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Explicit schemes for time propagating many-body wave functions
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Accurate theoretical data on many time-dependent processes in atomic and molecular physics and in chemistry
require the direct numerical ab initio solution of the time-dependent Schrödinger equation, thereby motivating
the development of very efficient time propagators. These usually involve the solution of very large systems
of first-order differential equations that are characterized by a high degree of stiffness. In this contribution,
we analyze and compare the performance of the explicit one-step algorithms of Fatunla and Arnoldi. Both
algorithms have exactly the same stability function, therefore sharing the same stability properties that turn out
to be optimum. Their respective accuracy, however, differs significantly and depends on the physical situation
involved. In order to test this accuracy, we use a predictor-corrector scheme in which the predictor is either
Fatunla’s or Arnoldi’s algorithm and the corrector, a fully implicit four-stage Radau IIA method of order 7. In
this contribution, we consider two physical processes. The first one is the ionization of an atomic system by a
short and intense electromagnetic pulse; the atomic systems include a one-dimensional Gaussian model potential
as well as atomic hydrogen and helium, both in full dimensionality. The second process is the decoherence of
two-electron quantum states when a time-independent perturbation is applied to a planar two-electron quantum
dot where both electrons are confined in an anharmonic potential. Even though the Hamiltonian of this system
is time independent the corresponding differential equation shows a striking stiffness which makes the time
integration extremely difficult. In the case of the one-dimensional Gaussian potential we discuss in detail the
possibility of monitoring the time step for both explicit algorithms. In the other physical situations that are much
more demanding in term of computations, we show that the accuracy of both algorithms depends strongly on the
degree of stiffness of the problem.
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I. INTRODUCTION

The numerical integration of the time-dependent
Schrödinger equation (TDSE) has become the main theoretical
approach for the quantitative study of a vast amount of
phenomena, including strong field processes in atoms and
molecules, quantum collisions, and chemical reactions. In
strong field physics, current light sources can create ultrashort
pulses of very high intensity making the numerical solution
of the TDSE unavoidable if accurate results are required. In
the low frequency regime where the photon energy is much
lower than the ionization potential, the advent of high-intensity
lasers has allowed detailed investigations of phenomena such
as above-threshold ionization [1], high-order harmonic gener-
ation [2], multiphoton multiple ionization [3], attosecond pulse
generation [4], molecular self-spectroscopy [5], etc. In the high
frequency regime where the photon energy is of the order or
larger than the ionization potential, very intense coherent x-ray
sources are under development. They are based on the collec-
tive electronic response of a plasma to ultraintense laser fields
[6] as well as the next generation free electron lasers (FELs)
such as the European XFEL project. The latter is expected to
boost the average photon flux by about two orders of magnitude
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in comparison with already existing FELs. The interaction of
atoms or molecules with intense x-ray pulses with a duration
in the femtosecond or subfemtosecond regime is expected to
lead to highly nonlinear processes which can no longer be
described within perturbation theory as is currently the case.

In quantum collision theory, the interaction Hamiltonians
do not usually depend explicitly on time. Time-independent
approaches such as the R-matrix [7] or the S-matrix methods
[8] suffice. However, in many cases, the lack of knowledge
of the asymptotic boundary conditions or the explicit intro-
duction of a time in the interaction Hamiltonian through the
classical description of a heavy projectile makes the numerical
solution of the corresponding TDSE more convenient [9].
Methods such as the time-dependent close coupling [10]
are particularly efficient. Nevertheless, when the quantum
systems involved become more complex as is often the
case for chemical reactions or in condensed matter physics,
the numerical solution of the TDSE is no longer possible.
Different approaches are necessary as, for instance, the time-
dependent density functional theory (TDDFT) [11,12]. In
that case, the Hamiltonian is replaced by the self-consistent
Kohn-Sham Hamiltonian. In fact, TDDFT can be viewed as
a reformulation of time-dependent quantum mechanics where
the basic unknown is no longer the many-body wave function,
but the time-dependent electron density [13]. This density can
be obtained from the solution of a set of one-body equations,
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the so-called Kohn-Sham equations that have the same form
as the usual TDSE.

The necessity of integrating numerically the TDSE mo-
tivates the development of efficient and accurate time prop-
agators. Once the TDSE has been discretized in the spatial
and/or energy domain by means of either a finite difference
grid method or an approach based on spectral or finite element
methods, the time integration of the TDSE reduces to the
solution of a system of first-order differential equations which
may be written as follows:

d

dt
Y = −iH(t)Y, (1)

where H(t) is a matrix that depends explicitly on time. The
main difficulty we have to face in solving such a system of
ordinary differential equations is the fact that the spectrum
of matrix H is not bound. In general, the matrix −iH has
very high, purely imaginary, eigenvalues. These very high
eigenvalues give rise to extremely fast oscillations of the true
solution and usually determine the time step of the numerical
time propagator. Another way to describe this problem is to say
that the system behaves as a stiff system. Although there is no
rigorous mathematical definition of the stiffness, a system is
said to be stiff in a given interval of integration if the numerical
method is forced to use a step length which is excessively
small in relation to the smoothness of the exact solution
[14]. In addition, increasing the size of the system generates
eigenvalues each time higher thereby increasing its stiffness.

The problem associated with stiff systems is twofold:
stability and accuracy. To each numerical method is associated
a function named the stability function that determines the
stability properties of the method and the range of time steps for
which the numerical solution is stable and remains bounded.
In the case of stiff systems, it can be shown, for instance, that
none of the explicit methods of the Runge-Kutta (R-K) type
is stable. In that case, it is necessary to use an implicit R-K
scheme. Note that, by contrast to an explicit method which
only requires matrix-vector products, all implicit schemes
require solving systems of algebraic equations at each time
step. For systems of considerable size, the computer time
becomes, in these conditions, rapidly excessive. Fortunately,
explicit schemes exist that are not of the R-K type but
having the stability properties required for dealing with such
stiffness problems. The accuracy problem is more delicate.
If an appropriate integration method is used, the stability
problem may be avoided but, for a reasonable step length, the
solution components corresponding to the largest eigenvalues
are approximated very inaccurately [15]. However, there is no
mathematical tool which allows one to predict whether the
numerical solution of a stiff system will be accurate or not.
Very often, the highest eigenvalues that correspond to very
high energies do not play any physical role but, this does not
imply that the error made in calculating the corresponding
high energy components of the full numerical solution will
not affect the final result. In fact, it is important to proceed on
a case-by-case basis.

In this contribution, we analyze in detail two explicit
one-step integration schemes that have the required stability
properties for dealing with stiff systems. The first method
is due to Fatunla [16,17] and the second one is a Krylov

subspace method usually called the Arnoldi algorithm. The
Arnoldi algorithm has already been used in many different
contexts: strong field physics [18], condensed matter physics
[13], etc. However, as far as we know, no systematic study of its
stability and accuracy properties exists so far. In order to test
the accuracy of both methods, we use a predictor-corrector
scheme in which the predictor is either Fatunla’s method
or Arnoldi’s algorithm while the corrector is a four-stage
diagonally implicit Radau IIA method of order seven. Here,
we consider the interaction of a quantum system with a strong
and ultrashort electromagnetic pulse and test the three methods
in the case of three different quantum systems: a model
potential, atomic hydrogen, and helium. We also examine
the performances of these explicit schemes in a completely
different context namely the calculation of a fidelity function
that measures the decoherence of two-electron quantum states
when a time-independent perturbation is applied to a planar
two-electron quantum dot where both electrons are confined
in an anharmonic potential. In fact this is a difficult problem,
which exhibits a strong degree of stiffness although its
Hamiltonian is time independent. Finally, let us mention that
a comparison of different time propagation algorithms for the
time-dependent Schrödinger equation may be found in [19].

