be expressed by linear combinations of the
radial basis function 〈r|ηl〉, which forms a complete basis set.
Therefore, the state vector of the atomic Landau level can be
expressed by linear combinations of |ηl〉|lml〉. For molecules
satisfying decoupled Hund’s case (d), the state vector is given
by the direct product of the electronic part and the core rotation

part, and the diamagnetic term Hdia = (e2B2/8m)r2 sin2 θ acts
on only the electronic part. Thus, its electronic part can be
expressed by linear combinations of |ηl〉|lml〉. Therefore, the
Landau level is represented by

|Land(D); NLSMSmlN
+M+

N +〉
=

∑
η

∑
l=1,3,5,...

c
NL,N+,ml

η,l |SMS〉|ηl〉|lml〉|N+M+
N +〉. (7)

The basis states (3) with l = 1,3 are allowed from the A 2�+
state, according to Eq. (4) and because l′′ = 0,2 in the A 2�+
state. Thus, summation should be taken by η and odd l in
Eq. (7), according to the total selection rules of Eqs. (5)
and (6). The symbol NL numbers the Landau level. Strictly
speaking, the superscript of the coefficient c

NL,N+,ml

η,l should
be NL,S,MS,ml,N

+,M+
N ,+. However, according to Eq. (4),

S = 1/2,MS = −1/2, and + = 0 are fixed values, and the
M+

N sublevel is degenerate. Only NL,N+,ml are explicitly
shown. Parity of the state (7) is given by π = (−1)N

++l =
−(−1)N

+
. Figure 1 demonstrates that the spherical basis is

unsuitable for expressing the Landau level, because a nearly
infinite number of basis states must be included. However,
in order to evaluate the transition moment to the Landau level
from the intermediate level that is represented appropriately by
the spherical basis, the spherical basis is used for the Landau
levels.
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The Landau levels allowed from the A 2�+F1(v′′ = 0,J ′′ =
1/2 [N ′′ = 0],M ′′

J = −1/2) sublevel will be sought according
to the selection rules of the transition between the basis set
given by Eq. (4) and the state vector of the Landau level
given by Eq. (7). The selection rule 
l = ±1 allows the
Landau levels of odd l. The selection rule 
π = ±1 allows
the core states of N+ = 0,2,4,6, . . . . The triangle condition
�(N+l′′N ′′) becomes N+ = l′′ for N ′′ = 0 and restricts the
core states to N+ = 0 or N+ = 2; the Landau levels with the
N+ = 0 core are excited using the s character in the A 2�+
state, whereas those with the N+ = 2 core are excited using
its d character. Thus, the selection rule 
ml = ±1 allows the
ml = ±1 Landau levels with the N+ = 0 core and the ml =
−3 to +3 Landau levels with the N+ = 2 core. The Landau
levels allowed from the intermediate sublevel are schemati-
cally shown in Fig. 9(a). According to the ratio between s and
d characters in the A 2�+ state, transitions to the Landau level
with the N+ = 0 core (ν = 1 level) are expected to be stronger
than those to the Landau level with the N+ = 2 core (ν = 2,3
levels). This is in agreement with the experimental results
shown in Figs. 4 and 5. If the d ± 1 and d ± 2 characters
are assumed to be weak in the A 2�+ state, only ml = ±1
Landau levels are allowed for the N+ = 2 core as well, and
the energy structure of the Landau levels completely agrees
with the experimental results for both core states (N+ = 0,2).

D. Assignment by coupled Hund’s case (d)

In this subsection the second model of the angular-
momentum coupling for the Landau level will be discussed,
where coupling of l with N+ holds in a magnetic field
and forms the total angular-momentum N [coupled Hund’s
case (d)]. The basis set for the Landau level is [35]

|Ryd(C); SMSηlN++NMN 〉
= |SMS〉|ηl〉|(lN++)NMN 〉. (8)

The electronic part of the core and the vibrational part are
omitted. The ket |(lN++)NMN 〉 represents the angular part
of the molecular rotation, which can be expanded as

|(lN++)NMN 〉
= (−1)N

+−l−MN
√

2N + 1
∑
ml

∑
M+

N

×
(

l N+ N

ml M+
N −MN

)
|lml〉|N+M+

N +〉. (9)

The parity of the basis state (8) is given by π =
(−1)l+N+

[36,50]. The matrix element of the transition
moment μl′′ from the l′′ component in the A 2�+ state to
the basis state (8) is [35]

