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Pathway dynamics in the optimal quantum control of rubidium: Cooperation and competition
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The dynamics that take place in the optimal quantum control of atomic rubidium upon population transfer
from state 5S1/2 to state 5D3/2 are investigated with Hamiltonian-encoding–observable-decoding (HE-OD). For
modest laser powers two second-order pathways, 5S1/2 → 5P3/2 → 5D3/2 (pathway 1) and 5S1/2 → 5P1/2 →
5D3/2 (pathway 2), govern the population transfer process. Pathway 1 has larger transition dipoles than pathway
2. However, state 5P3/2 along pathway 1 may also be excited to an undesired state 5D5/2, which can result
in population “leakage.” Thus, the two pathways may either cooperate or compete with each other in various
dynamical regimes. An important feature in the case of cooperation is that the ratio between the amplitudes of
pathways 1 and 2 oscillates over time with a frequency equal to the detuning between transitions 5S1/2 → 5P3/2 and
5P3/2 → 5D3/2. We also study the regime in which pathway 2 dominates the dynamics when the larger transition
dipoles of pathway 1 can no longer compensate for its population leakage. The overall analysis illustrates the
utility of HE-OD as a tool to reveal the quantum control mechanism.

DOI: 10.1103/PhysRevA.89.023416 PACS number(s): 32.80.Qk, 02.70.−c

I. INTRODUCTION

The control of quantum dynamics has many potential appli-
cations and various techniques have been proposed to achieve
control [1]. One of the most widely used strategies in the lab-
oratory is adaptive feedback control (AFC) [2–11], in which a
learning algorithm [12] is employed to guide laser experiments
in the search for optimal control fields [13–19]. In many cases,
the optimal control may be complex making it a challenge to
gain an understanding of the underlying mechanism [20,21].
To reveal the mechanism, modeling is often done possibly with
the aid of additional experiments. The Hamiltonian-encoding–
observable-decoding (HE-OD) technique [22–26] provides a
protocol for direct laboratory investigation of the mechanism
induced by the laser field [27–29]. Importantly, HE-OD often
can be implemented with only software changes guiding the
laser apparatus of many AFC experiments. HE-OD yields the
control mechanism expressed in the form of the amplitudes
and phases for the various quantum pathways connecting the
target and initial states. Here a pathway is specified by a
sequence of transitions |a〉 → |l1〉 → |l2〉 → · · · → |ln−1〉 →
|b〉, where the states |li〉, i = 1,2, . . . ,n − 1, prescribe one
particular path of n steps from the initial state |a〉 to the
target state |b〉. The flexibility inherent in HE-OD permits
utilizing and manipulating the pathways in various ways by
maximizing an appropriate objective function. Since its first
laboratory implementation [27], HE-OD has been applied to
pathway control [28] and time-resolved pathway amplitude
reconstruction [29] in atomic Rb. These experiments have
demonstrated HE-OD’s potential as a tool for mechanism
analysis as well for using mechanism information to guide
the quantum control process. In the present work, the pathway
dynamics in the optimal control of atomic Rb are theoretically
studied and the underlying dynamics are analyzed.
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The paper is organized as follows. Section II gives a brief
description of the HE-OD simulation procedure. In Sec. III
HE-OD is applied to the simulated quantum control of atomic
Rb. For modest laser powers, two second-order pathways
dominate in the dynamics. Two field regimes are analyzed
to study the cooperation and competition between pathways.
As also observed in the laboratory [29], oscillations appear in
the time evolution of ratio of the magnitudes of the pathway
amplitudes, even though the laboratory field was qualitatively
distinct. Section IV provides an analytical explanation for the
oscillations in the amplitude ratios when pathways 1 and 2 are
of the same importance under the considered simulated laser
bandwidth. Concluding remarks are given in Sec. V.