This article is organized as follows. Section II is devoted
to the general formulation of the TDSE. After some pre-
liminary remarks, we give and discuss the general spectral
representation of the TDSE and finally define the stability
function of a given algorithm. In Sec. III, we introduce the
various algorithms (Fatunla’s method, Arnoldi’s algorithm,
and the predictor-corrector scheme) in the context of our model
potential. For both explicit schemes, we give their stability
function and analyze in detail their accuracy in the case of the
model potential. Section IV is devoted to the results obtained
with Fatunla’s and Arnoldi’s methods for the model potential,
the interaction of atomic hydrogen with both a high and a
very low frequency strong laser field, and single ionization
of helium. Finally, we consider the problem of the planar
two-electron quantum dot. Unless otherwise stated, atomic
units are used throughout this paper.

II. GENERAL FORMULATION OF THE TDSE

A. Preliminary remarks

Our aim is to study the interaction of a quantum system
with an external time-dependent field. Solving numerically the
corresponding TDSE proceeds in two steps: the discretization
in the spatial or/and energy domain of the equation and the
time propagation of the solution. There are typically three
ways of discretizing the TDSE: the finite difference grid
(FDG) methods and the approaches based on spectral or
finite element methods. The simplest approaches are the FDG
methods. These methods based on a spatial discretization
are essentially local. They are very often used because
the subsequent time propagation involves solving very
sparse systems of algebraic equations. However, it is often
tricky to extract information on how these methods account
for the electronic structure of the quantum system under
consideration and some observables are sometimes difficult
to calculate. Furthermore, these methods yield finite-order
rates of convergence in terms of the number of spatial grid
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points. In other words, the errors go to zero as the inverse of
this number at a power given by the order of the method.

The spectral methods based on an energy discretization
are nonlocal. They consist in writing the solution as a
truncated expansion in terms of L2 integrable functions. These
functions form a complete basis set. Different choices of
basis sets are possible, which usually depend on the physics
of the problem. The most commonly used functions are the
Hermite functions, the Coulomb Sturmian functions [20], and
orthogonal polynomials. There are essentially two types of
spectral methods: Galerkin and collocation [21]. In addition to
the energy discretization as is the case in the Galerkin method,
the collocation method involves also a spatial discretization.
However, by contrast to the FDG methods, the grid mesh
points are not arbitrarily chosen. They are the abscissae of
the Gaussian quadrature associated with the basis functions.
The spectral approaches are very appropriate for a very
accurate description of the bound and resonance states of the
quantum system under consideration. This is particularly true
for resonance states very close to the ionization thresholds
[22]. The convergence of the spectral methods in terms of
the number of basis functions depends on the analytical
properties of the solution. If the successive spatial derivatives
of this solution do not exhibit singularities, the convergence is
exponential. This means that the errors go to zero faster than
any finite power of the inverse of the number of basis functions.
On the other hand, if the solution exhibits singularities in its
successive derivatives and if the basis wave functions do not
account for these singularities, the convergence is much slower.
Typical examples of such singularities are the Kato cusps
present in many-particle system wave functions [23]. Another
drawback of the spectral methods is the fact that the matrix
associated with the Hamiltonian is, in most cases, not sparse.

The finite element methods which are based on a subdi-
vision of the whole spatial domain of integration into simple
subdomains are in fact closely related to the spectral methods.
They differ, however, by the fact that the basis functions
have bounded support, being therefore piecewise regular.
In addition, these methods yield also finite-order rates of
convergence like in the case of the FDG methods. Piecewise
Lagrange polynomials or B splines are very often used as basis
functions. In general, these methods are particularly efficient in
describing the electronic continuum states of the system under
consideration. In addition, singularities or large gradients in the
solution can be treated by considering nonregular subdomains.
These methods are very often used, especially those based on B
splines [24] because the subsequent time propagation involves
relatively sparse systems of equations to solve like in the
case of the FDG methods. In the present contribution, we use
spectral or/and B-spline-based methods in all the cases treated.

B. The spectral representation of the TDSE

The TDSE for a quantum system interacting with an external
field can be written as

i
∂�(r,t)

∂t
= H (r,t) �(r,t), (2)

where �(r,t) is the wave function of the system, r represents
any set of n spatial coordinates, and t is the time. The total

Hamiltonian H (r,t), which depends explicitly on time, is
given by

H (r,t) = H0(r) + V (r,t), (3)

with H0(r) the unperturbed Hamiltonian and V (r,t)
the time-dependent interaction potential (velocity form in
all the cases treated here). Using a complete basis set {fi(r)} of
square integrable functions, we write the wave function �(r,t),
the solution of Eq. (2), as the following truncated expansion,

�(r,t) =
N∑

i=1

ψi(t)fi(r), (4)

where the expansion coefficients ψi(t) are time dependent. N

represents the number of terms in the expansion and is taken
sufficiently large to represent the wave function to the desired
accuracy. As a result, the TDSE is transformed into a matrix
equation for the vector �(t) = {ψi(t)}N , given by

i B
d

dt
�(t) = H(t)�(t). (5)

For a nonorthonormal basis, the overlap matrix B and the
Hamiltonian H(t) have elements defined by

[B]ij = 〈fi |fj 〉, (6)

[H]ij = 〈fi |H (r,t)|fj 〉. (7)

The time evolution of the wave packet is then given by the
solution of the following N -dimensional system of first-order
differential equations:

d

dt
�(t) = −i B−1H(t)�(t). (8)

There is actually no need to evaluate explicitly the inverse of
the overlap matrix B. This matrix is always symmetric and
positive definite, which allows a numerically stable and fast
Cholesky decomposition. In that case the action of B−1 on a
vector can be calculated straightforwardly by solving a very
sparse system of algebraic equations. The vector �(t) is said
to be B orthogonal and its norm is given by

�† · B · � = 1. (9)

Note that in the case of the FDG methods, a system of
equations similar to the system (5) has to be solved but the
matrix H is no longer associated with the Hamiltonian.

C. The boundary and asymptotic conditions

In solving numerically the TDSE, the discretization method
has to account correctly for the nontrivial problems of the
boundary and asymptotic conditions. By way of illustration,
let us consider the case of the ionization of atomic hydrogen
by an intense low frequency laser field. The amplitude of
the electron quiver motion determines the minimum spatial
grid size or the minimum number of basis functions to
be included. For high intensities and very low frequencies,
this amplitude may become of the order of thousands of
atomic units thereby requiring excessively long computational
times. In addition, during the interaction process, ionization
takes place and fast emitted electrons will rapidly reach
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the boundaries of the computational domain. It is therefore
important to choose appropriate boundary conditions to avoid
spurious reflections of the wave function at these boundaries.
Such reflections can be avoided by further increasing the
size of the computational domain, but this becomes rapidly
untractable. Instead, reflection problems can be overcome
by introducing complex absorbing potentials [25,26]. Those
potentials, however, are usually not completely reflection free.
A better approach is exterior complex scaling (ECS) in which
the outgoing electron coordinate becomes complex beyond
a certain distance from the nucleus which is larger than the
amplitude of the quiver motion [27,28].

For single electron systems, the extraction of the informa-
tion on the differential probability densities does not cause
any problem since the asymptotic behavior of the field-free
continuum states is known. This contrasts with the multielec-
tron systems where the asymptotic behavior of the multiple
continuum wave functions is unknown. In that case, one can
either develop approximate expressions for these continuum
wave functions or use more sophisticated time-dependent
methods that circumvent the problem. When the outgoing
electrons are sufficiently far from each other so that their
interaction becomes negligible, multiple continuum wave
functions are usually approximated by a product of Coulomb
functions [29–32]. The validity of this approximation which
gives reliable results is discussed in [33]. More sophisticated
methods that avoid any projection of the final wave packet on
approximated multiple continuum wave functions have been
developed. Palacios et al. [34] have derived a time-dependent
method where the extraction of the information from the wave
packet is based on ECS. Malegat et al. extract the information
from the total wave packet after propagating semiclassically
its Fourier components in space over very large distances
[33,35]. Scrinzi has extended the time-dependent surface
flux method to single and double ionization of two-electron
systems [36]. Hutchinson et al. [37] are developing a time-
dependent R-matrix approach that can describe the interaction
of any (light) atomic systems with short electromagnetic
pulses. More recently, Hamido et al. have developed the
so-called time-scaled coordinate (TSC) method [38]. This
latter method which is used in some of the cases treated
in this contribution, consists in performing a time-dependent
scaling of the radial coordinates of the electrons together with
a phase transformation of the wave function. As a result, a
harmonic potential appears in the scaled Hamiltonian, which
confines the wave function in configuration space. It can be
shown that a relatively long time after the interaction, the wave
function becomes stationary and its modulus gives directly
the momentum distribution of the particles resulting from the
fragmentation of the system. Consequently this method clearly
circumvents the above-mentioned difficulties. It, however,
introduces different length scales that need to be treated with
multiresolution techniques and that influence the stability of
the numerical time propagation scheme.