〈A 2�+; S ′′M ′′
Sη′′′′N ′′M ′′

N |μl′′
p |Ryd(C); SMSηlN++NMN 〉

∝ (−1)N
′′+N+l′′+1+MN −′′

δS ′′SδM ′′
S MS

√
(2l′′ + 1)(2l + 1)(2N ′′ + 1)(2N + 1)(2N+ + 1)

×
(

l 1 l′′

0 0 0

)(
N 1 N ′′

−MN p M ′′
N

)(
N ′′ N+ l′′

′′ −+ + − ′′

){
N ′′ N+ l′′

l 1 N

}
. (10)

The selection rules for this transition are 
l = ±1,
N = 0,±1,
MN = ±1,
π = ±1, and �(N ′′N+l′′).
The matrix element of the paramagnetic interaction Hpara = μBBlZ/� in the basis set (8) is

〈Ryd(C); S ′M ′
Sη

′l′N+′
+′

N ′M ′
N |Hpara|Ryd(C); SMSηlN++NMN 〉

= μBB(−1)N+N ′+N++l+1−MN δSS ′δMSM ′
S
δηη′δll′δN+N+′ δ++′

×
√

(2l + 1)(l + 1)l(2N + 1)(2N ′ + 1)

(
N ′ 1 N

−M ′
N 0 MN

){
l N ′ N+

N l 1

}
. (11)

The selection rules for this interaction are 
η = 0,
l = 0,
N+ = 0,
N = 0,±1, and 
MN = 0. The matrix element of the
diamagnetic interaction Hdia = (e2B2/8m)r2 sin2 θ is

〈Ryd(C); S ′M ′
Sη

′l′N+′
+′

N ′M ′
N |Hdia|Ryd(C); SMSηlN++NMN 〉

= e2B2

12m
(−1)N

+−MN δSS ′δMSM ′
S
δN+N+′ δ++′

√
(2l + 1)(2N + 1)(2N ′ + 1)〈η′l′|r2|ηl〉

×
[

(−1)lδll′

(
N ′ 0 N

M ′
N 0 −MN

){
N ′ 0 N

l N+ l′

}

− √
2l′ + 1

(
l′ 2 l

0 0 0

)(
N ′ 2 N

M ′
N 0 −MN

){
N ′ 2 N

l N+ l′

}]
. (12)

The selection rules for this interaction are 
η = all,
l = 0,±2,
N+ = 0,
N = 0,±1,±2, and 
MN = 0. The total selection
rules for the paramagnetic and diamagnetic interactions are 
η = all,
l = 0,±2,
N+ = 0,
N = 0,±1,±2, and 
MN = 0.
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FIG. 9. (a) Schematic energy diagram of the Landau levels allowed from the intermediate A 2�+F1(v′′ = 0,J ′′ = 1/2 [N ′′ = 0],M ′′
J =

−1/2) sublevel, in case the Landau level conforms to decoupled Hund’s case (d). Allowed levels are shown by the vertical bars. In order
to understand this energy structure, the allowed levels in case the Landau level consists of one dominant l component and other weak odd
l components are shown in the parentheses. The dominant l component is shown as “l = 1,” etc. at the top of each structure and acts as
the structure’s name. These levels may be the Rydberg levels in a negative energy region (E < 0) rather than Landau levels [see Fig. 1(b)].
The l = 1,3,5,7, . . . structures are not degenerate at E < 0. As the level energy E becomes positive, the l = 1,3,5,7, . . . structures become
degenerate [see Figs. 1(d) and 1(e)], and note this means the Landau levels become degenerate and does not mean the l levels become
degenerate.), and then, the energy structure shown at the top is formed. (b) Similar energy diagram in case the Landau level conforms to coupled
Hund’s case (d). The symbol “. . . ” beside the N levels means that the N levels continue as long as those levels have the N = 1 component
(character).