II. HE-OD PROCEDURE

The Hamiltonian of atomic Rb is of the form H =
H0 − μE(t), where H0 is the unperturbed Hamiltonian with
eigenstates |lp〉, p = 1,2, . . . ,5, and μ is the dipole moment
operator. The energy level structure is shown in Fig. 1. In the
basis {|lp〉}, p = 1,2, . . . ,5, the matrices H0 and μ are given
by

H0 =

⎡
⎢⎢⎢⎣

0 0 0 0 0
0 ω1 0 0 0
0 0 ω2 0 0
0 0 0 ω1 + ω3 0
0 0 0 0 ω1 + ω3

⎤
⎥⎥⎥⎦ ,

μ =

⎡
⎢⎢⎢⎣

0 μ12 μ13 0 0
μ12 0 0 μ24 μ25

μ13 0 0 μ34 0
0 μ24 μ34 0 0
0 μ25 0 0 0

⎤
⎥⎥⎥⎦ , (1)

where the energy of state |1〉 is set to zero, levels |4〉
and |5〉 are degenerate, ω1 + ω3 = ω2 + ω4 = 0.1171, ω1 =
0.058 40, ω2 = 0.057 31, μ12 = 4.2275, μ13 = 2.9931, μ24 =
1.0216, μ25 = 1.0238, and μ34 = 0.9 [30,31]. Unless other-
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FIG. 1. (Color online) The energy level structure of atomic Rb.
Here states |1〉, |2〉, |3〉, |4〉, |5〉, and |O〉 denote the 5S1/2, 5P3/2,
5P1/2, 5D3/2, 5D5/2, and 6P1/2 levels, respectively. The transitions
|1〉 → |2〉, |1〉 → |3〉, |2〉 → |4〉, |2〉 → |5〉, and |3〉 → |4〉 are dipole
allowed. In the laboratory, state |4〉 will decay to |O〉, and thus the
population of the target state |4〉 is proportional to the measured
fluorescence emitted from |O〉.

wise noted, the energies and dipole matrix elements in this
paper are given in atomic units

The dynamics in the Schrödinger representation are de-
scribed by

i
dU (t)

dt
= [H0 − μE(t)]U (t), (2)

where U is the evolution operator. In the interac-
tion representation, the Hamiltonian reduces to VI (t) =
− exp(−iH0t)μE(t) exp(iH0t), and the equation of motion
becomes

i
dUI (t)

dt
= VI (t)UI (t). (3)

The solution of Eq. (3) can be expressed in terms of the Dyson
expansion

UI (t) = I + (−i)
∫ t

0
VI (t1)dt1

+ (−i)2
∫ t

0
VI (t2)

∫ t2

0
VI (t1)dt1dt2 + · · · . (4)

Denoting the initial state as |a〉 and the final state as |b〉 at time
t , then the transition amplitude is given by 〈b |UI (t)| a〉, which
can be expanded in terms of quantum pathway amplitudes,

〈b |UI (t)| a〉 =
∑
n,{lp}

U
n(l1,l2,...,ln−1)
ba (t) (5)

with∑
n,{lp}

U
n(l1,l2,...,ln−1)
ba (t)

= (−i)n
∑
{lp}

∫ t

0
〈b |VI (tn)| ln−1〉

∫ tn

0
〈ln−1 |VI (tn)| ln−2〉

× · · ·
∫ t2

0
〈l1 |VI (t1)| a〉 dt1 · · · dtn−1dtn. (6)

The pathway amplitude U
n(l1,l2,...,ln−1)
ba (t) corresponds to a

transition from |a〉 to |b〉 through the sequence of n steps
|a〉 → |l1〉 → |l2〉 → · · · → |ln−1〉 → |b〉, which constitutes
one of the nth-order pathways linking |a〉 and |b〉. Here |a〉, |b〉,
and {|lp〉} are all eigenstates of H0; the same analysis holds for
other bases, and a different choice of intermediate state {|lp〉}
will give a new specification of quantum pathways to possibly
provide additional insights into the mechanism [22,23].

The HE-OD methodology consists of encoding the Hamil-
tonian such that each pathway amplitude of interest has a
unique signature in the output signal. In an experimental
implementation, encoding may be conveniently done with
respect to the field’s spectral phases through the use of a
standard laser pulse shaper [27–29], while in simulations
the Hamiltonian can be encoded more flexibly [24]. The
HE-OD procedure employed in this work entails a sequence
of (simulations) experiments with different encodings. At the
sth experiment, in general, each element of matrix VI may be
modulated with the encoding function mpq(s) such that

(VI )pq → (VI )pq mpq (s) . (7)

Then Eq. (3) becomes

i
dUI (t,s)

dt

=

⎛
⎜⎝

[VI (t)]11m11(s) · · · [VI (t)]1dm1d (s)
...

