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Characterizing high-n quasi-one-dimensional strontium Rydberg atoms
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The production of high-n, n ∼ 300, quasi-one-dimensional (quasi-1D) strontium Rydberg atoms through
two-photon excitation of selected extreme Stark states in the presence of a weak dc field is examined using a
crossed laser-atom beam geometry. The dipolar polarization of the electron wave function in the product states is
probed using two independent techniques. The experimental data are analyzed with a classical trajectory Monte
Carlo simulation employing initial ensembles that are obtained with the aid of quantum calculations based on
a two-active-electron model. Comparisons between theory and experiment highlight different characteristics of
the product quasi-1D states, in particular, their large permanent dipole moments, ∼1.0 to 1.2n2ea0, where e is the
electronic charge and a0 is the Bohr radius. Such states can be engineered using pulsed electric fields to create a
wide variety of target states.
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I. INTRODUCTION

As demonstrated in earlier studies using n ∼ 300 potas-
sium Rydberg atoms, the production of strongly polarized
quasi-one-dimensional (quasi-1D) Rydberg states provides a
valuable gateway to studies of nonlinear dynamics and chaos
in the ultrafast, ultraintense regime [1–3] and to the control
and manipulation of excited electronic states, including the
creation of states in which the electron moves about the nucleus
in a near-circular “Bohr-like” orbit [4–6]. Notwithstanding
the wealth of new insights obtained using alkali metals, the
alkaline-earth elements offer the opportunity to explore new
aspects of Rydberg atom physics [7–9]. For example, in the
case of high total angular momentum Rydberg states, the
presence of the second valence electron leaves a readily
excited, optically active core ion that can be manipulated
through optical trapping or imaged through laser-induced
fluorescence [10]. The second valence electron also admits the
possibility of creating quasistable two-electron-excited states
with the planetary atom [11] or frozen planet configurations
[12,13]. To fully exploit these opportunities, however, requires
the creation of quasi-1D strontium Rydberg atoms and the
application of techniques developed previously to engineer
their properties using one or more pulsed electric fields [1,5].

Generally, quasi-1D Rydberg states can be created by
exciting the lowest-lying states in a particular Stark manifold
in the presence of a weak dc field [14]. For hydrogen, the
degeneracy in the unperturbed energy levels is removed by
a dc field, the various states displaying linear Stark shifts.
The extreme eigenstates are strongly polarized and have
large electric dipole moments. Due to field-induced angular
momentum mixing, each eigenstate is a superposition of
many unperturbed � states. As n increases so too does the
number of � states involved, which limits the contribution
from low-� states. As a consequence, the oscillator strengths
for few-photon excitation are small and photoexcitation is,
typically, inefficient. The situation is different for alkali- or
alkaline-earth atoms, for which quantum defects shift the
energies of the low-� states. Initially these nondegenerate states
display, to leading order, a quadratic Stark effect, indicating

that, at least in modest applied fields, they are only weakly
polarized. On the other hand, because of their weak � mixing,
relatively large oscillator strengths are maintained even in the
presence of a dc field. In the present work, we analyze the
transition of an isolated low-� state into a Stark state in
the quasihydrogenic limit as the dc field strength is increased.
The goal is to determine an effective pathway to create quasi-
1D states that are well polarized and yet still feature a reason-
ably large oscillator strength. Two independent techniques are
employed to probe the polarization (i.e., dipole moment) of the
electronic wave function. These were originally developed for
alkali atoms and comprise pulsed field ionization [14,15] and
the production of circular wave packets [16]. The applicability
of these methods to a system with two active electrons, such
as strontium, is examined. Detailed comparison of results
obtained using these methods illuminates the degree of �

mixing in the product states and its role in the ionization
processes.

Despite the presence of a second valence electron, strontium
is a good candidate to apply the same techniques as employed
using alkali atoms to excite quasi-1D states. Few perturbers
(doubly excited states) are found below the first ionization
threshold, and these only influence the energy of singly excited
states below n = 20 [17]. High-lying, singly excited strontium
Rydberg states thus closely resemble alkali Rydberg atoms
[18,19]. While high-n potassium quasi-1D states have been
(typically) produced by single-photon excitation from the
ground state, a (sequential) two-photon excitation scheme
utilizing the intermediate 5s5p 1P1 state is preferred for
the production of quasi-1D strontium atoms. By saturating the
transition to the 5s5p 1P1 state, the final Rydberg production
rate can be increased relative to single-photon excitation. Since
two-photon excitation leads to different selection rules, the
characteristics of the product states differ from those generated
by single-photon excitation. The resulting polarization of the
excited states is carefully examined in the following.

The outline of the present paper is as follows. The
current experimental apparatus is described in Sec. II. In the
subsequent sections we review the theoretical models used
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to describe the excitation process, which are based on the
two-active-electron (TAE) model [20] (Sec. III), and the clas-
sical ionization dynamics underlying the probing techniques
(Sec. IV). In Sec. V, we introduce a representation of isolated
strontium low-L states in the presence of a weak dc field
in terms of a classical initial phase-space distribution, which
serves as a starting point for our classical trajectory Monte
Carlo simulations of the ionization dynamics. In Sec. VI,
results obtained using the two probing protocols are discussed
and compared with experiment. We conclude with a summary
in Sec. VII.

II. EXPERIMENTAL APPROACH

The present apparatus is shown in Fig. 1. Briefly, strontium
atoms contained in a tightly collimated beam are excited to
the desired high-n singlet state using the crossed outputs of
two frequency-doubled diode laser systems. The two-photon
excitation scheme employed, which is diagramed in the inset
in Fig. 1, utilizes the intermediate 5s5p 1P1 state and radiation
at 461 nm and 413 nm. The laser beams, which are both
linearly polarized along the z axis as indicated, cross the atom
beam traveling in opposite directions. Since their wavelengths
are comparable, the use of counterpropagating light beams
can largely cancel Doppler effects associated with atom
beam divergence, resulting in narrow effective experimental
linewidths, ∼5 MHz. The strontium atom beam is provided by
an oven that can, with appropriate collimation, provide a beam
with a full width at half maximum divergence of ∼4 mrad
at densities approaching 109 cm−3. As described elsewhere,
residual stray fields in the experimental volume are reduced to
�50 μV cm−1 by application of small offset potentials to the
electrodes that surround it [1].

Measurements are conducted in a pulsed mode. The output
of the 461-nm laser is chopped into a series of pulses of
0.5-μs duration and 20 kHz pulse repetition frequency using
an acousto-optic modulator. (The 413-nm radiation remains
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FIG. 1. (Color online) Schematic diagram of the apparatus. The
inset shows the two-photon excitation scheme employed.

on at all times.) Excitation occurs in the presence of the dc
Stark field, Fdc. Following excitation, the electric polarization
of the product states is examined through ionization induced
by application of a short electric field pulse, either parallel
or antiparallel to the polarization axis. As will be shown,
the asymmetry present in the resulting survival probabilities
provides a sensitive probe of the polarization of the initial
states. Alternately, a transverse electric field pulse is applied
to convert the initial state into a near-circular state whose
subsequent evolution is monitored using a further probe pulse.
The probability that a Rydberg atom survives the probe
pulse(s) is determined by state-selective field ionization, for
which purpose a slowly rising (rise time ∼1 μs) electric field is
generated in the experimental volume by applying a positive
voltage ramp to the lower electrode. Product electrons are
accelerated out of the interaction region and are detected
by a particle multiplier. The number of Rydberg atoms
initially created is monitored through periodic measurements
in which no pulsed fields are applied, thereby allowing survival
probabilities (or ionization fractions) to be determined.