D. The stability function

In order to analyze the stability of a one-step numerical time
propagation scheme, it is convenient to consider the following

standard test problem (Dahlquist’s equation):

dy

dt
= λy, (10)

where λ is a constant. If we assume that y(0) = η, the solution
of this equation is y(t) = η exp(λt). Usually, a system of
equations is said to be stiff when its Jacobian matrix has some
eigenvalues with a very large negative real part. In the case
of Eq. (10), assuming that the real part of λ is very large and
negative leads to a solution that tends extremely rapidly to
zero. We have therefore to look for the conditions that have
to be imposed on the numerical time propagation scheme in
order that the numerical solution yn = y(nδt) → 0 as n → ∞
where δt is the time step. By applying the one-step numerical
time propagation scheme to Eq. (10), we obtain

yn+1 = R(λδt)yn, (11)

where R(z) is the so-called stability function. In order that yn

tends to zero as n → ∞, we must impose R(λδt) < 1 thereby
implying some constraints on the time step δt . The set S =
{z = λδt ∈ C; |R(z)| � 1} is called the stability domain of
the numerical scheme. This latter one is said to be A stable if
its stability domain is included in C− = {z; Re z � 0}. It is
L stable if, apart from being A stable, the stability function has
the property limRe(λδt)→−∞ |R(λδt)| = 0. L-stable methods are
the most stable ones [14].

In the present case, the Jacobian of the system of equations
we are interested in has large purely imaginary eigenvalues.
Although such systems behave like a stiff system, the analysis
of the stability of the numerical scheme is more delicate.
Suppose, for instance, that the numerical scheme we use is
L stable and that its stability domain covers the half-plane
C− as well as large parts of the right half-plane C+. In
these conditions, uninteresting high oscillations of the true
solution may be damped by the numerical scheme. However,
the norm of the solution will not be necessarily preserved since
|R(λδt)| � 1. We must impose, as an additional constraint,
that |R(λδt)| = 1. This means that if λ is purely imaginary,
R(λδt) = exp(λδt). Following Fatunla [17], a numerical time
propagation scheme is said to be exponentially fitted at a
complex value λ = λ0 if the stability function R(λδt) satisfies
the relation,

R(λ0δt) = exp(λ0δt). (12)

III. TIME PROPAGATION ALGORITHMS

In this section we describe and compare the performance
of two explicit one-step time propagation schemes, namely
Fatunla’s method and Arnoldi’s algorithm in terms of stability
and accuracy. To test the accuracy of both schemes we use
an implicit predictor-corrector (PC) method. The predictor is
either Fatunla’s method or Arnoldi’s one and the corrector
is a four-stage Radau II-A implicit method which is of the
Runge-Kutta type. Monitoring the time step during the time
propagation using both explicit schemes is a key point which
will be addressed first within a simple one-dimensional model
of one electron in a Gaussian potential of the form V (x) =
−V0e

−βx2
, where V0 and β are constants and exposed to a

cosine square pulse.
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In the following sections, these two algorithms will be
also tested in two more demanding physical situations. The
first situation is the interaction of a quantum system with a
strong electromagnetic pulse. The quantum systems we shall
be studying in that case are atomic hydrogen and helium,
both treated in full dimensions. The second physical situation
is the time evolution of a two-electron wave packet in a
two-dimensional quantum dot.

A. Fatunla’s method

The idea behind Fatunla’s method is to take into account
the intrinsic frequencies of the atom-field system by intro-
ducing interpolating oscillatory functions that approximate
the solution of the TDSE. This allows one to deal with
problems displaying eigenvalues that differ by many orders
of magnitude. That explains why Fatunla’s method has the
capability to solve stiff equations, while requiring only matrix
vector products. More precisely, we write the first-order
differential equation (8) as

d

dt
�(t) = −i B−1H(t)�(t) = f(t,�). (13)

The solution �(t) over a subinterval [tn,tn + δt = tn+1] is
approximated by the interpolating oscillatory function,

F̃(t) = (I − e�1t )a − (I − e−�2t )b + c, (14)

with I being the identity matrix. �1 and �2 are diagonal
matrices, usually called the stiffness matrices, and a,b,c are
constant vectors. By demanding that the interpolating function
(14) coincides with the theoretical solution at the endpoints
of the interval [tn,tn+1], and that it satisfies the differential
equation at t = tn, we arrive at the recursion formula,

�n+1 = �n + Rfn + Sf(1)
n , (15)

where we use the notation fn = f(tn,ψn), f(1)
n = d

dt
f(t,�)|t=tn .

R and S represent diagonal matrices defined as

R = �2� − �1�, S = � + �. (16)

� and � are diagonal matrices with nonzero entries given by
[16,17],

	j = e
1,j δt − 1


1,j (
1,j + 
2,j )
, (17)

and

�j = e−
2,j δt − 1


2,j (
1,j + 
2,j )
. (18)

The recursion formula (15) depends on the so far unknown
stiffness matrices �1 and �2. These matrices can be written in
terms of the function fn and its derivatives up to third order in tn.
The use of the Taylor expansion of �n+1 = �(tn + δt) and of
the Maclaurin series of e�1 δt = ∑∞

j=0
δtj

j ! �
j

1 and of e−�2 δt =∑∞
j=0

δtj

j ! (−1)j �
j

2, substituted in the recursion relation (15),
leads to a simple system of algebraic equations for �1 and
�2. The components of the stiffness matrices obtained after
solving these equations read as [17],


1,j = 1
2

(−Dj +
√

D2
j + 4Ej

)
, 
2,j = 
1,j + Dj,

(19)

where Dj and Ej (j = 1, . . . ,N) are given in terms of the
components of the derivatives f(k)

n (k = 0,1,2,3),

Dj = f
(0)
n,j f

(3)
n,j − f

(1)
n,j f

(2)
n,j

f
(1)
n,j f

(1)
n,j − f

(0)
n,j f

(2)
n,j

,

(20)

Ej = f
(1)
n,j f

(3)
n,j − f

(2)
n,j f

(2)
n,j

f
(1)
n,j f

(1)
n,j − f

(0)
n,j f

(2)
n,j

,

provided that the denominator in Eq. (20) is not zero.
Fatunla [17] has established that his method is L stable and

exponentially fitted to any complex value λ. This means that
the corresponding stability function R(λδt) = exp(λδt), gives
the optimum stability properties. Furthermore, it can be shown
that the j th component of the local truncation error at t = tn+1

is given by

Tn+1,j = δt5

5!

[
f

(4)
n,j + (


3
2,j − 
2

2,j
1,j + 
2,j

2
1,j − 
3

1,j

)
f

(1)
n,j

−
1,j
2,j

(

2

1,j − 
1,j
2,j + 
2
2,j

)
f 0

n,j

] +O(δt6).