...
...

[VI (t)]d1md1(s) · · · [VI (t)]ddmdd (s)

⎞
⎟⎠ UI (t,s),

(8)

whose solution is

〈b |UI (t,s)| a〉 =
∑
n,{lp}

U
n(l1,l2,...,ln−1)
ba (t)Mn(l1,l2,...,ln−1)

ba (s) (9)

with

M
n(l1,l2,...,ln−1)
ba (s) = mbln−1 (s)mln−1ln−2 (s) . . . ml1a(s). (10)

It is possible to design the encoding functions {mpq(s)} such
that M

n(l1,l2,...,ln−1)
ba (s) only depends on n, regardless of the

sequence of intermediate state {|lp〉}. In this case we have

〈b |UI (t,s)| a〉
=

∑
n,{lp}

U
n(l1,l2,...,ln−1)
ba (t)Mn(l1,l2,...,ln−1)

ba (s)

=
∑

n

Mn
ba(s)

∑
{lp}

U
n(l1,l2,...,ln−1)
ba (t)

=
∑

n

Mn
ba(s)Un

ba(t). (11)

Thus, in our simulations, the control mechanism is expressed
in terms of two types of quantum pathways. The first case is
associated with Eq. (9) where detailed intermediate states are
revealed through the extraction of U

n(l1,l2,...,ln−1)
ba . The second

case focuses on the overall amplitude Un
ba(t) at order n

extracted from Eq. (11).
For the objective of detailed pathway identification, the

encoding function is chosen as mpq(s) = exp(2πiγpqs/N),
where N is the number of simulations performed (i.e.,
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s = 1,2, . . . ,N ), and the frequencies γpq are picked to
make the identification functions M

n(l1,l2,...,ln−1)
ba orthogo-

nal and unique for the investigated type of pathways. In
this case, Mn(l1,l2,...,ln−1)

ba (s) = exp(2πiγn(l1,l2,...,ln−1)s/N), where
γn(l1,l2,...,ln−1) = γbln−1 + γln−1ln−2 + . . . γl1a . All {γpq} are taken
to be positive integers such that we can have a unique value
of γn(l1,l2,...,ln−1) for each investigated specific pathway. For
the objective of considering the contributing pathway orders,
all {γpq} are equal to 1, so that the identification function is
Mn

ba(s) = exp(2πiγns/N), where γn = n. It is easy to see that

1

N

N∑
s=1

M
n(l1,l2,...,ln−1)
ba (s)∗M

n′(l′1,l
′
2,...,l

′
n−1)

ba (s)

= δn(l1,l2,...,ln−1),n′(l′1,l
′
2,...,l

′
n−1), (12)

1

N

N∑
s=1

Mn
ba(s)∗Mn′

ba(s) = δn,n′ . (13)

Due to the above orthogonality relationships, the amplitudes
U

n(l1,l2,...,ln−1)
ba and Un

ba can be computed by the inverse fast
Fourier transform (IFFT) of their corresponding modulated
matrix element Uba(s) along with knowledge of the particular
frequencies γn(l1,l2,...,ln−1) and γn, respectively. In practice,
HE-OD is performed by solving Eq. (8) N times with chosen
encoding functions followed by application of the IFFT
operation.

III. PATHWAY DYNAMICS IN ATOMIC RUBIDIUM

A. Simulation details

In this section, HE-OD is employed to study pathway
dynamics in atomic Rb. The electric field E(t) in Eq. (2) is
assumed to be of the form

E(t) = exp[−(t − t1/2)2/�2]
4∑

k=1

Ak cos(ωkt + ϕk), (14)

where the target time T = 4 ps, t1/2 = 2 ps, and � =
(1 ps)/

√
ln 2. Thus, the field corresponds to a pulse with

a temporal full width at half maximum (FWHM) of 2 ps.
In the simulations, eight parameters (A1, A2, A3, A4, ϕ1,
ϕ2, ϕ3, ϕ4) are optimized to maximize population transfer
P41 = |〈4 |U (T ,0)| 1〉|2 from the initial state |1〉 to the target
state |4〉 at final time T . A genetic algorithm (GA) is employed
to obtain the field that maximizes P41.