III. EFFECTIVE TWO-ELECTRON ATOMS
IN A DC ELECTRIC FIELD

A. Quantum description

For reference, we start by briefly reviewing the basic
properties of atoms with a single active electron when subject
to a weak dc electric field Fdc directed along the z axis [21,22].
Attention is then turned to atoms featuring two active electrons
that move in a mean field provided by the core electrons. For
the single-active-electron (SAE) model, the Hamiltonian is
given by

H = p2

2
+ V (r) + zFdc (1)

and the eigenstates are formed from superpositions of angular
momentum (�) states. (Atomic units are used throughout,
unless otherwise noted.) In particular, for hydrogenic atoms,
i.e., V (r) = −1/r , the eigenstates in the linear Stark regime
are approximated by parabolic states

|φn,k,m〉 =
∑

�

Cn,m(k,�)|ϕn,�,m〉 (2)

with eigenenergies

EH
n,k = − 1

2n2
+ 3

2
nkFdc. (3)

The expansion coefficients Cn,m(k,�) are the Clebsch-Gordan
coefficients expressed in terms of Wigner 3j symbols as

Cn,m(k,�)

= (−1)m
√

2� + 1

(
(n − 1)/2 (n − 1)/2 �

(m + k)/2 (m − k)/2 −m

)
. (4)

The quantum number k is proportional to the quantized
action of the Runge-Lenz vector �A projected along the z axis
(k = −nAz) and therefore represents the degree of atomic
polarization along the dc field axis, i.e., 〈d〉 = −(3/2)nk. The

023426-2



CHARACTERIZING HIGH-n QUASI-ONE-DIMENSIONAL . . . PHYSICAL REVIEW A 89, 023426 (2014)

0 0.5 1
Fdc/Fcross

n

n-1

S
C

A
L

E
D

 E
N

E
R

G
Y

0 0.5 1

-1

0

1

S
C

A
L

E
D

 D
IP

O
L

E
 M

O
M

E
N

T
 <

z 1+z
2>n

-2

nF

(n+3)S

(n+2)D

(n+2)P
52P

53S

50F
52D

UPHILL STATES

DOWNHILL STATES

(a) (b)

FIG. 2. (Color online) (a) Evolution of the measured excitation
spectrum of strontium with increasing applied dc field Fdc for M = 0
states in the vicinity of n ∼ 274 [thick red (dark grey) lines]. The
thin solid black lines show the calculated Stark energy level structure
for singly excited strontium near n ∼ 50, and the thick blue (light
grey) lines denote calculated excitation spectra. The applied field is
normalized to the crossing field Fcross (see text), i.e., F0 = Fdc/Fcross.
The energy axis is scaled such that E0 = 1 corresponds to the energy
difference between neighboring n and (n − 1) manifolds. (b) Field
dependence of the calculated average scaled dipole moment for low-
L states and selected extreme blue-shifted (uphill) and red-shifted
(downhill) Stark states.

maximally polarized states [|〈d〉| � (3/2)n2 ] are optically ac-
cessible from the ground s state. For single-photon excitation,
the dipole transition matrix elements can be evaluated as

〈φn,n−1,m|z|g〉 = Cn,m(k = n − 1,� = 1)〈ϕn,�=1,m|z|g〉, (5)

where |g〉 denotes the ground state. Due to the strong � mixing
induced by the dc field, the low-� contributions to the highly
polarized states are relatively small. For high n, the excita-
tion probability scales as ∼n−5 (i.e., 〈ϕn,�=1,m|z|g〉 ∼ n−3/2

and Cn,m(k = n − 1,� = 1) ∼ n−1 [23,24]), and therefore
decreases rapidly with n, hindering the efficient production
of the high-n polarized states.

Alkaline-earth atoms, however, display a rather different
behavior. In the case of strontium, the ratio of low-L to high-L
states is significantly increased by the presence of the second
valence electron. This can be clearly seen in the calculated
Stark spectrum for the M = 0 strontium manifold in the
vicinity of n ∼ 50 [Fig. 2(a)]. (In the following, L indicates the
total orbital angular momentum while � denotes that of a single
electron.) This calculation employs the TAE model described
in more detail elsewhere [20]. Briefly, the Hamiltonian

H = p2
1

2
+ V�1 (r1) + p2

2

2
+ V�2 (r2)

+ 1

|�r1 − �r2| + (z1 + z2)Fdc, (6)

where the �-dependent model potential V�(r) representing the
Sr2+ ion, taken from [25], is diagonalized in a large truncated
basis built up from angular-momentum-coupled product states
of single-particle orbitals for the Sr+ ion. Such an approach
corresponds to a configuration-interaction (CI) calculation for

a quasi-two-electron system. The calculated Stark spectrum
[Fig. 2(a)] in the singlet sector displays isolated low-L (L =
0,1,2, and 3) states at zero dc field. The calculated quantum
defects μL agree well with the measured values [26,27]. The
small discrepancies in the D state peak positions as compared
to experimental measurements are partly due to n dependences
in the quantum defect (n � 50 for the theory and n � 274 for
the experiment) and partly due to the inaccuracy of the model
potential [20]. The low-L states experience an energy shift
which, to leading order, is initially quadratic in Fdc. For small
Fdc, their calculated dipole moments thus increase linearly
with Fdc [see Fig. 2(b)], indicating that the corresponding
field-perturbed eigenstates are superpositions involving only
the dipole-coupled states [20]. This is to be contrasted with the
parabolic states, which involve all angular momentum states
and have a constant dipole moment determined by the Clebsch-
Gordan coefficients [Eq. (2)]. Consequently, when strontium
is excited from the intermediate 5s5p 1P1 state in the presence
of a dc field, the oscillator strength is not broadly distributed
over all angular momentum states but is rather shared among
a smaller number of dipole-coupled low-L states.

The relative oscillator strengths displayed in Fig. 2(a) are
determined from the squared dipole transition matrix element
between the excited Rydberg state and the intermediate 5s5p
1P1 state. Due to the dipole selection rules, at Fdc = 0 only the
S and D states have finite oscillator strength. With increasing
Fdc, the P and F states acquire finite excitation probability
while the peak heights for the S and D states decrease. As the
field strength approaches the value

Fcross � 1

3n5
(7)

at which two adjacent n-manifolds first cross, the D (and F )
states become indistinguishable from the parabolic states, in-
dicating that they have reached the quasihydrogenic limit. The
field-perturbed “D” state therefore provides an opportunity to
efficiently excite quasi-1D states in fields Fdc � Fcross.