(21)

The implementation of Eq. (15) to calculate �n+1 requires
the calculation of the function fn and its first derivatives f(1)

n at
each value of tn, and also the stiffness matrices �1 and �2 to
obtain the matrices R and S. We also calculate the truncation
error Tn+1 to control the size of the integration step imposing
a boundary criterion for |Tn+1|. Note that to calculate the
truncation error, we also need to evaluate f(4)

n .
The stiffness parameters carry the intrinsic information on

the natural oscillations of the system. Due to this fact, Fatunla’s
scheme can afford larger values of the time step compared with
other explicit methods of the Runge-Kutta type [39].

In Fig. 1, we show the evolution of the time step in
Fatunla’s propagation for our Gaussian model problem. The
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Free evolution

FIG. 1. (Color online) Evolution of the time step in Fatunla’s
method (blue line) for our Gaussian model problem. The cosine
square pulse envelope (red line) is also shown on an arbitrary scale.
The Gaussian potential parameters are V0 = 1 a.u. and β = 1 a.u.
and we use an electromagnetic pulse with I = 1014 W/cm2 peak
intensity, ω = 0.7 a.u. photon energy, and a duration of 10 optical
cycles.
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pulse envelope is also plotted in arbitrary units to illustrate
the duration of the pulse. We see that the time step becomes
increasingly large after the end of the pulse, reaching values of
around 2 at the end of the total propagation (500 a.u. of time).
It is clear that the most demanding part of the propagation,
and therefore the most time-consuming one, is during the
interaction of the pulse with the system. This observation is
important when it is necessary to propagate the wave function
up to large distances after the end of the pulse, as is the case
when the TSC method is used. In the results for the time
step shown in Fig. 1, the latter one is adapted according to
the condition 10−14 < |Tn+1| < 10−9, that is, if the truncation
error is lower than the lower bound 10−14 then we increase
the time step, and if it is higher than the upper bound 10−9 it
is decreased. With this choice, the overall conservation of the
norm is about 10−5, which is enough for the model problem
case we are studying. For many physical problems, this level
of accuracy in the norm is sufficient but, if a higher accuracy is
needed, then it might be expected that it is sufficient to shift the
bounds of the truncation error. However, as shown in Fig. 2,
such a conclusion is not correct. In Fig. 2, we consider three
different constraints on the truncated error and calculate on a
logarithmic scale, the absolute error on the norm denoted by 

as a function of time. This error is defined as the absolute value
of the difference between 1 and the norm at time t . In these
three cases, the time propagation is started with the same time
step namely 10−3 a.u. This time step always increases while
the truncated error is smaller than the prescribed lower bound
and decreases if the truncated error is above the upper bound.
In all three cases, we observe a significant loss of accuracy in 

at the very beginning of the time propagation. As described by
Madroñero and Piraux [39], this is due to initially very
small values of the denominators in Eq. (20) which leads
to inaccurate values of the stiffness matrix elements and of
the truncated error. This problem is therefore intrinsically
related to Fatunla’s method and leads to difficulties in correctly
controlling the time step. In fact, if we keep the time step

FIG. 2. (Color online) Absolute error in the norm  =
|(‖�(r,t)‖ − ‖�(r,t0)‖)| on a logarithmic scale for different lower
and upper bounds of the truncation error. The parameters of the
Gaussian model problem are the same as in Fig. 1. The inset is a
blow-up of the region at the beginning of the time propagation.

constant from the beginning, we have a much better control of
. We have also checked that this is true even in the field free
case. On the other hand, in general, we see from the inset in
Fig. 2 that we maintain a higher accuracy when the constraint
on the truncated error is more severe. In addition, we also
observe several small jumps in  the magnitude of which are
much smaller than the jump in  at the beginning of the time
propagation. We attribute these jumps to an accumulation of
roundoff errors. Indeed, we expect more roundoff errors in the
case the constraint on the truncated error is the strongest since a
smaller time step leads to a larger amount of calculations. Note
that the jump observed in the red continuous line corresponds
to a change of only one digit in the accuracy of the norm. The
overall relative accuracy we obtain even for the most severe
constraint we use on the truncation error is of the order of
10−5. To achieve a greater accuracy, it is necessary to use a
fixed and very small time step. These results show clearly that
the achievable accuracy for the adaptive time step approach in
Fatunla’s method has a lower bound for a given initial time step.
As a result, the use of Fatunla’s method rests on a compromise
between the computer time required and the accuracy needed.
In the following, we consider the interaction of helium with
a strong laser pulse. In that case, the accuracy on the norm
reduces to about 4 significant digits when Fatunla’s method
is used. This prevents us to calculate the probability of single
ionization in various channels where the latter one is less than
10−4 a.u. for field intensities currently used in the experiments.

In conclusion Fatunla’s method allows one to treat stiff
problems while fully exploiting the advantages of explicit
schemes, namely that it only involves matrix vector multi-
plications. However it has its own limitations.

B. Krylov subspace method

In this section we consider a powerful method to propagate
the TDSE solution, which provides accuracy of solutions
and stability of propagation. It uses projection techniques
on Krylov subspaces [40]. This approach was proposed by
Arnoldi [41] in the calculation of the eigenstates of a matrix.
Here we briefly recall the method used by Arnoldi as a
time propagator [18,42], to solve the differential equation (5).
Since the overlap matrix is positive-definite, we can use the
Cholesky decomposition B = U†U to form an orthonormal
basis defining the new coefficients � = U�. The TDSE for
these coefficients is written in the form,

d�(t)

dt
= −iĤ(t)�(t), (22)

where Ĥ = (U†)−1HU−1. If we assume that the time interval
is sufficiently small that the Hamiltonian may be treated as
constant in time over a time step δt , it is trivial to demonstrate
that Eq. (22) has a solution given by

�(t + δt) = e−iĤ(t)δt�(t). (23)

If Ĥ is diagonalizable and can be written as Ĥ = E�E−1,
where � is a diagonal matrix with the eigenvalues λi of Ĥ on
the main diagonal and E is the matrix with the corresponding
eigenvectors of Ĥ as its columns, then Eq. (23) can be
reexpressed as follows:

�(t + δt) = Ee−i�(t)δtE−1�(t). (24)
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However, for very large N this may be unnecessary and
computationally very demanding. Instead, we can define the
exponential in Eq. (23) using a Taylor expansion of the form,

�(t + δt) =
(

I − iδtĤ(t) + · · · + (−iδt)k

k!
Ĥk(t) + · · ·

)
�(t).

(25)

We use the successive matrix products as a basis set forming
a Krylov subspace spanned by (m + 1) linearly independent
vectors, denoted by

Km+1 = span{�,Ĥ�,...,Ĥm�}. (26)

To build the Krylov subspace, we first use Gram-Schmidt
orthogonalization of the initial vectors {�,Ĥ�, . . . ,Ĥm�}, to
obtain an orthonormal basis {q0,q1, . . . ,qm}. The procedure
starts with q0 = �/|�|, where the norm is defined as |�| =√

�† · �. The qk are obtained by calculating Ĥqk−1 and then
orthonormalizing each vector with respect to q0, . . . ,qk−1. If
we define Q to be a matrix formed by the m + 1 column vectors
(q0, . . . ,qm), we finally get

ĤQ = Qh, (27)

giving

h = Q†ĤQ. (28)

We see here that h is the Krylov subspace representation of
the full Hamiltonian Ĥ, and that in this procedure, we obtain
simultaneoulsy the Krylov vectors q0, . . . ,qm. Arnoldi’s al-
gorithm is general and applies to non-Hermitian matrices. It
reduces the dense matrix h to an upper Hessenberg form, and
in the particular case of Hermitian matrices, to a symmetric
tridiagonal form. In this latter case, Lanczos has shown that
this matrix can be obtained by means of a simple recursion
formula. However, this formula is known to be problematic
when the size of the Krylov subspace is large because the
orthogonality of the Krylov vectors is rapidly lost [40]. It is
the reason why we do not use this algorithm in the present
case. Once we obtain the orthonormal Krylov subspace Q and
the representation h of the Hamiltonian, it can be easily shown
that Eq. (23) can be written as

�(t + δt) = Qe−ihδtQ†�(t). (29)

The matrix h for all our case studies is tridiagonal, and its
size is never bigger than 100 × 100, so the calculation of the
exponential through direct diagonalization, as in Eq. (24), is
straightforward.