A minimum of two resonant photons are needed to induce
the transition from state|1〉 to state |4〉 following pathways
1 or 2 in Fig. 1. The corresponding two lowest-order Dyson
expansion terms U1 and U2 are given by

U1 = μ12μ24

∫ T

0
e−iω3t2E(t2)

∫ t2

0
e−iω1t1E(t1)dt1dt2, (15)

U2 = μ13μ34

∫ T

0
e−iω4t2E(t2)

∫ t2

0
e−iω2t1E(t1)dt1dt2. (16)

Upon obtaining an optimal field, two encoding matrices
for {γpq}, denoted as γI and γII , are adopted to extract
the two types of pathway amplitudes U

n(l1,l2,...,ln−1)
ba and Un

ba ,

respectively, discussed in Sec. II:

γI =

⎛
⎜⎜⎜⎝

0 1 5 0 0
1 0 0 23 97
5 0 0 379 0
0 23 379 0 0
0 97 0 0 0

⎞
⎟⎟⎟⎠ ,

γII =

⎛
⎜⎜⎜⎝

0 1 1 0 0
1 0 0 1 1
1 0 0 1 0
0 1 1 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎠ . (17)

With the encoding matrix γI , the amplitudes U1 and U2,
respectively, of pathway 1 (|1〉 → |2〉 → |4〉) and pathway
2 (|1〉 → |3〉 → |4〉), can be extracted from the IFFT of the
amplitude U41(s) at frequencies 24 and 384, respectively, while
with the encoding matrix γII , the frequency is n for each
nth-order pathway. In both cases, N = 1600 steps in s were
used in the HE-OD calculations.

In the following subsection, we will analyze the dynamics
induced by fields that optimize the |1〉 → |4〉 population trans-
fer. The optimizations were carried out by imposing different
sets of constraints on the four optimization parameters of A1,
A2, A3, and A4.

B. Fighting for the dominant role

In the weak-field regime, pathways 1 and 2 are the two
lowest-order routes connecting the initial state |1〉 and the
target state |4〉. As evident in Fig. 1 and the transition dipole
matrix in Eq. (1), the intermediate state |2〉 is also coupled
to state |5〉, while the intermediate state |3〉 is only coupled
to the higher target state |4〉. Importantly, to reach the target
state |4〉 through state |5〉 minimally calls for the fourth-order
pathway |1〉 → |2〉 → |5〉 → |2〉 → |4〉, or even higher order.
At weak fields, possible “leakage” of amplitude to state |5〉
should not affect the population dynamics leading to the target
state |4〉. The possible consideration of leakage (i.e., loss of
final maximum amplitude in state |4〉) arises due to a special
circumstance for Rb where μ42 ≈ μ52 and ω42 = ω52. Thus,
the system is likely not fully controllable to a practical degree,
as it can be difficult to simultaneously manage the dynamics
leading to the transitions |2〉 → |4〉 and |2〉 → |5〉. If the effect
of the leakage is large, the optimization algorithm may choose
to reach the target state |4〉 through state |3〉 just along pathway
2 instead of through state |2〉. Balancing the possibility of
leakage to state |5〉, pathway 1 has the advantage of μ12 being
considerably larger than μ13 of pathway 2. These effects can
induce cooperation and/or competition between the two path-
ways in various circumstances. It will be shown that for strong
fields a fourth-order pathway has a contribution that cannot be
ignored. The numerical simulations will demonstrate the coop-
eration and competition between pathways 1 and 2. To treat the
weak-field regime the four spectral amplitudes A1, A2, A3, and
A4 were constrained to have a small upper limit. In this case,
the spectral amplitudes of the optimal field along pathway 1
(A1, A3) and pathway 2 (A2, A4) were found to approximately
have the same magnitude. Therefore, in the weak-field regime
the two pathways cooperate with each other to maximize the
population transfer. For example, when the four amplitude
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FIG. 2. (Color online) The control field driven dynamics for the
magnitude of the amplitudes for all five states of atomic Rb expressed
as |〈j |U (T ,0)| 1〉|, j = 1, . . . ,5. The population of a state is the
square of its amplitude. The control field is optimized with amplitudes
Ak in Eq. (12) being limited in the range [0, 2.5 × 10−5 ]. Cooperation
between two pathways is observed in this case.