B. Classical analysis of the spectrum

Because the dominant CI configuration is, by far, the
|5sn�〉 configuration, many features of the spectrum can be
qualitatively accounted for within an SAE model. Moreover,
since the outer n� orbitals are in the quasiclassical regime, we
can invoke classical dynamics for the active electron to discuss
qualitatively the quantum states described above.

In the hydrogenic limit, corresponding to V (r) = −1/r in
Eq. (1), the secular motion of electron orbits in a weak dc field
can be described by the equations [28]

d

dt
��T = 3

2
n2Fdc �AT × ẑ,

d

dt
�AT = 3

2
Fdc ��T × ẑ , (8)

where the angular momentum ��T and the Runge-Lenz vector
�AT of the (outer) electron are averaged over the orbital period.

Analogous to a parabolic quantum state, the corresponding
classical ensemble has three well-defined actions (n,k =
−nAT,z,m = �T,z). Both vectors precess about the field (z)
axis, i.e., their x and y components oscillate sinusoidally and
the magnitude � evolves in time [see Figs. 3(d) and 3(e)].
For later reference, we note that restricted microcanonical
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FIG. 3. Classical trajectories of an excited electron for (a) strontium in the absence of external fields, (b),(c) strontium with
Fdc = 0.4 V/cm � 0.08Fcross, and (d),(e) hydrogen with Fdc = 5 V/cm � Fcross. (b),(d) and (c),(e) relate to blue-shifted and red-shifted
orbits, respectively. The initial conditions correspond to the n = 50 D-state (L = 2) and the dynamics is generated by the SAE model potential
Eq. (9). �� is parallel to the y axis and Fdc is directed along the z axis.

ensembles sampled from such (quasi-)periodic orbits are often
used as a classical approximation to a parabolic state [Eq. (2)].

For nonhydrogenic systems, the excited electron can
penetrate the orbitals of core electrons and scattering by
the core electrons [22] becomes important, giving rise to
quantum defects. Since for highly excited strontium atoms
the inner electron is almost exclusively in the 5s state, the core
potential V (r) in Eq. (1) can be approximated by a spherically
symmetric potential. Here we employ the SAE approximation
and the following �-dependent model potential:

V SAE
� (r) = −1

r

[
1 + 37 exp

(−α�
1r

) + α�
2r exp

(−α�
3r

)]
− αcp

2r4

[
1 − exp

[−(
r/r�

c

)6]]
, (9)

where the parameters (Table I) are fitted to yield the correct
quantum defects at high n (>20). For the noninteger values
of � appearing in the classical simulations, the �-dependent
parameters are interpolated.

TABLE I. Model potential parameters for the SAE approximation
of neutral strontium, Eq. (9). The parameters are chosen to yield the
correct quantum defects for highly excited states (n > 30).

� α�
1 α�

2 α�
3 αcp r�

c

0 3.361 24 5.943 37 1.3337 7.5 1.59
1 3.282 05 3.788 61 1.240 35 7.5 1.58
2 2.155 4.5111 1.4545 7.5 1.57
�3 2.1547 2.1987 1.140 99 7.5 1.56

In the absence of Fdc, the spherically symmetric potential
preserves the angular momentum ��. However, in contrast to the
case for a pure Coulomb potential, the Runge-Lenz vector �A
is not constant but precesses around the �� axis [Fig. 3(a)]. The
rate of this core-induced precession can be calculated within
the framework of secular perturbation theory as [22]

ωc � 1

n3
(μ� − μ�+1) . (10)

Core-induced precession is non-negligible for low-� states
(� � 3) because their inner turning points are close to the
core. We note that the estimate for ωc is based on lowest-order
perturbation theory relative to the unperturbed Kepler motion.
For strontium, however, ωc is comparable or even larger than
the Kepler orbital frequency (1/n3). Thus, while Eq. (10)
qualitatively captures the perturbed classical dynamics, it is
unreliable for a quantitative description. Moreover, since the
quantum defects are large, the classical limit of quantum
dynamics may not yet be reached. Upon application of a weak
field Fdc, the orbits tend to become oriented, i.e., polarized,
along the field (z) axis. However, precession induced by
core scattering tends to randomize this orientation, reducing
the polarization and providing a classical explanation for
the absence of a linear Stark effect. As Fdc increases, the
distribution of their orientations becomes increasingly aligned
with respect to the field direction, leading to a (weakly)
polarized ensemble [see Figs. 3(b) and 3(c)]. Also, the
magnitude � evolves in time but only with small fluctuations
around the initial value. Thus the ensemble of core-scattered
ellipses in Figs. 3(b) and 3(c) have nearly the same eccentricity.
Only when the precession induced by Fdc dominates over that
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induced by core scattering can the ensemble be approximated
by a hydrogenic parabolic state as in Figs. 3(d) and 3(e).
As suggested by the quantum Stark map [see Fig. 2(a)], this
crossover is reached when Fdc � Fcross.

The evolution of the ensemble of classical orbits as a
function of the applied field can be compared and contrasted
with the corresponding evolution of the quantum state. We
consider the reduced distribution function ρqm(k) in the
parabolic quantum number k after tracing out the principal
quantum number,

ρqm(k) =
∑

n

|〈5sn�; LM = 0|ϕ500; φn,k,0〉|2 . (11)

〈5sn�; LM = 0| denotes the eigenstates calculated using the
TAE model, while |ϕ500〉 denotes the 5s inner electron state and
|φn,k,0〉 the hydrogenic parabolic state of the outer electron. As
demonstrated in Fig. 4, at small fields, Fdc ≈ 0, the distribution
ρqm(k) for the 52D state is broad, reflecting the spread of Az

and the weak polarization of the electron wave function. As Fdc

increases the distribution in k becomes increasingly asymmet-
ric and converges to a narrow distribution of extreme parabolic
states as Fdc nears Fcross, indicating strong polarization. Here,
and in the following, “nL” is used to denote the perturbed state
(in the presence of the dc field) associated with an unperturbed
nL state.

It is of conceptual interest to compare the quantum distribu-
tion ρqm(k) determined from the dominant CI configurations
with a classical distribution ρcl(k) derived from a restricted
microcanonical ensemble in a dc field. In order to mimic
the initial photoexcitation to the “52D” state, only initial
phase-space coordinates within 20 a.u. of the core are selected
from the microcanonical ensemble of the 52D state. After
allowing evolution for a duration of 4.4 ns (more than 200

orbital periods), the k distribution ρcl(k) is extracted [see
Figs. 4(b)–4(d)]. At low Fdc, both ρqm(k) and ρcl(k) are broad,
although the nodal lines associated with the quantum “D”
state are absent from the classical distribution. With increasing
Fdc, the quantum distribution becomes increasingly polarized,
as evidenced by the growing peak at k � −50, whereas the
classical distributions fail to reproduce any such peak. This
biased k distribution gives rise to the quadratic energy shifts
seen in Fig. 2(a) for the “52D” state, which results from the
superposition of a few low-L states. The shifts are missing
in the classical distribution ρcl(k) due to the dominance
of low-L states in this regime for which quantum-classical
correspondence is not expected to hold. Only in the near-
parabolic limit, Fdc ∼ Fcross, which involves a high density of
high-L states, will the correspondence be restored. Therefore,
in the classical simulations of the ionization induced by a probe
pulse to be discussed below, we use ρqm(k) rather than ρcl(k)
as input.