In actual numerical calculations, the Arnoldi algorithm [40]
requires some modifications. After a first calculation of a new
Krylov vector qj+1, we ensure that the norm is equal to one, by
re-checking the orthogonality against the previously calculated
vectors, and perform again the Gram-Schmidt procedure if
necessary. In principle the orthogonality condition determines
the maximum size of the Krylov subspace and the algorithm
can be used with a number m − 1 of vectors. Also, if we start
generating the Krylov vectors from the ground state of the
system, then �(t = t0) is an eigenstate of the Hamiltonian,
making it impossible to build a linearly independent set of
Krylov vectors. To solve this problem, instead of using the
vector �(t = t0) as a starting point, we use a modified vector

�(t = t0) + �, with � a vector of random entries no larger than
10−10.

By construction [see Eq. (23)], the stability function
associated to the numerical time propagator based on Arnoldi’s
algorithm is given by R(λδt) = exp(λδt). As a result, it has
exactly the same stability properties as Fatunla’s algorithm.
However, it is worth remembering that Eq. (23) is only valid
if the Hamiltonian is time independent. It is therefore a good
approximation only for small values of δt . In the present case,
there are two types of errors. The first one is directly related
to Arnoldi’s algorithm for the calculation of the exponential
of a matrix. This type of error has been discussed in detail
by Saad [43] and later on by Hochbruck and Lubich [44].
We have checked that this type of error is always negligible
and does not depend on the time step. The second type of
error is due to assuming that the Hamiltonian does not depend
explicitly on time over the time step δt . We estimated this type
of error by calculating ‖d�/dt + iH�‖ and checked that, as
expected, it is of the order δt2. Another way to estimate this
type of error is to compare our results with those obtained with
an Arnoldi-based method that takes explicitly into account
the time dependence of the Hamiltonian. This can be done
by using a Magnus expansion of the time evolution operator
[45,46]. However, this method requires very time-consuming
calculations beyond the scope of this contribution. On the
other hand, as it was already noted by other authors [18,42],
enlarging the size of the Krylov space allows for larger time
steps to be considered. In Fig. 3, we give the number of Krylov
vectors necessary to obtain convergence of our results as a
function of the time step used in the calculations for the case of
the one-dimensional Gaussian model potential with the same
parameters as in Fig. 1. In our calculations, the time step δt is
kept constant during the propagation. The choice of the optimal
value of the time step and of the corresponding dimension of
the Krylov space is therefore the result of a compromise while
trying to reduce the computer time.

The innovative use of the Arnoldi method as an explicit
approach offers then the convenience that we only require
matrix-vector and scalar products, which then transforms
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FIG. 3. Number of Krylov vectors required to obtain convergence
of the final vector propagated for different values of the (fixed) time
step. The parameters of the Gaussian model problem are the same as
in Fig. 1.
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the method in a time-efficient approach as is the case for
Fatunla’s method. Furthermore, this particular scheme is norm
conserving with the advantage of providing a check for the
method, even though it also means that it is not easy to quantify
the error in the calculation of the norm. In the following
sections the accuracy of both methods is tested in various
situations by using a high-order predictor-corrector method.

C. A predictor-corrector method

In this subsection, we briefly describe the predictor-
corrector (PC) scheme we use to test the accuracy of both
explicit methods described above. The predictor is either
Fatunla’s or Arnoldi’s algorithm. The corrector is a fully
implicit method of the Runge-Kutta type which, here, is a
four-stage Radau IIA method of order 7.

In a general Runge-Kutta method, the numerical solution
�n+1 of Eq. (8) at a given time t = tn+1 is obtained from the
solution �n at time t = tn as

�n+1 = �n + δt

s∑
i=1

bif (ti ,Yi), (30)

where δt is the time step and f (ti ,Yi) = −iB−1H(ti)Yi with
ti = tn + ciδt . bi and ci are coefficients defining the Runge-
Kutta method for a number s of stages. We assume that the so-
lution vector � is of dimension N . The quantities Yi estimate
the solution � at the intermediate time ti . They are obtained by
solving the following linear (sN × sN ) system of equations,

Yi = �n + δt

s∑
k=1

aikf (tk,Yk), (31)

where the aik are again given by the method. Solving
such system represents the main difficulty of an implicit
Runge-Kutta scheme. If this scheme is used for the corrector,
we could in principle avoid solving such a system of equations
by using an iterative procedure in which we replace the vector
Yk in the right-hand side of Eq. (31) by Y(j−1)

k where j gives the
order of the iteration process. At the order 0, Y(0)

k is provided
by the predictor. However, such an iterative procedure is
not stable. Instead, we follow a different iterative procedure
that has been developed by van der Houwen and Sommeijer
[47,48]. By introducing a diagonal matrix whose entries are
calculated to guarantee optimum stability properties, they
transform the (sN × sN ) system (31) into a set of uncoupled
(N × N ) systems of equations that can be solved in parallel at
each iteration. More precisely, they rewrite Eq. (31) as follows:

Y(j )
i − δt dii f

(
ti ,Y

(j )
i

)=�n + δt

s∑
k=1

(aik − dik)f
(
tk,Y

(j−1)
k

)
,

(32)

where the dik are the entries of the diagonal matrix. The
iterations in Eq. (32) start with Y(0)

i , provided by the predictor.
The iteration scheme is performed until a value j = maxcor for
which we have convergence. Then we can replace Yi = Y(m)

i

in Eq. (30) to obtain the solution at t = tn+1. Once we
have calculated �n+1, we can evaluate its norm and use its
conservation as a criterion to monitor the size of the time step.
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FIG. 4. (Color online) Number of iterations in the BCGSTAB
and their multiplicities during the propagation with the electromag-
netic pulse. The parameters of the Gaussian model problem are V0 =
4 a.u., β = 0.1 a.u., with a pulse of peak intensity I = 1016 W/cm2,
photon energy ω = 0.5 a.u., and duration of eight optical cycles.

Using the PC method requires solving a large number of
(N × N ) systems of equations. To solve these systems, we
use an iterative method known as the biconjugate gradient
stabilized method (BCGSTAB) [49]. In order to reduce
drastically the number of iterations, we use a pre-conditioner
based on an incomplete LU factorization. In Fig. 4, we consider
the case of our one-dimensional Gaussian model potential
with V0 = 4 a.u. and β = 0.1 a.u. We use an eight cycle
pulse of frequency ω = 0.5 a.u. and a peak intensity of
1016 W/cm2. We show, in this Fig. 4, the multiplicity as a
function of the number of iterations in the BCGSTAB during
the interaction. By multiplicity, we mean the number of times
a given number of iterations is repeated during the whole
propagation. It can be seen that without pre-conditioner, the
number of iterations can grow significantly before reaching
convergence, while using the preconditioned BCGSTAB, the
number of iterations is maintained below five. This reduces
the computational time needed by 25%. However, care must
be taken when including a pre-conditioner, since, by increasing
the number of operations, it may increase the computational
times even though it accelerates convergence. As mentioned
above, the corrector scheme is iterated up to j = maxcor where
convergence is achieved. In Fig. 5 we plot the time evolution
of the time step during the propagation for different values of
the maximum of iterations maxcor in the corrector. We see here
that, as we increase this maximum number of iterations, the
value of the time step becomes larger. The relative error in the
norm which is the same for all the calculations is of the order of
10−11. Moreover, the computational time with maxcor = 100
is half the time consumed for maxcor = 10 because it allows
one to use a much larger time step. It is therefore advisable to
use large values of maxcor to speed up the calculations.