The state vector of the Landau level is represented by

|Land(C); NLSMSN
++MN 〉 =

∑
η

∑
l=1,3,5,...

l+N+∑
N=|l−N+|

c
NL,N+,MN

η,l,N |SMS〉|ηl〉|(lN++)NMN 〉. (13)

The basis states (8) with l = 1,3 are allowed from the A 2�+
state, according to Eq. (10) and because l′′ = 0,2 in the A 2�+
state. Thus, summation should be taken by N,η, and odd l in
Eq. (13), according to the total selection rules from Eqs. (11)
and (12). This indicates that all N levels and all odd l levels are
mixed. Only significant quantum numbers are shown explicitly
as the superscript of c

NL,N+,MN

η,l,N among NL,S,MS,N
+,+,MN ,

because of the similar reason mentioned for Eq. (7) and
according to Eq. (10). Parity of the state (13) is given by
π = (−1)N

++l = −(−1)N
+
.

The Landau levels allowed from the intermediate sublevel
will be sought according to the selection rules of the transition

between the basis set given by Eq. (10) and the state vector
of the Landau level given by Eq. (13). The selection rule

l = ±1 allows the Landau levels of odd l. The selection rule

π = ±1 allows the core states of N+ = 0,2,4,6, . . . . The
triangle condition �(N+l′′N ′′) becomes N+ = l′′ for N ′′ = 0,
and restricts the core states to N+ = 0,2. The selection rule

N = 0,±1 allows the N = 0,1 components of the Landau
levels. However, since no N = 0 component is formed from
an odd l component and even N+ level, only the Landau
levels having the N = 1 component (character) are allowed.
All (mixed) N levels have the N = 1 component according
to Eq. (13), or originally because of the selection rules for
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the total Zeeman interaction 
N = 0,±1,±2. Therefore, all
(mixed) N levels are allowed. The selection rule 
MN = ±1
allows the MN = +1 and the MN = −1 Landau level. The
Landau levels allowed from the intermediate sublevel are
schematically shown in Fig. 9(b). In this way, although the
Landau levels are excited from the N ′′ = 0 level of the A 2�+
state, many N levels can be excited, which is necessary for
determining the N structure of the Landau level. For the
present energy region, the energy separation between the
adjacent N levels is estimated to be about 1.2 cm−1, which
is scaled from the energy separations between them in the
Rydberg states by using the electron radius in the classical
trajectory [35,36,50,59]. Including this N structure in Eq. (1),
the shape of the cross section calculated is not in agreement
with the experimental result shown in Fig. 4. Therefore, the
coupled Hund’s case (d) model is rejected.

E. Conclusion of the assignment

From the discussions in Secs. III C and III D, it is concluded
that in a field of 3–7 T, the Landau level conforms to decoupled
Hund’s case (d). The ν = 1 Landau level (core: N+ = 0) is
excited using the s character in the A 2�+ state, while the
ν = 2,3 Landau levels (core: N+ = 2) are excited using the d

character.
Core-excited (N+ = 2) Landau levels are observed, as

expected according to the selection rule N+ = l′′. However,
from the present analysis only, it cannot be concluded that the
N+ = 2 core is generated through the N+-channel interaction
in the Landau levels having a penetrating p character because
the intermediate A 2�+F1(v′′ = 0,J ′′ = 1/2 [N ′′ = 0],M ′′

J =
−1/2) sublevel may have the N+′′ = 2 character in addition
to the N+′′ = 0 character. In the present analysis, only
paramagnetic and diamagnetic interactions are included in the
interaction Hamiltonian. If the molecular core anisotropy is
included rigorously in it, the summation should be taken by N+
and ml , in addition to η and l in Eq. (7) [38] and the coefficient
c can be determined by diagonalizing the total Hamiltonian.
Then, the N+-channel interaction in the Landau levels will be
analyzed rigorously in the future. The assignment shown in
Fig. 8 indicates that ml mixing can be neglected for the ν = 1
Landau levels in 3–7 T. A rigorous judgment is impossible
about the ν = 2,3 levels because of the energy resolution of
the laser.

Quantum defect theory (QDT) was developed for analyzing
the energy structure and dynamics of atom’s Rydberg states.
For atoms, the Rydberg electron suffers an anisotropic in-
teraction resulting from electron correlation near the core.
However, in a region far from the core, it feels only isotropic
Coulomb potential energy, and thus, the radial wave function
is expressed by the linear combination of the regular [f (ξ,r)]
and irregular [g(ξ,r)] Coulomb functions, where ξ is the
effective quantum number (usually written as ν). The phase
of the Coulomb function’s coefficient is the quantum defect
μ (= n − ξ ), which depends on the interaction near the core.
For molecules, the core anisotropy also causes the anisotropic
interaction near the core. Nevertheless, in a region far from
the core, the Rydberg electron’s condition is similar to that of
atoms. Thus, the electronic radial wave function is expressed
by the Coulomb functions in there. In a high magnetic field,

however, the Rydberg electron feels the diamagnetic term
in addition to the Coulomb potential energy in a region far
from the core. Thus, the electronic radial part of the wave
function cannot be expressed by the linear combination of
the regular and irregular Coulomb functions. Basis functions
for the electronic part can be obtained by diagonalizing the
Hamiltonian including the Coulomb potential energy and the
diamagnetic term, over a set of Sturmian functions (radial part)
and the spherical harmonics (angular part) [8,40].