IV. PROBING THE POLARIZATION

Since the photoexcited Stark states furnish the starting
point for Rydberg state manipulation and engineering, accurate
characterization of their polarization is critical. While the
dipole moment of Stark states can be easily determined
numerically, this is not a trivial task experimentally. In this
section, we briefly review two independent methods for
probing the polarization of strontium Rydberg states that
are based on techniques originally developed for hydrogenic
atoms. In each approach, probe pulses are used to ionize the
atom and the resulting ionization (or survival) probabilities are
mapped to the polarization (i.e., the electric dipole moment)
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of the initial Rydberg state. Since the singly excited Rydberg
states of strontium have only weak correlations among the
valence electrons, we expect that probing techniques devised
for potassium Rydberg atoms should work reasonably well.
We compare results obtained using each probing protocol to
highlight the properties of the targeted states. The intuitive
understanding of each probing scheme is aided by classical
simulations of the ionization dynamics.

A. Pulsed field ionization

When a hydrogenic atom is subject to a field step,

�Fstep(t) =
{

Fstepẑ 0 � t � Tstep

0 otherwise
, (12)

the electron can be ionized provided that the field strength
Fstep is sufficiently large. If the electron wave function is
polarized, the ionization probability depends markedly on
whether the probe field is applied parallel or antiparallel to the
dipole moment of the atom. This asymmetry in the ionization
dynamics provides a simple tool with which to examine the
polarization of the Rydberg state.

Assuming the pulse duration Tstep to be infinitely long, the
classical overbarrier ionization condition is given analytically
[15,21] by

2Eizi + Fstepr
2
i < − E2

i

Fstep
+ 2(1 + Azi), (13)

where the index i indicates the initial value of the observables
at t = 0, i.e., at the time of application of the field step. It
is, in general, not straightforward to extract information on
the z coordinate, because ionization depends on four different
parameters, Ei,ri,zi,Azi . In a few important cases, however,
Eq. (13) can be used to probe the average position of the wave
function, i.e., of the classical ensemble. In the case of circular
orbits (i.e., high-� states), the ionization condition depends
solely on zi [16] as three of the parameters are constant Ei =
−1/(2n2), ri = n2, Azi = 0. This is exploited in the second
probing scheme.

For an extreme parabolic state, all members of the cor-
responding classical ensemble have the same energy, Ei =
−1/(2n2), in the absence of an external field. Additionally, the
elongated electron orbits can be approximated by zi � +ri and
−ri and Azi � −1 and +1 for the extreme uphill (blue-shifted)
and the downhill (red-shifted) states, respectively. By setting
Fstep > 0, the ionization condition [Eq. (13)] can be simplified
as {

(Ei + Fstepri)2 < 0 for uphill states

(Ei − Fstepri)2 < 4Fstep for downhill states
. (14)

This inequality indicates that ionization is suppressed for the
uphill electron states (with energy Ei + Fstepri) relative to
downhill electron states (with energy Ei − Fstepri). The field
strengths required for ionization are smallest for the downhill
states when the electron is near the origin (ri → 0), the
threshold value, Fstep > 1/(16n4), matching the well-known
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FIG. 5. (Color online) (a) Coulomb potential as modified by a dc
field Fdc. (b) Contour plot of the energy surface E = −1/r + zFdc. A
low-� trajectory on the downhill side (red line) is rapidly ionized over
the Stark saddle, whereas one on the uphill side (green line) remains
remote from the saddle and is not ionized.

classical value. Downhill states are easier to ionize because
their ellipses extend from the nucleus towards the Stark
saddle point [see Fig. 5(a)] formed in the presence of the
probe field, thus allowing a quick escape over the barrier, as
indicated by the red trajectory in Fig. 5(b). In contrast, uphill
trajectories are oriented away from the saddle point and, as
shown by the green trajectory in Fig. 5(b), do not escape
in the absence of additional perturbations. When the initial
elliptic orbit and the z axis are misaligned by an angle θi , i.e.,
zi = ri cos θi , the precession induced by the probe field can, in
principle, bring an electron initially located on the uphill side
(i.e., cos θi > 0) towards the saddle point and hence induce
ionization. The decomposition of phase space into ionizing
and nonionizing regimes is displayed for low-� Rydberg states
in the (ri/n2, cos θi) plane in Fig. 6. While for ellipses aligned
on the uphill side (cos θi > 0) survival dominates, ionization
prevails on the downhill side (cos θi < 0). Whereas the above
discussion applies to low-� states, high-� states display similar

0 0.5 1 1.5 2

ri /n
2

-1

-0.5

0

0.5

1

co
sθ

i

ionization

survival

FIG. 6. Ionization behavior [Eq. (13)] of low-� (�i ∼ 0) Rydberg
states subject to a field step (see text). The electron is initially located
at zi � ri cos θi . The electron energy and the field amplitude are given
by Ei = −1/(2n2) and Fstep = 0.17/n4.
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tendencies but the asymmetry is expected to be smaller. With
increasing �, the elliptic orbits on the uphill side extend further
towards the downhill side, increasing the probability for the
electron to escape over the Stark saddle. While the present
analysis of ionization dynamics assumes a hydrogenlike atom,
this is justified because a strong probe field (Fstep ∼ 200Fcross)
is typically employed to ensure sizable ionization probabilities.
Under such strong fields low-� states evolve quickly into
high-� states due to field-induced precession [Eq. (8)], which
dominates over core-induced precession.

B. Production of circular wave packets

Quasi-1D atoms can serve as a starting point for engineering
wave packets that travel in near-circular “Bohr-like” orbits
[5,16]. By monitoring the properties of the resulting Bohr-like
wave packets, detailed information on the initial state can be
extracted [29]. Here, we employ such circular wave packets to
characterize the polarization of the initially prepared Rydberg
state.

To create a circular state from (in this case) a high-n state
polarized along the z axis, a transverse “pump field” polarized
along the x axis,

�Fpump(t) =
{

Fpump x̂ when 0 � t � Tpump

0 otherwise
, (15)

is applied. The orbit follows the Bloch equations [Eq. (8)] for
precessional motion, with ωS = (3/2)nFpump being the Stark
precession frequency. A strongly polarized Rydberg state,
��T (0) � 0 (i.e., 
n) and �AT (0) � ẑ [see also Fig. 7(a)], is
transformed to a circular state, with �T,y(Tpump) � n confined
to the xz plane at Tpump = π/(2ωS). If the initial state is
polarized but misaligned from the z axis by an angle θ

[i.e., AT,z(0) = −k/n = A0 cos θ and AT,y(0) = −A0 sin θ ],
the final angular momentum at t = Tpump becomes

��T (Tpump) �

⎛
⎜⎝

�T,x(0)

nAT,z(0)

−nAT,y(0)

⎞
⎟⎠ . (16)