parameters are restricted to the range [0, 2.5 × 10−5], the
optimal result is A1 = 1.054 × 10−5, A2 = 1.169 × 10−5,
A3 = 2.486 × 10−5, A4 = 2.483 × 10−5. The corresponding
peak intensity of the laser field is about 0.004 V/Å. The high
resolution used here for the field parameters is generally not
required in the experiments; for an assessment of the necessary
field resolution see the discussion on the encoding functions
in Refs. [28,29]. The population dynamics under the optimal
laser field are shown in Fig. 2. The final transition probability
to the target state was |〈4 |U (T ,0)| 1〉|2 = 0.602, and Fig. 2
shows that the population in state |4〉 increases monotonically
with time.

The similar value of A1 and A2 (also A3 and A4) indicates
that the magnitudes of amplitudes for pathway 1 (|U1|) and
pathway 2 (|U2|) should be similar, which is consistent with
the nearly same population dynamics of states |2〉 and |3〉
in Fig. 2. The HE-OD extracted amplitudes of the different
pathways are extracted at T as listed in Tables I and II. The
tables show that, due to the weak nature of the laser field, the
second-order pathways have the largest amplitude. Pathways
1 and 2 have almost the same phase, and their amplitudes in
Table II add up to give ∼1.790, very close to the value of 1.7830
in Table I, which indicates their constructive interference and
cooperation [see also Fig. 3(a)] [24].

For stronger fields (i.e., the upper limit of four amplitude
parameters is higher), the larger transition dipoles in pathway
1 are not sufficient to manage the population leakage to

TABLE I. Significant pathway orders for the control field driven
dynamics in Fig. 2.

Order Amplitude Phase

2 1.7830 1.7857
4 1.3233 −1.2882
6 0.3473 1.9297
8 0.03260 −1.0485

TABLE II. Amplitudes and phases of significant 2nd- and 4th-
order quantum pathways for the control field driven dynamics in
Fig. 2.

Pathway Amplitude Phase

(1 → 2 → 4) (Pathway 1) 1.0551 1.7125
(1 → 3 → 4) (Pathway 2) 0.7349 1.8909
(1 → 2 → 1 → 2 → 4) 0.3336 −1.5608
(1 → 2 → 1 → 3 → 4) 0.2563 −0.7793
(1 → 3 → 1 → 2 → 4) 0.2105 −1.3505
(1 → 3 → 1 → 3 → 4) 0.1413 −1.2748
(1 → 2 → 5 → 2 → 4) 0.1073 −1.3992
(1 → 2 → 4 → 2 → 4) 0.1068 −1.3992
(1 → 2 → 4 → 3 → 4) 0.08256 −1.3633
(1 → 3 → 4 → 2 → 4) 0.07436 −1.2456
(1 → 3 → 4 → 3 → 4) 0.05751 −1.2376

state |5〉 along this route. Thus, the field amplitudes along
pathway 2 (A2, A4) tend to have much larger values than
those along pathway 1 (A1, A3). For example, allowing the
four amplitude parameters to lie in the range

[
0, 4 × 10−5

]
,

then the optimal result is A1 = 3.872 × 10−6, A2 = 1.755 ×
10−5, A3 = 1.301 × 10−5, and A4 = 3.989 × 10−5. With the
same peak intensity essentially as before (0.004 V/Å) the
control mechanism is different with pathway 2 dominating
the dynamics. The dynamics under the optimal laser field
are shown in Fig. 4. The population leakage to state |5〉 is
about 0.01 because the algorithm chose a field that avoided
pathway 1. The final transition probability to the target state is
|〈4 |U (T ,0)| 1〉|2 = 0.822. Figure 4 shows that the magnitude
of the transition amplitude in intermediate state |3〉 in pathway
2 is much larger than that of the intermediate state |2〉 in
pathway 1. Table III shows that the second-order pathways
also have the largest amplitude. Table IV shows that pathway 2
contributes almost 90% to the second-order amplitude, and the
similar phases indicate cooperation between the two pathway
amplitudes [see also Fig. 3(b)]. The fourth-order pathways
in Table IV also have significant amplitude, and are mostly
through state |3〉 instead of state |2〉, while the two intermediate
states show equal importance in Table II.