According to the procedure by multichannel quantum
defect theory (MQDT) applied to the molecular Rydberg
states [34,40,60], wave functions for the molecular Landau
levels are derived dividing the region into three as follows.
Here the electron spin part and the core radial part (core
vibration) are ignored. (i) In the inner region, where l of
the Rydberg electron is coupled to the internuclear axis
[Hund’s case (b)], the Rydberg series are classified by l

and , and have the quantum defect μl. The difference
between μl of different  indicates the molecular core
anisotropy. The quantum defect μl is nearly zero for high
l states. Considering the N -level mixing (if exist) by the
paramagnetic term and the l uncoupling, the total wave
function is given by �I = ∑

lN AlN [f (ξ,r) cos πμl −
g(ξ,r) sin πμl]|NMN〉, where the total angular part
|NMN〉 is made of the Hund’s case (b) coupling between the
electronic angular part and the core angular part (core rotation).
The unknown coefficients AlN are determined later. (ii) In the
outer region, where l is decoupled from N+ by the magnetic
field [decoupled Hund’s case (d)] but the diamagnetic term is
negligibly smaller than the paramagnetic term, the Rydberg
series converge to the channels classified by N+ and ml . The
wave function is obtained by the frame transformation of �I

from case (b) to decoupled case (d). The interaction between
N+,ml channels resulting from the molecular core anisotropy
is brought in, through the quantum defect μl defined in
region (i). Considering the channel interaction, the total wave
function is given by �II = ∑

N+ lml
[CN+ lml

f (ξN+ ml
,r) −

DN+ lml
g(ξN+ ml

,r)]|lml〉|N+M+
N +〉, where |lml〉 and

|N+M+
N +〉 are the electronic angular part and the core

angular part, respectively. The coefficients CN+ lml
and DN+ lml

in the electronic radial part are functions of the frame-
transformation matrix, the quantum defects μl, and the
unknown coefficient AlN . Since the diamagnetic term is
negligibly smaller than the paramagnetic term in regions (i) and
(ii), the Coulomb functions can be used as the electronic radial
wave function. (iii) In the outermost region, the Rydberg elec-
tron feels the Coulomb potential energy and the diamagnetic
term. As outlined in the previous paragraph, the basis function
is given by ψKN+ml

= ∑
nl FKnlml

S
ζ

nl(r)|lml〉|N+M+
N +〉,

where S
ζ

nl(r) is the Sturmian function (electronic radial part).
The integer K numbers the basis functions. The coefficient
FKnlml

is determined by diagonalizing the Hamiltonian includ-
ing the Coulomb potential energy and the diamagnetic term.
Note that the paramagnetic term is negligibly smaller than
the diamagnetic term and can be disregarded. Considering the
anisotropic interaction in region (i), the total wave function is
given by �III = ∑

KN+ml
αKN+ml

ψKN+ml
, where αKN+ml

are
unknown coefficients. By matching the total wave function
�III with �II at the boundary between regions (ii) and
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(iii) using R-matrix procedure [8], the unknown coefficients
AlN and αKN+ml

are determined. In this way, all the wave
functions �I,�II,�III are determined. The periodic energy
structure corresponding to the Landau levels will be obtained
by calculating the level-energy dependence of the transition
probability from the intermediate level to the state represented
by the wave functions �I,�II,�III.

Though the wave functions were calculated successfully
by this method using Sturmian functions for the Rydberg
states below n ∼ 30 of both atoms [8] and molecules [40],
the calculation will be difficult for the positive energy Landau
levels because Sturmian functions with nearly infinite n and
l need to be included as basis functions. Thus, the merit of
MQDT that the summation over n is implicitly preformed is
lost. Therefore, the labor of the calculation is comparable to
diagonalizing the Hamiltonian, which includes the molecular
core anisotropy as the multipole moments of the core charge
distribution, over the basis function Eq. (7).