The resulting orbit has the well-defined value of �T,y(Tpump) =
nA0 cos θ . Since �T,z(Tpump) = nA0 sin θ is finite, the circular
orbit is not confined to the xz plane but tilted by an angle
θ about the x axis [see Fig. 7(b)]. If the initial state is
strongly polarized but is oriented along the −z axis, it is
again transformed to a circular orbit in the xz plane but with
�T,y(Tpump) � −n [see Fig. 7(c)]. The distribution of orbital
planes after application of the pump field can be used to extract
information on the initial degree of polarization as follows: if
the initial state is an unperturbed low-� state, the θ distribution
of the associated classical ensemble, i.e., the distribution of
the orientations of the Kepler ellipses, is symmetric under
reflection at the origin, i.e., under the transformation �AT (0) →
− �AT (0). This results in a vanishing dipole moment 〈 �d(0)〉 =
(3/2)n2〈 �AT (0)〉 = 0. The distribution of ��T (0), however, need
not be symmetrically distributed, as is the case, for example,
for states with a finite m = 〈�z,T (0)〉. The angular momentum
vectors of the near-circular orbits after the pump pulse, i.e.,

Fpump

z

x

y

A

z

x

y

Fpump

z

x

y

A

z

x

y

Fpump

z

x

y

A

z

x

y

Before the pump After the pump

(a)

(b)

(c)

θ

FIG. 7. (Color online) Illustration of circular wave-packet gener-
ation. (a),(c) Kepler ellipses (in green) elongated along the z axis are
transformed by the pump pulse Fpump to circular orbits. Depending
on their orientation, the final circular orbit revolves clockwise or
anticlockwise in the xz plane. (b) Ellipses oriented at angle θ to the
z axis produce circular orbits but not in the xz plane.

at t = Tpump, inherit the symmetry of the Runge-Lenz vector
distribution at t = 0 but only in their y and z components
[Eq. (16)]. As illustrated in Fig. 7, only for low-� states
where the x component vanishes [�T,x(Tpump) � �T,x(0) � 0]
are the angular momentum vectors ��T (Tpump) confined close
to the yz plane and symmetrically distributed. However, in the
presence of a weak dc field Fdc, the ensemble representing the
initial field-perturbed low-� state has a biased θ distribution
[see Figs. 3(b) and 3(c), and Fig. 4]. This weakly polarized
ensemble is transformed by the pump pulse into an ensemble
of near-circular trajectories whose angular momentum vectors
��T (Tpump) are found within the yz plane but are no longer
symmetrically distributed about the origin. This asymmetry
allows the polarization of the initial state to be examined.

One major difficulty in probing stationary high-� states is
that they interact only weakly with the probe electric field due
to their small dipole moments. However, after the turn-off of
Fpump, the product wave packet can undergo strong transient
localization in azimuth, resulting in creation of a localized
wave packet that revolves in near-circular, “Bohr-like” orbit
about the nucleus and which has a large time-dependent dipole
moment (see [16] for more details). The evolution of the
wave packet can be readily probed by pulsed-field ionization
[Eq. (13)]. To this end, we employ a sequence of two field
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steps given by

�Fts(t) = �Fpump(t) +
{
Fstepê when Tpump + τ � t � Tpump + τ + Tstep

0 otherwise
, (17)

which allows the average position of the wave packet to be
monitored by varying the time delay τ between the two pulses.
Furthermore, by changing the probe field orientation (ê = x̂

or ẑ), motion parallel (〈x(τ )〉) and transverse (〈z(τ )〉) to the
pump field axis can be examined. These expectation values
are sensitive to the distribution of ��. Since the plane of an orbit
is perpendicular to ��, the alignment of the angular momentum
vectors determines whether the ensemble of orbits is spatially
confined within (almost) a two-dimensional plane or is widely
distributed in all three dimensions.

For circular wave packets created from well-polarized
states, the underlying electron orbits are confined within the
xz plane (Fig. 7) and the expectation values 〈x(τ )〉 and 〈z(τ )〉
undergo strong periodic oscillations,

(〈x(τ )〉,〈z(τ )〉) ∝ ( cos(ωnτ ), sin(ωnτ )), (18)

with angular frequency ωn = 2π/Tn. A reduction in oscillation
amplitude along the z axis (i.e., perpendicular to the pump
pulse) indicates a broader distribution of the planes of orbit
(see Fig. 7), implying that the initial state is less well polarized.
This behavior is illustrated in the next section and quantified
in Sec. VI C.

V. CLASSICAL-QUANTUM HYBRID INITIAL
PHASE-SPACE DISTRIBUTION

Fully fledged quantum simulations of the excitation and
ionization dynamics for very high-n (n ∼ 300) Rydberg atoms
remain very challenging, even when, as in the case of
strontium, the system is reduced to a TAE model. For single-
electron systems, such as the alkali atoms, classical simulations
have proven to be a powerful tool when analyzing the
dynamics of highly excited Rydberg atoms [1] that approach
the semiclassical limit. For TAE systems, on the other hand, the
classical description can easily fail. For example, even singly
excited states can autoionize, since the outer electron may
exchange energy with the inner electron for which energies
below the ground state are classically accessible. A second,
more specific problem for the present classical simulation is
how to appropriately represent by a classical ensemble isolated
low-� states that are dressed by a dc field (see Fig. 4).

Since singly excited states of strontium with n > 25 are
well represented using a single inner electron configuration
(the 5s state), high-n states can be described within a SAE
model using the model potential given by Eq. (9). Here we
analyze the ionization dynamics using a classical simulation
based on a SAE model, thereby avoiding the problem of
spontaneous autoionization. In order to properly represent the
initial weakly perturbed low-� states, we employ a phase-space
distribution derived from the quantum calculations discussed
in the following, which we then propagate under the influence
of the pump and probe pulses using the classical trajectory
Monte Carlo (CTMC) method. The fraction of the ensemble

with E < 0 at the end of the probe pulse is compared with the
measured survival probability.

Since restricted classical microcanonical ensembles fail to
properly represent low-� states dressed by a weak dc field
Fdc (Fig. 4), we employ, instead, ensembles derived from a
full quantum calculation to generate the initial conditions for
the classical simulations. Accordingly, the initial distribution
of the orientations of the low-� Kepler ellipses, i.e., of the
polarization, is taken to be the distribution ρqm(k) (Fig. 4)
provided by TAE quantum calculations. We calculate the k

distribution for n ∼ 50 and use scaling relations to generate
the distribution for n ∼ 300 to compare to experiment. In the
following, classical simulations using a distribution ρqm(k)
with a fixed value of � are referred to as hybrid-� calculations.
For stronger fields, Fdc � Fcross, “D” and “F ” states become
indistinguishable from nearby parabolic states. They can
thus be treated as a narrow band of parabolic states and
represented by a (restricted) microcanonical ensemble with
well-defined classical actions n, k, m. These initial conditions
are referred to as the parabolic-k distribution in the following.
For intermediate field strengths, the measured results are
expected to reflect a transition between these two cases. In
this regime it is therefore of interest to compare the results of
calculations using both these initial ensembles, which should
result in a well-defined measure of the polarization irrespective
of the uncertainties in the initial k distribution.