IV. RESULTS

A. Model potential

In this section we first present results for our case study
of the one-dimensional Gaussian potential taking V0 = 1 and
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FIG. 5. (Color online) Time-step evolution for PC method of
time propagation during the propagation with the electromagnetic
pulse. The parameters of the Gaussian model problem are the same
as in Fig. 4.

β = 1. The electron wave packet is developed in a basis of 200
B splines and we use the time-scaled coordinate method during
the propagation [38]. We run our codes on an INTEL XEON
2.33 GHz Processor 51.40 (32 GB Ram). We choose a pulse
of frequency ω = 0.7 a.u. and a full duration of 90 a.u. of time
which corresponds to 10 optical cycles. The peak intensity I =
1014 W/cm2. In Fig. 6, the energy distribution is calculated by
propagating the scaled wave packet to a stationary state until
a time of 1500 a.u. when convergence is achieved. The results
shown are obtained using the two explicit propagators. Both
methods converge to the same result but Fatunla’s propagator
uses 2.3 s of computer time with an adaptive time step while
Arnoldi’s propagator using five Krylov vectors and a fixed time
step δt = 0.3 a.u. takes 6.2 s. For these values of intensity
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FIG. 6. (Color online) Energy distribution for the Gaussian
model potential. The time propagation uses Fatunla’s propagator
with adaptive time step and Arnoldi’s propagator with five Krylov
vectors and a fixed time step δt = 0.3 a.u. The parameters of the
model problem are V0 = 1 and β = 1 with a pulse of peak intensity
I = 1014 W/cm2, photon energy ω = 0.7 a.u., and a duration of 10
optical cycles. The relative difference between both curves is of the
order of 10−3.
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FIG. 7. (Color online) Energy distribution for the Gaussian
model potential. The time propagation uses Fatunla’s propagator
with adaptive time step and Arnoldi’s propagator with 20 Krylov
vectors and a fixed time step δt = 0.1 a.u. The parameters of the
model problem are V0 = 1 and β = 1 with a pulse of peak intensity
I = 1014 W/cm2, photon energy ω = 0.1 a.u., and duration of 10
optical cycles. The relative difference between both curves is of the
order of 10−3.

and frequency both methods give easily the correct result.
However, Arnoldi’s method performs poorly from a computer
time point of view. This can be understood by referring to
Fig. 1 where we show that Fatunla’s propagator allows the use
of ever larger time steps, particularly during the propagation
after the end of the pulse, while Arnoldi’s propagator keeps
the same time step throughout the propagation.

To check how these methods behave in a more challenging
case, we consider the same model potential with a pulse of
frequency 0.1 a.u. with the same number of optical cycles and
peak intensity. In this case, the total pulse duration is equal
to 630 a.u. We see in Fig. 7 that both methods give identical
results. These results are obtained after propagating the wave
packet up to a time of 2500 a.u. The running time with Fatunla’s
propagator is equal to 958.27 s while in this case, Arnoldi’s
propagator performs better using 553.69 s for a subspace of
20 Krylov vectors and a fixed time step δt = 0.1 a.u. It can be
seen that in general, Arnoldi’s propagator performs better than
Fatunla’s propagator for long pulses.

To further probe these methods we increase the number of
bound states supported by our potential by choosing V0 = 4
and β = 0.1. The pulse has a frequency ω = 0.5 a.u. with
a duration of 100.53 a.u. that corresponds to eight optical
cycles. The peak intensity I = 1016 W/cm−2. In this case, we
use 1700 B splines to propagate the wave packet up to a time
of 5000 a.u. Figure 8 shows the energy distribution obtained
using Fatunla’s propagator (straight line) and the predictor-
corrector scheme (squares), which is used to test the accuracy
of Fatunla’s method. Comparison of these two methods shows
that Fatunla keeps the accuracy in the results down to a value of
10−5 a.u. for the energy distribution. The TSC approach is used
with an asymptotic scaling factor of 0.1. Fatunla’s propagator
takes 379.36 s while the PC method with adaptive time step
takes 1801.49 s. It is clear that Fatunla uses remarkably less
computer time and works as long as the accuracy required is up
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FIG. 8. Energy distribution for the Gaussian model potential. The
time propagation uses Fatunla’s propagator with adaptive time step
and the predictor-corrector method. The parameters of the model
problem are V0 = 4.0 and β = 0.1 with a pulse of peak intensity
I = 1016 W/cm2, photon energy ω = 0.5 a.u., and duration of eight
optical cycles.

to six digits. Figure 9 shows the energy distribution obtained
with Arnoldi’s propagator for the same parameters as in Fig. 8.
We show the results obtained with Arnoldi’s approach and two
different fixed time steps and compare these results with those
obtained with the PC scheme. The Krylov subspace contains 20
vectors and the wave packet is again propagated up to 5000 a.u.
The circles show the results for a time step δt = 0.03 a.u. and
the stars for δt = 0.3 a.u. We note that increasing the time
step leads to less accurate results by comparison with the PC
method. Arnoldi scheme takes 5957.19 s for a time step of
0.03 a.u. and 598.11 s for a time step of 0.3 a.u.

B. Hydrogen atom

We now apply these methods to the more complex case of the
interaction of the hydrogen atom with a cosine square laser

FIG. 9. Energy distribution for the Gaussian model potential.
The time propagation uses Arnoldi’s propagator with fixed time step
and the PC method with adaptive time step. The parameters of the
Gaussian model problem are as in Fig. 8.
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FIG. 10. (Color online) Energy distribution resulting from the
interaction of the hydrogen atom with a cosine square pulse. Fatunla’s
and Arnoldi’s propagators are used. The pulse has a peak intensity
I = 1014 W/cm2, a frequency ω = 0.7 a.u., and a duration of 10
optical cycles. The basis set of functions used is a set of 100 Coulomb
Sturmian functions per angular momentum. Ten angular momenta
are included and the nonlinear parameter κ of the Coulomb Sturmian
functions is equal to 0.3. The Arnoldi propagator uses five Krylov
vectors and a time step of δt = 0.05 a.u. The relative difference
between both curves is of the order of 10−3.

pulse. We use a spectral method based on the expansion of
the wave function in a basis of Coulomb Sturmian functions
[39], without implementing the TSC method. Unless otherwise
stated, we performed all calculations on a laptop (with an
INTEL core 2 duo processor of 2.4 GHz). The first pulse
we use has a frequency of 0.7 a.u., a duration of 10 optical
cycles, and an intensity I = 1014 W/cm2, as in the case of
Fig. 6. In these rather simple conditions, we use 10 angular
momenta. The nonlinear parameter κ of the Coulomb Sturmian
functions is taken equal to 0.3 a.u. Fatunla’s and Arnoldi’s
algorithms produce the converged energy distribution as
shown in Fig. 10. The calculations carried on with Fatunla’s
propagator and an adaptive time step take 10.50 s of computer
time. The integration performed with Arnoldi’s method takes
13.72 s. For a time step of δt = 0.05 a.u. and 100 Coulomb
Sturmian functions per angular momentum, it needs only five
Krylov vectors. In this case Arnoldi’s method is slower than
Fatunla’s method. This is related to the number of basis-set
functions used. As this number increases, higher eigenvalues
are generated in the Hamiltonian spectrum thereby increasing
the stiff character of the system of equations to solve. In that
case, more Krylov vectors have to be included to maintain the
accuracy of the results.

In Fig. 11 we illustrate the effect of reducing the number
of Krylov vectors nk from five to four. It is surprising to see
that the propagator gives a completely flat spectrum when the
dimension of the Krylov space is insufficient. Figure 11 shows
that for a basis set of 100 Coulomb Sturmian functions per
angular momentum, accurate results for the energy distribution
require a minimum of five Krylov vectors.