In the two cases above, the second-order pathways dominate
for fields of modest amplitude. For even stronger fields, higher
order processes become much more important as shown in
Fig. 5. The fields E1 and E2 are the two cases in Figs. 2 and
4, respectively. There is no significant qualitative difference in
pathway order distribution for E1 and E2, although the specific
pathways involved are different. When the peak field amplitude
increases to ∼0.01 V/Å (E3), higher order (beyond fourth-
order) pathways have very significant contributions with the
second-order pathways no longer being dominant.

The dynamics is also plotted for the three cases in Fig. 5. It
is found that the magnitude of the transition amplitude for the
target state oscillates for E3, while it increases monotonically
with time for E1 and E2. This difference reflects the higher
order processes involved with E3, producing Rabi oscillations.
In these simulations, a perfect yield is not attained, which
is likely due to the following reasons. First, the system is
difficult to be fully controlled. As shown in Eq. (1), the energy
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(a) (b)

FIG. 3. (Color online) (a), (b) The complex plane representations of the pathway amplitudes in Tables II and IV, respectively. The insets
in (a) and (b) show the magnification of the quantum pathways in their corresponding light gray boxes.

levels |4〉 and |5〉 are degenerate, and the corresponding two
transition dipole moments from the intermediate state |2〉, μ42

and μ52, have very similar values. This makes it difficult to
simultaneously manage the dynamics involving the transitions
|2〉 → |4〉 and |2〉 → |5〉. Second, the controls are restricted to
an on-resonance condition, the duration is fixed at ∼4 ps, and
the field amplitudes are constrained to modest values.

IV. RATIO OF TWO PATHWAY AMPLITUDES

Experimentally it is convenient to measure the ratios
of pathway amplitudes instead of absolute values of the
amplitudes themselves. Thus, here we focus on ratios by

FIG. 4. (Color online) The control field driven dynamics for the
magnitude of the amplitudes for all five states of atomic Rb expressed
as |〈j |U (T ,0)| 1〉|, j = 1, . . . ,5. The population of a state is the
square of its amplitude. The control field is optimized with amplitudes
Ak in Eq. (12) being limited in the range [0, 4.0 × 10−5 ]. In this case,
the second pathway in Fig. 1 is dominant.

calculating time-resolved pathway ratios for different dynam-
ical scenarios. The pathway ratios contain rich information
about the dynamics of the population transfer process. Time-
resolved quantum process tomography has been experimen-
tally demonstrated using HE-OD [29] in the weak-field regime
by combining HE-OD with a laser pulse truncation procedure,
and one important observed feature was the oscillation of the
ratio |U1/U2|. In this section, we will show that this behavior
also appears for the low-bandwidth pulses considered here and
explained in terms of a simple analytical physical model.

In the experiment [29], the encoded field truncated at time
τ , Es(t,τ ), was generated by cutting off the encoded field Es(t)
for t > τ with the use of an appropriate spatial light modulator
mask. Then by decoding the modulated observables Os(τ )
(fluorescence) as a function of s, the time-resolved dynamics
were resolved from the pathway amplitudes as a function of
τ . In simulations, we first truncated the laser field E(t) to be
zero for t > τ and then performed a HE-OD analysis, which
is equivalent to the experimental procedure.

The dynamics for the two pathways corresponding to the
first two cases (modest laser powers) of Sec. III B are shown in
Fig. 6. The constructive interference of |U1| and |U2| is evident
in Figs. 6(a) and 6(b). The time-dependent ratio |U1/U2|
plotted in Fig. 6(c) shows an oscillation with a period ∼500
fs. The oscillation has a period similar to the one observed

TABLE III. The distribution of significant pathway orders for the
control field driven dynamics in Fig. 4.