IV. DISCUSSION

The state vector Eq. (7) of the Landau level [i.e., decoupled
Hund’s case (d)] indicates that the angular part of the electronic
wave function can be expanded in terms of the spherical
harmonics Ylml

(θ,ϕ), where θ and ϕ are polar and azimuth
angles, respectively. Therefore, the partial wave expansion can
be applied to explain the starting polar angles of the classical
trajectories corresponding to the ν = 1–3 Landau levels, as
Main et al. has applied it to the atomic Landau levels [19].

Since the ν = 1 Landau level is excited using the s character
in the A 2�+ state, the dominant partial wave is Y1±1(θ,ϕ). The
spherical harmonics Y1±1(θ,ϕ) have a maximum amplitude at
θ = 90◦, which is the starting polar angle of the ν = 1 classical
trajectory shown in Fig. 6(a). The amplitude of Y1±1(θ,ϕ)
decreases to zero, as θ decreases from 90◦ to 0◦ passing
through the starting polar angles θ0 = 53◦ and 40◦ of the
ν = 2,3 trajectories, respectively [see Figs. 6(b) and 6(c)].
This angular distribution is in agreement with the fact that
the ν = 1 level corresponds to the classical trajectory in a
plane perpendicular to the magnetic field [Fig. 6(a)]. In many
experiments with atoms, they were excited from the s state
by the light circularly polarized along the magnetic field, and
the ν = 1 Landau level was observed [9,12,14]. These results
are similarly explained well by the above-mentioned angular
distribution. For the ν = 2,3 levels, the dominant partial wave
is Y3±1(θ,ϕ) according to the assignment shown in Fig. 8,
because the ν = 2,3 levels are excited using the d character in
the A 2�+ state and because the amplitude of the f wave is
one order larger than that of p wave [61]. However, Y3±1(θ,ϕ)
has a maximum amplitude at θ = 31.1◦. A contribution of
the Y3±2(θ,ϕ) partial wave, which has a maximum amplitude
at θ = 54.7◦, cannot be neglected. This argument indicates
that the d0 and d ± 1 characters are dominant over the d ± 2
character in the A 2�+ state, and ml = 0,±1,±2 Landau levels
should be observed. However, these levels cannot be resolved
clearly by the limit of the laser’s energy resolution. High
resolution experiment using cw laser may solve this problem
in the future.

In the present experiment the Landau levels are excited
from the intermediate state of molecules, which has both the

atomic s and d characters. Thus, two (or three) dominant
partial waves are generated simultaneously, and the total
wave has a large amplitude at both the starting angles of
the ν = 1 and the ν = 2 trajectory. Therefore, the ν = 1 and
the ν = 2 Landau levels are observed simultaneously in a
single measurement. Note that the ν = 1 and the ν = 2 Landau
levels are observed in separate measurements in atoms, where
polarization of the light or a magnetic sublevel of the lower
state is different [18,19,21].

In the present experiment the Landau levels are excited from
the N ′′ = 0 level of the intermediate A 2�+ state, and thus, the
triangle condition �(N+l′′N ′′) in Eq. (4) or (10) becomes a
simple form of N+ = l′′. This equation relates the core state
(N+) to the dominant partial wave. Therefore, the type of the
Landau level (ν) corresponds uniquely with the core state N+.
In addition, the N ′′ = 0 level is selected by other following
reasons: (i) Overlap of the pump X 2�1/2–A 2�+ rotational
transitions is avoided most easily than pumping other N ′′
levels [37]. (ii) Population is largest among the N ′′ levels [37].
(iii) Overlap of the M ′′

J sublevel is avoided as explained in
Fig. 2. Since the NO+ X 1�+ core exhibits no linear Zeeman
effect and negligibly small quadratic Zeeman effect, the NO
molecule has no MN+ splitting of the ionization limit. All
these conditions make it possible to excite the Landau level
having a simplest energy structure to determine successfully
the angular-momentum coupling.