We have tested the hybrid-� distribution by comparing
results derived from its time evolution with those determined
by a full quantum simulation within the TAE model. Since
quantum simulations of the ionization induced by the probe
pulse are out of reach, we simulate here only the generation and
the ensuing evolution of a circular wave packet (with n = 50)
using the TAE model. As a figure of merit, we use the classical
and quantum expectation values of 〈x(t)〉 and 〈z(t)〉 when
the “52D” state is first excited in three typical field strengths
Fdc and then transformed into a near-circular wave packet
(Fig. 8) by a pump pulse �Fpump in the x direction [Eq. (15)]. In
all three cases, the quantum mechanically calculated 〈x(t)〉
(solid lines in the left column) shows that the generated
wave packet becomes focused within a few orbital periods,
resulting in the buildup of large oscillation amplitudes, which
is followed by their collapse as the wave packet disperses. In
contrast, the amplitude of the oscillations in 〈z(t)〉 increases
strongly with Fdc and becomes comparable to that for 〈x(t)〉
only when Fdc approaches Fcross. This beating pattern is well
reproduced by classical simulations employing the hybrid-�
initial distribution (dashed lines). Near the crossing field,
Fdc = 0.8Fcross, the well-polarized “52D” state (Fig. 2) is
transformed to an ensemble of near-circular orbits, showing
strong beat patterns in both 〈x(t)〉 (bottom left) and 〈z(t)〉
(bottom right). For weaker Fdc, the less-polarized initial
ensemble is transformed into an ensemble of near-circular
states involving two counterpropagating near-circular orbits
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FIG. 8. Calculated expectation values 〈x(t)〉 and 〈z(t)〉 for the
Bohr wave packet (n = 50) generated by a pump pulse with Fpump �
50 V/cm and Tpump � 52 ps [Eq. (15)]. The initial state is the “52D”
state photoexcited in the presence of a weak dc field Fdc. The solid
lines show the results of quantum simulations using the TAE model
[Eq. (6)] and the dashed lines the results of CTMC simulations
[Eqs. (1) and (9)] employing the hybrid-� distribution as the initial
condition.

with �T,y(Tpump) = −n and �T,y(Tpump) = n [see Eq. (16)
and Figs. 7(a) and 7(c)]. Because the planes of these orbits
share the x axis (i.e., the axis parallel to the pump pulse)
[Eq. (16) and Fig. 7(b)], when an ensemble average is taken,
contributions from the different orbits to 〈x(t)〉 reinforce
each other while their contributions to 〈z(t)〉 cancel due to
the presence of counterpropagating components. Given the
satisfactory agreement between the quantum-mechanical and
CTMC results, we now proceed to analyze the experimental
results obtained using the different probing schemes.

VI. COMPARISON WITH EXPERIMENT

A. Pulsed field ionization

We first discuss the electronic polarization as determined
by pulsed field ionization [Eq. (12)]. Figure 9 shows the
survival probabilities measured as a function of probe field
amplitude Fstep and direction ( for Fstep > 0 and for
Fstep < 0) for “312D” states excited in different dc fields,
Fdc. The present results were recorded using Tstep = 10 ns
� 2.3Tn. The figure also includes the results of CTMC
simulations, employing both the hybrid-� and the parabolic-k
distributions as initial conditions. For both distributions the
strength of the probe pulse Fstep required for ionization of
the uphill states depends markedly on Fdc. For these states,
the hybrid-� distribution yields larger survival probabilities
than the parabolic-k distribution, because the latter involves
high-� states whose orbits extend to the downhill side, leading
to an increased ionization probability. On the other hand,
the ionization characteristics of the downhill states are rather
insensitive to the value of Fdc and the initial ensemble. This
results because those electrons with energies above the Stark
saddle can readily escape over it. For Fdc � 0.6Fcross, the
results employing the hybrid-� distribution agree well with
the measured data while the calculations performed with
the parabolic-k distribution agree better with the measured
results for Fdc � 0.6Fcross. Since the parabolic-k distribution
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FIG. 9. (Color online) Measured ionization probabilities for
“312D” states excited in the dc fields, indicated as a function of the
scaled amplitude of a probe field Fstep of 10-ns duration, Tp ∼ 2.3Tn.
Symbols denote data points recorded with the probe field applied
parallel ( ) and antiparallel ( ) to the dc electric field, Fdc. Calculated
ionization probabilities for the “312D” states obtained using the
hybrid-� and the parabolic-k distributions are shown by the black
and light-blue (gray) lines, respectively. Solid (dashed) lines are for
the probe field parallel (antiparallel) to Fdc. The error bars indicate
the 10% uncertainty in Fstep.

assumes near-parabolic states while the hybrid-� distribution
is designed to represent a state with fixed angular momentum
� of the outer electron, this experimental observation indicates
a transition from a state with weak �-mixing to one with strong
�-mixing as Fdc is increased.

We have further tested this probing scheme through mea-
surements undertaken using the neighboring “312P ” state at
Fdc ∼ 0.6Fcross. The data revealed little asymmetry, consistent
with the predicted weak polarization [Fig. 2(b)]. In a further
test the 413-nm laser was tuned to excite extreme blue-shifted
Stark states lying near the top of the n = 309 manifold in a
field Fdc ∼ 0.9Fcross. Although the signal levels were low, the
data revealed a noticeable asymmetry in the opposite sense to
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FIG. 10. (Color online) (a)–(c) Survival probabilities measured for “312D” states produced in the dc field indicated and subject to a
5 mV cm−1, 80-ns-long pump pulse as a function of the time delay between the end of the pump pulse and application of a 6-ns-long probe
pulse Fstep(=120 mV cm−1 when probing along the x axis and 105 mV cm−1 when probing along the z axis), together with the corresponding
simulations employing the hybrid-� (d)–(f) and the parabolic-k (g)–(i) distributions. The black (light blue/gray) lines correspond to application
of the probe pulse in the z (x) directions. The applied dc fields are (a),(d),(g) Fdc = 0, (b),(e),(h) 300 μV cm−1, and (c),(f),(i) 500 μV cm−1.

that seen for red-shifted states, consistent with the creation of
states with opposite polarization.