Order Amplitude Phase

2 1.9698 0.6779
4 1.3967 −2.3518
6 0.3782 0.9754
8 0.05121 −1.8258
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TABLE IV. Amplitudes and phases of significant 2nd- and 4th-
order quantum pathways for the control field driven dynamics in
Fig. 4.

Pathway Amplitude Phase

(1 → 3 → 4) (Pathway 2) 1.7631 0.6946
(1 → 2 → 4) (Pathway 1) 0.2091 0.5369
(1 → 3 → 1 → 3 → 4) 0.7591 −2.4606
(1 → 3 → 4 → 3 → 4) 0.3542 −2.4417
(1 → 2 → 1 → 3 → 4) 0.2083 −1.2613
(1 → 3 → 1 → 2 → 4) 0.09128 −2.7247
(1 → 3 → 4 → 2 → 4) 0.04999 −2.6620
(1 → 2 → 4 → 3 → 4) 0.04359 −2.5987
(1 → 2 → 1 → 2 → 4) 0.01095 2.9914

experimentally [29], which indicates that the mechanism
discussed here may have also contributed to the laboratory
findings even though the laboratory field was qualitatively
different (i.e., the experiments in Ref. [29] used broadband
laser pulses). When pathway 2 dominates in the dynamics (see
the second case discussed in Sec. III B) this oscillation feature
in |U1/U2| disappears as shown in Fig. 6(d).

The analysis below shows that for the low-bandwidth pulses
considered here, the time-dependent amplitude ratio of the
two pathways has a simple analytical form which enables the
identification of the physical origin of the oscillations. For
simplicity, a rectangular pulse is adopted in the analysis,

E(t) =
4∑

k=1

Ak cos (ωkt + ϕk)

= 1

2

4∑
k=1

(Ake
i(ωkt+ϕk ) + c.c.), t � 0. (18)

(a) (b)

(c) (d)

FIG. 5. (Color online) (a)–(c) The pathway order distribution∣∣Un
41

∣∣ for different laser fields. (d) The control field driven dynamics
for the magnitude of the amplitudes for state |4〉 of atomic Rb
expressed as |〈4 |U (T ,0)| 1〉| at different laser fields. E1 and E2

correspond to the cases in Sec. III B. The inset figures in (a)–(c)
show that the laser field amplitude increases from E1 to E3.

(a) (b)

(c) (d)

FIG. 6. (Color online) (a), (b) The absolute value |U1 (t)|,
|U2 (t)|, and |U1(t) + U2(t)| for E1 and E2, respectively. There is
evident constructive interference between U1 and U2 consistent with
their very similar phases in Tables II and IV. (c), (d) The pathway
amplitude ratio |U1(t)/U2(t)| for E1 and E2, respectively. In (c), the
|U1(t)/U2(t)| curve (black solid line) for E1 is fitted with a simple
function (red dashed line) discussed in Sec. IV. The control fields E1

and E2 are optimized with amplitudes Ak in Eq. (14) being limited in
the ranges [0, 2.5 × 10−5 ] and [0, 4.0 × 10−5 ], respectively.

The pathway amplitudes |U1| and |U2| correspond to two
Dyson terms in Eqs. (15) and (16).

In the rotating-wave approximation [32], we have

U1 = μ12μ24

4

4∑
p,q

∫ t

0
e−iω3t2Aqe

i(ωq t2+ϕq )

×
∫ t2

0
e−iω1t1Apei(ωpt1+ϕp)dt1dt2

= μ12μ24

4

4∑
p,q

ApAqV
(13)
pq (t) (19)

and

U2 = μ13μ34

4

4∑
p,q

∫ t

0
e−iω4t2Aqe

i(ωq t2+ϕq )

×
∫ t2

0
e−iω2t1Apei(ωpt1+ϕp)dt1dt2

= μ13μ34

4

4∑
p,q

ApAqV
(24)
pq (t) (20)

with

V (mn)
pq (t) =

∫ t

0
e−iωnt2ei(ωq t2+ϕq )

∫ t2

0
e−iωmt1ei(ωpt1+ϕp). (21)

It is easy to see that the resonant terms are V
(13)

13 and
V

(24)
24 for U1 and U2, respectively, while all other terms are

nonresonant. The analytical formulas of V (mn)
pq are displayed

in the Appendix. The magnitudes of the nonresonant terms are
determined by the detunings which are listed in Table V. It
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TABLE V. The detunings between the four frequencies. The
values are given according to the relation �ωij = ωi − ωj . The small-
est detuning among nonresonant transitions is �ω31 = −�ω13 =
30.7 × 10−5 a.u.