In our previous experiment using NO molecules in a gas
flow, even the ν = 1 Landau level was not observed below
6 T, and no ν � 2 levels were observed at 0–10 T [46]. The
classical trajectory calculation of the electron having energy
of Eel = +100 cm−1, for example, shows that the maximum
radius of the electron in the ν = 1 Landau level is 163 nm at
6 T. As the field B decreases, the maximum radius increases
depending on B−2/3 for the level of the same scaled energy.
On the other hand, the maximum radii of the ν = 2 and ν = 3
trajectories are 174 and 244 nm at 6 T, respectively. (Note
trajectories shown in Fig. 6 are calculated at 7 T.) If ∼170 nm is
assumed to be the threshold radius for the molecules to survive
in the gas flow of the previous experiment, it is explained
reasonably that no ν � 2 Landau levels were observed. In the
present experiment, by the collision-free conditions, Landau
levels are observed clearly even at 3 T, and the ν = 2,3 Landau
levels, which have larger radii than the ν = 1 level, are also
observed successfully at 3–7 T. In addition, collision-induced
line broadening is reduced by the collision-free conditions,
and thus, the fine structure of the Landau resonance becomes
clear. Figure 5 shows that the strength of the ν = 2,3 levels
increases with the magnetic field. This may result from not
only the change in the transition probability, which is induced
by the field-dependent change in the relative strength of the
l character in the Landau level, but also the reduction in the
classical trajectory’s radius as the field increases. As the level
energy E increases, the radius of the electron in the Landau
level becomes larger. Therefore, as E increases higher above
the present range shown in Fig. 4, first, the amplitude of the fine
structure will decrease in the photoionization cross section;
then, the amplitude of the broad structure will decrease: and
finally, the plateau will decrease quite slowly.

High Rydberg molecules are sensitive to a stray electric
field F. The interaction energy between the field F and the
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molecule is er · F, where r is the Rydberg electron’s radius.
The maximum electron radii of the classical trajectories shown
in Fig. 6, where Eel = +100 cm−1 and B = 7 T, are 143 nm
(ν = 1), 154 nm (ν = 2) and 219 nm (ν = 3), respectively.
Thus, for a stray electric field of 100 mV/cm, the maximum
interaction energies are estimated to be 0.011 cm−1 (ν = 1),
0.012 cm−1 (ν = 2), and 0.018 cm−1 (ν = 3), respectively.
On the other hand, the observed energy spacings between
the Landau levels around Eel = +100 cm−1 are 8.4 cm−1

(ν = 1), 3.9 cm−1 (ν = 2), and 2.4 cm−1 (ν = 3), respectively
at 7 T, which are 2 orders larger than the interaction energies.
Therefore, the stray electric field needs to be reduced to
100 mV/cm.

When twice the energy difference between the core rota-
tional states (N+) is the same as an integral (= k) multiple
of the energy spacing between the Landau levels (named
“stroboscopic condition”), the Rydberg electron sees the
internuclear axis in the same direction whenever it approaches
the core. This means that  is a good quantum number and the
coupling is Hund’s case (b). This periodic return to Hund’s
case (b) is called stroboscopic effect [62,63]. A magnetic
field of 3–7 T cannot decouple the angular-momentum l from
the internuclear axis [54]. Therefore, when the stroboscopic
condition is satisfied, if the Landau levels conform to Hund’s
case (b), additional energy structure, which is similar to the N

structure in coupled Hund’s case (d) shown in Fig. 9(b), may
be included in the photoionization cross section. If l needs

to be decoupled from the internuclear axis in order for the
Rydberg electron to carry out cyclotron motion around the
core, Landau levels may not be observed. At 6 T, the observed
photoionization cross section shown in Fig. 4(c) or 8(b)
contains the ν = 1 Landau level (E ∼ 28 cm−1) which satisfies
the stroboscopic condition (k = 3) between the N+ = 0 and
the N+ = 2 cores. However, no significant change is observed
in the shape of the structure in the cross section. Systematic
exploration is necessary in the future.

In conclusion, in a magnetic field of 0–7 T, the molecular
Landau levels (ν = 2,3) having the excited N+ = 2 cores and
corresponding to the three-dimensional classical trajectories
are observed, in addition to the Landau level (ν = 1) having
the N+ = 0 core and corresponding to the classical trajectory
in a plane perpendicular to the field. The selection rule
of the excitation (N+ = l′′) relates the core state (N+) to
the dominant partial wave. Its angular distribution explains
well the starting polar angles of the ν = 1–3 classical trajecto-
ries. The electron’s orbital angular-momentum l is decoupled
from the core rotation N+ in the Landau levels.
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