These calculations performed in a Coulomb Sturmian basis
can be further tested by varying their nonlinear parameter
κ . If instead of using κ = 0.3, we use κ = 0.4, all the
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FIG. 11. (Color online) Energy distribution resulting from the
interaction of the hydrogen atom with a cosine square pulse. Arnoldi’s
propagator is used. The pulse parameters are as in Fig. 10, using 100
Coulomb Sturmian functions per angular momentum. Ten angular
momenta are included and the nonlinear parameter κ of the Coulomb
Sturmian functions is equal to 0.3. For a time step of δt = 0.05 a.u.,
we compare results when five and four Krylov vectors are used.

other parameters remaining the same, we again obtain a
completely flat energy distribution. By increasing the value
of the nonlinear parameter κ , the value of the eigenenergies
increases thereby increasing the stiff character of the problem.
To successfully reproduce an accurate energy distribution we
now would need to increase the number of Krylov vectors.
If on the other hand, we keep the value of κ equal to 0.3
and increase the number of basis functions, converged results
are only obtained when eight Krylov vectors are used. The
increase in the number of Coulomb Sturmians generates higher
eigenenergies thereby increasing again the stiff character of the
system. The eigenvalues of matrix h range from the eigenvalue
of the initial state (by construction) to approximately the
highest one of matrix H. In summary, any change which
results in a higher maximum eigenvalue for H necessitates
an increase in the number of Krylov subspace vectors required
for convergence.

It is interesting to note that to get an accurate spectrum, one
of the eigenvalues of h must converge to 0.2 which corresponds
to the position of the maximum of the spectrum which is
what we expect from energy conservation (0.2 = −0.5 + ω).
If none of the eigenvalues converges to 0.2, the spectrum
is completely flat because all the eigenvalues of h which
are usually very high except the first one, do not contribute
significantly to the spectrum. In addition, it is important
to stress that decreasing the time step does not modify the
minimum number of Krylov vectors to be used.

In Fig. 12 we compare the performance of Arnoldi’s and
Fatunla’s methods for a more difficult case. We consider a pulse
of frequency ω = 0.114 a.u. and a duration of 20 optical cycles.
The pulse intensity is the same as before, I = 1014 W/cm2.
We use a basis set of 600 Coulomb Sturmian functions per
angular momentum. Ten angular momenta are included in
the calculations and the nonlinear parameter κ = 0.3. Both
energy distributions agree but Fatunla’s scheme, which needs
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FIG. 12. (Color online) Energy distribution resulting from the
interaction of the hydrogen atom with a cosine square pulse. Arnoldi’s
propagator is used. The pulse has a peak intensity I = 1014 W/cm2, a
frequency ω = 0.114 a.u., and a duration of 20 optical cycles. We use
a set of 600 Coulomb Sturmian functions per angular momentum. Ten
angular momenta are taken into account and the nonlinear parameter
of the Coulomb Sturmian functions κ = 0.3. The Arnoldi propagator
uses 25 Krylov vectors and a time step of δt = 0.05 a.u. The relative
difference between both curves is of the order of 10−3.

a very small time step, takes 66 004 s of computer time while
Arnoldi’s method takes 1419 s with 25 Krylov vectors and a
time step of 0.05 a.u. This case illustrates clearly that Arnoldi’s
algorithm copes in an efficient way with the stiffness of the
problem by increasing the size of the Krylov subspace.

In Fig. 13 we show results obtained for the challenging
case of a pulse of very low frequency ω = 0.0228 a.u. and
a duration of four optical cycles for the same intensity as
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FIG. 13. (Color online) Energy distribution resulting from the
interaction of the hydrogen atom with a cosine square pulse. Arnoldi’s
propagator is used. The pulse has a peak intensity I = 1014 W/cm2,
a frequency ω = 0.0228 a.u., and a duration of four optical cycles.
The basis set of functions used is a set of 1200 Coulomb Sturmian
functions per angular momentum. Eighty angular momenta are taken
into account and the nonlinear parameter κ of the Coulomb Sturmian
functions is equal to 0.3. The Arnoldi propagator uses 70 Krylov
vectors and a time step of δt = 0.05 a.u.
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before. To reproduce the energy distribution we need to use
1200 Coulomb Sturmian functions per angular momentum.
Eighty angular momenta are included in the calculations and
the nonlinear parameter κ of the Coulomb Sturmian functions
is equal to 0.3. For this rather stiff problem Arnoldi’s algorithm
has to include a minimum of 70 Krylov vectors for a time step
δt = 0.05 a.u. The calculation takes 24 h on an eight-processor
cluster using OpenMP. Fatunla’s algorithm also reproduces the
same energy distribution but the computer time used is more
than four times larger. In fact, we observe that for larger scale
problems where the degree of stiffness is important, Fatunla’s
method requires time steps that become prohibitively small
thereby increasing the computational time.

C. Helium atom

In this subsection, we show briefly results for the single
ionization of helium by an intense electromagnetic pulse as
an example of a more challenging problem. Following the
remarks above, we perform here the calculations using only
Arnoldi’s algorithm. As mentioned before, Fatunla’s algorithm
is not accurate enough to calculate cross sections in various
single ionization channels. The pulse has a peak intensity I =
1014 W/cm2, a frequency ω = 2.1 a.u., and a duration of six
optical cycles. The wave function is expanded in a basis set that
uses 140 B-spline functions of order seven per electron angular
momentum [24]. Three values of the total angular momentum
(L = 0,1,2) are taken into account and the maximum value
of the individual electron angular momentum is three. The
box size is 150 a.u. The step size during the interaction with
the pulse is fixed at 0.01 a.u., while after the interaction the
propagation used a step size of 1 a.u. The calculations are
performed with 40 Krylov vectors. It takes 31 h to run on a
cluster with 10 Intel Xeon L5520 2.26 GHz processors using
the message passing interface (MPI) and 3 GB of RAM per
processor. Figure 14 shows the results obtained for the energy
distribution of the single ionization of helium. As expected we
observe a dominant peak at 1.2 a.u. which corresponds to the
energy conservation. The spectrum is obtained by projecting
the wave packet after the end of the pulse on a product
of a Coulomb wave of the screened nucleus times a bound
state of He+.

D. Quantum dot

In this last section, we consider a different problem where
the choice of a very efficient explicit time propagator turns
out to be crucial. The system under consideration is a model
for a planar two-electron quantum dot with an anharmonic
confining potential. The properties of quantum dots have great
resemblance to those of atoms or molecules. Optical lattices,
which can be viewed as an array of quantum dots, and well-
approved methods from semiconductor physics make quantum
dots easily accessible. A confinement of the electrons to a
two-dimensional plane is justified, in particular for solid-state
quantum dots, where the electron gas is localized on a parallel
plane between two layers of different semiconductors. The
Hamiltonian for this problem is of the form,

Hε = H1 + H2 + Vint, (33)

where the indices 1 and 2 refer to the two electrons. Vint = 1
r1 2

,
with r1 2 being the interelectronic distance. The Hamitonians
Hj are given by

Hj = 1

2
p2

j + ω2

2
r2
j + ε

(
r2
j

)2
, (34)

with ω the harmonic frequency and ε the strength of the
anharmonic perturbation. rj and pj are the coordinate and
momentum of electron j , respectively. For ε ≡ 0 our model
coincides with the well-known Hooke’s atom, which is
separable in the center of mass and relative coordinates.
The Schrödinger equation can be regularized [50] using the
Jacobian of a suitable parabolic coordinate transformation. We
then write the resulting equation in terms of circular creation
and annihilation operators. A set of selection rules is obtained
determining the coupling between basis states and the matrix
elements, according to the principal quantum numbers of the
harmonic oscillators. The TDSE,

H �(r 1,r 2,t) = i
∂

∂ t
�(r 1,r 2,t), (35)

is solved to obtain �(r 1,r 2,t), with H given in Eq. (33).
The question of decoherence of these quantum states can be
studied through the quantum fidelity, which gives the overlap
of the solutions of the TDSE, with and without the poten-
tial Vanharmonic = ε((r2