B. Production of circular states

In the second series of experiments, creation of circular
wave packets is explored. In these experiments, “312D” states
were subject to a 5 mV cm−1, 80-ns-long pump pulse followed
by application of a 6-ns-long probe pulse of amplitude Fstep =
120 mV cm−1 when probing along the x axis and 105 mV cm−1

when probing along the z axis. As a function of the time delay τ

between the pump and probe pulses [Eq. (17)], the measured
survival probabilities [Figs. 10(a)–10(c)] and the calculated
probabilities employing the hybrid-� [Figs. 10(d)–10(f)] and
the parabolic-k [Figs. 10(g)–10(i)] distributions mirror the
expectation values 〈x(t)〉 and 〈z(t)〉. Similar to Fig. 8, transient
localization leading to the buildup of strong oscillations in the
survival probability is clearly seen, particularly in panels (c),
(f), and (i). (We note in passing that due to more equispaced
energy levels at n � 312 compared to n � 50, the wave packet
involving different n levels evolves more coherently, thus
increasing the number of orbital periods required to build up
large “quantum beat” amplitudes [29].) When probing in the
x direction, the measured oscillation amplitudes are largely
independent of the size of the applied dc field Fdc. Even when
Fdc = 0, i.e., for an unpolarized 312D initial state, large beat
amplitudes are seen reflecting large periodic changes in the
survival probability. This is to be expected, as all orbits share
the x axis (Sec. IV B) and contribute to the large oscillation
in 〈x(t)〉. In contrast, when probing along the z direction,
the amplitude of the oscillation depends markedly on Fdc and

increases steadily with increasing Fdc. Finally, for Fdc ∼ Fcross,
the oscillations in 〈z(t)〉 are comparable in amplitude to those
seen in 〈x(t)〉 but are 90◦ out of phase [Eq. (18)], perfectly
consistent with the creation of a localized wave packet moving
in a near-circular Bohr-like orbit. The hybrid-� distribution
reproduces the measured results reasonably well, particularly
for weak Fdc [Figs. 10(d) and 10(e)]. Even though the initial
Rydberg state evolves towards a parabolic state with increasing
Fdc, the CTMC simulations using the parabolic-k distribution
perform only slightly better than those employing the hybrid-�
distribution. We return to this point below.

C. Determining the dipole moment

For each of the two probing schemes outlined above the
observed asymmetries increase with applied dc field, consis-
tent with an increase in the polarization of the photoexcited
“nD” states. The key question remains, however, as to just
how well can the polarization and average dipole moment
of an initial state be determined from the magnitude of the
measured asymmetries? To this end, we define the asymmetry
for ionization by a pulsed field as the difference between
the survival probabilities measured with probe fields applied
parallel and antiparallel to the dc field. We pick the value for
the field strength |Fstep| as 110 mV cm−1 � 0.2/n4, where
the observed asymmetry is prominent. In analyzing the data
for a circular (Bohr) wave packet, we consider the maximum
amplitude of oscillation in the survival probabilities. Since
only oscillation amplitudes in the z direction, i.e., transverse
to the pump pulse, display a sizable dependence on Fdc, we
focus on 〈z(t)〉 as a measure for the polarization.
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Figure 11 displays the asymmetries measured as a function
of Fdc for each of the two probing schemes. Since for a given
value of Fdc, the initial hybrid-� and parabolic-k ensembles
employed in the simulations have, by design, the same electric
dipole moment, the simulations might be expected to yield
similar ionization asymmetries if these are, indeed, controlled
by the dipole moment alone. This, however, seems only to
be true for the predicted maximum oscillation amplitude
following generation of a circular wave packet, which thus
appears to provide a direct and unambiguous measure of
the dipole moment [see Fig. 11(b)]. In contrast, simple
ionization by a field step [see Fig. 11(a)] yields simulated
asymmetries that depend on the initial ensemble. This implies
that these asymmetries probe not only the dipole moment,
i.e., the first moment, but also the higher moments of these
distributions. One key difference between the two probing
schemes is that measurement of the maximum amplitude
of the oscillations in survival probability for circular wave
packets [see Fig. 10] probes the time-dependent response, i.e.,
the Fourier amplitude, near the Stark precession frequency
ωS , while the second probes the zero-frequency (or static)
response. The latter is apparently more sensitive to properties
of the initial distribution beyond the first moment. This point
is corroborated by the observation that even in the case of
circular wave packets (Fig. 10), the calculated time-averaged
survival probabilities, i.e., the zero-frequency response (unlike
the oscillation amplitude) depends on the choice of the

initial ensemble. We note that the polarization of the target
state was also examined using a third probing protocol that
employed a periodic train of 20 half-cycle pulses (HCPs)
applied parallel and antiparallel to the polarization axis [30].
Large asymmetries in the survival probabilities were observed
and the data again suggested a dependence on higher-order
moments.

For pulsed-field ionization [Fig. 11(a)], calculations using
the hybrid-� distribution predict a larger asymmetry than
those based on the parabolic-k distribution. This difference
in asymmetry reflects the relative weights of high-� and low-�
states in the initial ensemble. Because high-� states extend
their orbits more symmetrically on both sides of the nucleus,
their contributions to the asymmetry in survival probability are
expected to be smaller than those for low-� states. Since the
parabolic-k distribution has a broad � distribution that extends
to high � values while the initial hybrid-� ensemble includes
only � = 2 states, this accounts for the observed differences
[Fig. 11(a)] in the predicted asymmetries. The measured
asymmetry agrees better with the hybrid-� simulations at
small Fdc, while near Fdc = Fcross the agreement with the
parabolic-k simulations improves, which is consistent with the
experimentally generated state transitioning from a narrowly
peaked � = 2 distribution to a broad-� distribution.

Overall, the amplitude of the oscillations in survival
probability following creation of a near-circular wave packet
[Fig. 11(b)] emerges as the most robust and unambiguous
measure for the first moment of ρqm(k), i.e., the dipole moment
of the photoexcited state. At Fdc = 0.5Fcross (0.9Fcross), com-
parison of the measured oscillation amplitudes to simulations
using the hybrid-� (parabolic-k) distribution point to a dipole
moment 〈d〉 = 0.6n2 (1.2n2). The biggest advantage of this
probing scheme is that the dipole moment can be determined
even when the distribution ρqm(k) is not available, i.e., an
ensemble of parabolic states can simply be determined that best
fits the measured oscillation amplitudes. Additionally, since
the evolution of near-circular wave packets is rather insensitive
to the core potential, the CTMC simulations can be performed
using the Coulomb potential instead of a more-complex model
potential.

VII. SUMMARY

The present work demonstrates that strongly polarized
quasi-1D high-n strontium Rydberg atoms can be created by
two-photon excitation in an applied dc field Fdc ∼ Fcross and
their polarization probed by pulsed field ionization and by
creation of near-circular wave packets. Also, the experimental
data can be analyzed with the aid of CTMC simulations that
use different ensembles to represent the initial photoexcited
state. This initial state was calculated using a TAE model
which also served to validate the CTMC dynamics for the
creation of circular wave packets. The analysis protocols used
probe not only the average dipole moment of the photoexcited
Rydberg states but also the effects of core scattering and the
role of � mixing. The product states were shown to have
large dipole moments of ∼1.0–1.2n2 and can be engineered
using pulsed electric fields to create a wide variety of target
states, including near-circular Bohr-like atoms and strongly
correlated two-electron-excited states.
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Persson, D. G. Arbó, S. Yoshida, and J. Burgdörfer, Phys. Rev.
A 70, 033402 (2004).