1 )2 + (r2
2 )2). The perturbation potential

Vp = (r2
1 )2 + (r2

2 )2 breaks the separability of Hooke’s atom.
We note that the Hamiltonian Hε in this case is not explicitly
dependent on time and so it is different in nature to the
Hamiltonians that we treated in previous examples. For a
general Hamiltonian H0 and a small real parameter ε that

FIG. 14. Single ionization spectrum resulting from the interaction
of a helium atom with a short cosine square pulse. Arnoldi’s
propagator is used. The pulse has a peak intensity of I = 1014 W/cm2,
a frequency ω = 2.1 a.u., and a duration of six optical cycles. The
basis set of functions used is a set of 140 B-spline functions of order
seven per electron angular momentum. The total angular momentum
L = 0,1,2 and the maximum value of the individual electron angular
momentum is three. The box size is 150 a.u. The Arnoldi propagator
uses 40 Krylov vectors.
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represents the strength of the perturbation, we write

Hε = H0 + εVp . (36)

The quantum fidelity Fε at time t is defined as

Fε(t) = |〈�0(t)|�ε(t)〉|2, (37)

where �ε and �0 are the quantum states propagated with
Eq. (35) for a perturbed and nonperturbed Hamiltonian,
respectively. We can expand the quantum fidelity in terms
of the perturbation parameter ε [51] as

Fε(t) = 1 − χ (t)ε2 + O(ε4), (38)

with χ (t) being the quantum susceptibility. Taking the two
first terms, we evaluate Fε(t) up to order ε2, valid near unity.
For our particular case H0 = Hε=0 and consequently Vp =
((r2

1 )2 + (r2
2 )2). The observable calculated in this problem is

the susceptibility χ (t) and we take the harmonic frequency
to be ω = 1.0 a.u. and the perturbation parameter to be
ε = 10−5. We study the evolution of the initial bound state of
energy E = 7 a.u. and vanishing angular momentum, singlet
state with even parity [52]. The total number of functions
in the basis set is 2370. The integration of the TDSE was
first attempted using Fatunla’s method. The stiffness of this
problem forces the adaptive time step to become excessively
small (of the order of 10−5) so that the computer time
needed by the method becomes of the order of several days
instead of seconds. Furthermore the accuracy necessary to
represent the effect of very small perturbations on the system
could not be achieved. As a consequence we used Arnoldi’s
integrator, testing different combinations of the values of the
time step and of the dimension of the Krylov subspace. It
is worth stressing that the time evolution operator calculated
within Arnoldi’s method is essentially exact since the total
Hamiltonian is time independent. However, the stiffness of
the problem which is very strong because of the anharmonic
character of the potential is expected to impose important
constraints on the time step. In Fig. 15 we show results for
the quantum susceptibility using five Krylov vectors and two
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FIG. 15. (Color online) Susceptibility χ (t) calculated for a quan-
tum dot with ω =1.0 a.u., using the Arnoldi’s propagator. We took
five Krylov vectors and compared results for two different values of
the time step.

FIG. 16. (Color online) Susceptibility χ (t) calculated for a quan-
tum dot with ω =1.0 a.u., using the Arnoldi’s propagator. We take
two different combinations of time step and of the dimension of the
Krylov subspace used, to illustrate the compromise between these
two quantities.

different time steps. In order to get converged results, this
shows that we need a time step of at least δt = 10−4 a.u.,
leading to a computational time of 4 h. The same calculation
performed with the PC method took 17 days, 8 h, and 29 min.
Figure 16 shows results for the observable χ (t) under the
same conditions as in Fig. 15 but using Krylov subspaces of
higher dimension (nk = 7 and nk = 9). For nk = 7 converged
results were obtained with a step size of δt = 5 × 10−4 a.u.
leading to a computational time of 45 min. However this figure
illustrates the compromise to be achieved between the size of
the time step used and the dimension of the Krylov subspace.
For nk = 9, a time step of δt = 10−3 a.u. leads to a calculation
taking 30 min of computer time only. The choice of the optimal
value of time step and of the Krylov subspace dimension needs
to be balanced. This means to search for the optimal larger
value of the time step for which the propagation will take less
iterations. These calculations performed with the PC method
take 9 days, 17 h, and 14 min for nk = 7 and δt = 5 × 10−4

and 8 days, 5 h, and 43 min for nk = 9 and δt = 10−3 a.u.
The computer used in these calculations was a single core of
a Intel(R) Core (TM) 2 Quad CPU Q 9400(2.66 GHz) with
8-GB main memory.

V. CONCLUSIONS

In this contribution, we addressed the problem of the numer-
ical integration of the time-dependent Schrödinger equation
describing physical processes whose complexity requires the
use of state-of-the-art methods. The problem can be reduced
to the solution of a system of first-order differential equations.
The main difficulties we have to face are the size of the system
and its stiff character which results from the presence of
very high energy eigenvalues in the Hamiltonian spectrum.
These difficulties impose important constraints on the choice
of the time propagator. Given the size of the system, this time
propagator must be explicit. This means that it involves only
matrix-vector products instead of solving a large system of
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algebraic equations at each time step as is the case for implicit
methods. In addition, this propagator must have optimum
stability and accuracy properties to cope with the stiffness of
the system. We have analyzed and compared the performance
of two one-step explicit time propagators namely Fatunla’s and
Arnoldi’s algorithms. It turns out that both of these methods
share the same optimum stability properties. Nevertheless, we
show that their accuracy properties differ significantly in most
of the problems that we treat here. As a matter of fact, the
accuracy of the method depends essentially on the stiffness of
the system to solve which determines the appropriate choice
of the propagator.

In all the problems considered here, the relative accuracy
of Fatunla’s method is always limited to about 10−6. In some
cases, this might be sufficient but we should not forget that
when the degree of stiffness increases, the adaptive time step
becomes excessively small making the method inapplicable.
By contrast, highly accurate results are obtained with Arnoldi’s
algorithm in all cases treated here. However, for a given time
step, there is a minimal number of Krylov vectors to take into
account. If the actual number used is smaller than this minimal
number, generally there is an abrupt transition and the results
are wrong giving a flat spectrum (in some cases this transition
is not so abrupt but is rapid nevertheless.) On the other hand,
when the degree of stiffness is high, this minimal number
may become very large thereby imposing strong limitations
on the applicability of the method. This is the case when the
spacing between grid points becomes very small or, for spectral
methods, when the size of the basis set is very large. In applying
Arnoldi’s scheme, it is therefore important to try to reduce

the stiffness as much as possible. An obvious way to achieve
this is to move to the atomic basis in which the Hamiltonian
is diagonal and to eliminate the highest energy eigenvalues
which, in principle, do not play any physical role. In that case,
however, the ac-Stark shift of the levels will not be evaluated
accurately. In addition, our calculations in the case of the
Gaussian potential model clearly show that the energy electron
spectrum calculated with Arnoldi’s algorithm deteriorates.
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[39] J. Madroñero and B. Piraux, Phys. Rev. A 80, 033409 (2009).
[40] Y. Saad, Iterative Methods for Sparse Linear Systems (SIAM,

Philadelphia, 2000).
[41] W. E. Arnoldi, Quart. Appl. Math 9, 17 (1951).
[42] T. J. Park and J. C. Light, J. Chem. Phys. 85, 5870 (1986).
[43] Y. Saad, SIAM J. Numer. Anal. 29, 209 (1992).
[44] M. Hochbruck and Ch. Lubich, SIAM J. Numer. Anal. 34, 1911

(1997).
[45] W. Magnus, Comm. Pure and Appl. Math. 7, 649 (1954).
[46] A. Iserles and S. P. Nørsett, Phil. Trans. Royal Society A 357,

983 (1999).
[47] P. J. van der Houwen and B. P. Sommeijer, SIAM J. Sci. Stat.

Comput. 12, 1000 (1991).
[48] P. J. van der Houwen and B. P. Sommeijer, Appl. Numer. Math.

11, 169 (1993).
[49] H. van der Vorst, SIAM J. Sci. Statist. Comput. 13, 631 (1992).
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