023426-12

http://dx.doi.org/10.1088/0953-4075/42/2/022001
http://dx.doi.org/10.1088/0953-4075/42/2/022001
http://dx.doi.org/10.1088/0953-4075/42/2/022001
http://dx.doi.org/10.1088/0953-4075/42/2/022001
http://dx.doi.org/10.1016/S0370-1573(02)00270-3
http://dx.doi.org/10.1016/S0370-1573(02)00270-3
http://dx.doi.org/10.1016/S0370-1573(02)00270-3
http://dx.doi.org/10.1016/S0370-1573(02)00270-3
http://dx.doi.org/10.1016/0370-1573(91)90113-Z
http://dx.doi.org/10.1016/0370-1573(91)90113-Z
http://dx.doi.org/10.1016/0370-1573(91)90113-Z
http://dx.doi.org/10.1016/0370-1573(91)90113-Z
http://dx.doi.org/10.1209/0295-5075/5/4/004
http://dx.doi.org/10.1209/0295-5075/5/4/004
http://dx.doi.org/10.1209/0295-5075/5/4/004
http://dx.doi.org/10.1209/0295-5075/5/4/004
http://dx.doi.org/10.1119/1.3389134
http://dx.doi.org/10.1119/1.3389134
http://dx.doi.org/10.1119/1.3389134
http://dx.doi.org/10.1119/1.3389134
http://dx.doi.org/10.1103/PhysRevA.88.031401
http://dx.doi.org/10.1103/PhysRevA.88.031401
http://dx.doi.org/10.1103/PhysRevA.88.031401
http://dx.doi.org/10.1103/PhysRevA.88.031401
http://dx.doi.org/10.1103/PhysRevA.75.013401
http://dx.doi.org/10.1103/PhysRevA.75.013401
http://dx.doi.org/10.1103/PhysRevA.75.013401
http://dx.doi.org/10.1103/PhysRevA.75.013401
http://dx.doi.org/10.1103/PhysRevLett.102.110503
http://dx.doi.org/10.1103/PhysRevLett.102.110503
http://dx.doi.org/10.1103/PhysRevLett.102.110503
http://dx.doi.org/10.1103/PhysRevLett.102.110503
http://dx.doi.org/10.1103/PhysRevA.87.053409
http://dx.doi.org/10.1103/PhysRevA.87.053409
http://dx.doi.org/10.1103/PhysRevA.87.053409
http://dx.doi.org/10.1103/PhysRevA.87.053409
http://dx.doi.org/10.1103/PhysRevA.87.013407
http://dx.doi.org/10.1103/PhysRevA.87.013407
http://dx.doi.org/10.1103/PhysRevA.87.013407
http://dx.doi.org/10.1103/PhysRevA.87.013407
http://dx.doi.org/10.1103/PhysRevA.67.032503
http://dx.doi.org/10.1103/PhysRevA.67.032503
http://dx.doi.org/10.1103/PhysRevA.67.032503
http://dx.doi.org/10.1103/PhysRevA.67.032503
http://dx.doi.org/10.1103/PhysRevLett.68.21
http://dx.doi.org/10.1103/PhysRevLett.68.21
http://dx.doi.org/10.1103/PhysRevLett.68.21
http://dx.doi.org/10.1103/PhysRevLett.68.21
http://dx.doi.org/10.1103/PhysRevLett.65.1965
http://dx.doi.org/10.1103/PhysRevLett.65.1965
http://dx.doi.org/10.1103/PhysRevLett.65.1965
http://dx.doi.org/10.1103/PhysRevLett.65.1965
http://dx.doi.org/10.1103/PhysRevA.67.013403
http://dx.doi.org/10.1103/PhysRevA.67.013403
http://dx.doi.org/10.1103/PhysRevA.67.013403
http://dx.doi.org/10.1103/PhysRevA.67.013403
http://dx.doi.org/10.1103/PhysRevA.64.021404
http://dx.doi.org/10.1103/PhysRevA.64.021404
http://dx.doi.org/10.1103/PhysRevA.64.021404
http://dx.doi.org/10.1103/PhysRevA.64.021404
http://dx.doi.org/10.1103/PhysRevLett.100.243004
http://dx.doi.org/10.1103/PhysRevLett.100.243004
http://dx.doi.org/10.1103/PhysRevLett.100.243004
http://dx.doi.org/10.1103/PhysRevLett.100.243004
http://dx.doi.org/10.1103/PhysRevA.15.1920
http://dx.doi.org/10.1103/PhysRevA.15.1920
http://dx.doi.org/10.1103/PhysRevA.15.1920
http://dx.doi.org/10.1103/PhysRevA.15.1920
http://dx.doi.org/10.1088/1009-1963/10/10/309
http://dx.doi.org/10.1088/1009-1963/10/10/309
http://dx.doi.org/10.1088/1009-1963/10/10/309
http://dx.doi.org/10.1088/1009-1963/10/10/309
http://dx.doi.org/10.1088/0953-4075/44/18/184001
http://dx.doi.org/10.1088/0953-4075/44/18/184001
http://dx.doi.org/10.1088/0953-4075/44/18/184001
http://dx.doi.org/10.1088/0953-4075/44/18/184001
http://dx.doi.org/10.1103/PhysRevA.88.043430
http://dx.doi.org/10.1103/PhysRevA.88.043430
http://dx.doi.org/10.1103/PhysRevA.88.043430
http://dx.doi.org/10.1103/PhysRevA.88.043430
http://dx.doi.org/10.1119/1.16876
http://dx.doi.org/10.1119/1.16876
http://dx.doi.org/10.1119/1.16876
http://dx.doi.org/10.1119/1.16876
http://dx.doi.org/10.1088/0034-4885/53/2/002
http://dx.doi.org/10.1088/0034-4885/53/2/002
http://dx.doi.org/10.1088/0034-4885/53/2/002
http://dx.doi.org/10.1088/0034-4885/53/2/002
http://dx.doi.org/10.1088/0953-4075/21/10/008
http://dx.doi.org/10.1088/0953-4075/21/10/008
http://dx.doi.org/10.1088/0953-4075/21/10/008
http://dx.doi.org/10.1088/0953-4075/21/10/008
http://dx.doi.org/10.1088/0953-4075/31/4/020
http://dx.doi.org/10.1088/0953-4075/31/4/020
http://dx.doi.org/10.1088/0953-4075/31/4/020
http://dx.doi.org/10.1088/0953-4075/31/4/020
http://dx.doi.org/10.1063/1.3449176
http://dx.doi.org/10.1063/1.3449176
http://dx.doi.org/10.1063/1.3449176
http://dx.doi.org/10.1063/1.3449176
http://dx.doi.org/10.1088/0953-4075/45/13/135004
http://dx.doi.org/10.1088/0953-4075/45/13/135004
http://dx.doi.org/10.1088/0953-4075/45/13/135004
http://dx.doi.org/10.1088/0953-4075/45/13/135004
http://dx.doi.org/10.1088/0022-3700/12/12/023
http://dx.doi.org/10.1088/0022-3700/12/12/023
http://dx.doi.org/10.1088/0022-3700/12/12/023
http://dx.doi.org/10.1088/0022-3700/12/12/023
http://dx.doi.org/10.1103/PhysRevA.84.043412
http://dx.doi.org/10.1103/PhysRevA.84.043412
http://dx.doi.org/10.1103/PhysRevA.84.043412
http://dx.doi.org/10.1103/PhysRevA.84.043412
http://dx.doi.org/10.1103/PhysRevA.70.033402
http://dx.doi.org/10.1103/PhysRevA.70.033402
http://dx.doi.org/10.1103/PhysRevA.70.033402
http://dx.doi.org/10.1103/PhysRevA.70.033402