Detuning (10−5 a.u.) ω1 ω2 ω3 ω4

ω1 0 108.26 −30.7 −138.96
ω2 −108.26 0 −138.96 −247.22
ω3 30.7 138.96 0 −108.26
ω4 138.96 247.22 108.26 0

can be verified that the largest nonresonant terms for pathway
1 are V

(13)
11 , V (13)

33 , and V
(13)

31 , and the largest nonresonant terms
for pathway 2 are V

(24)
13 , V

(24)
23 , and V

(24)
14 . From the values of

the V (mn)
pq given in the Appendix, it can be shown that

∣∣V (13)
13 (t)

∣∣ = ∣∣V (24)
24 (t)

∣∣
� ∣∣V (13)

11 (t)
∣∣ = ∣∣V (13)

33 (t)
∣∣ = ∣∣V (13)

31 (t)
∣∣

� ∣∣V (24)
13 (t)

∣∣ = ∣∣V (24)
23 (t)

∣∣ = ∣∣V (24)
14 (t)

∣∣. (22)

Keeping the resonant terms and the largest nonresonant
terms yields a simple equation for the pathway ratio:

U1

U2
≈ A1A3V

(13)
13 + A1A1V

(13)
11 + A3A3V

(13)
33 + A3A1V

(13)
31

A2A4V
(24)

24 + A1A3V
(24)

13 + A2A3V
(24)

23 + A1A4V
(24)

14

×μ12μ24

μ13μ34

≈ A1A3V
(13)

13 + A1A1V
(13)

11 + A3A3V
(13)

33 + A3A1V
(13)

31

A2A4V
(24)

24

×μ12μ24

μ13μ34

≈ V
(13)

13

V
(24)

24

A1A3μ12μ24

A2A4μ13μ34

+A1A1V
(13)

11 + A3A3V
(13)

33 + A3A1V
(13)

31

A2A4V
(24)

24

μ12μ24

μ13μ34
.

(23)

Here the first term is time independent, but the second term
oscillates with time. The detuning |�ω31| = |�ω13| = 30.7 ×
10−5 a.u. in the second term corresponds to an oscillation with
a 495 fs period. Taking a simple case as an illustration, we set
all of the control field phases to be π and all of amplitudes in
the control field to be the same; then the ratio becomes

U1 (t)

U2 (t)
≈

[
1 + 2

�ω2
31t

2
(1 − eit�ω31 + e−it�ω31 it�ω31)

]

× μ12μ24

μ13μ34
. (24)

It can be easily seen that the detuning (�ω31) between the
transitions 5S1/2 → 5P3/2 (ω1) and 5P3/2 → 5D3/2 (ω3)
induces the oscillation of |U1/U2|.

Although the laser field adopted in the analysis above does
not have the Gaussian envelope employed in the simulations of
Sec. III, the conclusion drawn about the temporal oscillation

from the simpler field here should still be qualitatively valid
for E(t) given in Eq. (14). This conclusion is confirmed by
the excellent fitting of the |U1/U2| curve in Fig. 6 with the
function

f (t) = a − b exp (−ct) sin (�ω31t + φ) . (25)

Least squares was used to fit the curve with the parameters
a = 1.434 63, b = 1.248 47, c = 3.901 56 × 10−5, and φ =
2.748 67. The fitting function shows that the oscillation has a
period of 2π/�ω31. According to Eq. (23), the value of the
constant a should be

A1A3μ12μ24

A2A4μ13μ34
= 1.0544 × 2.4860 × 4.2275 × 1.0216

1.1691 × 2.4833 × 2.9931 × 0.9

= 1.448.

This value is very close to the fitted value of 1.435, and
the overall behavior is consistent with the oscillation arising
from the frequency difference between 5S1/2 → 5P3/2 and
5P3/2 → 5D3/2 transitions.

V. CONCLUDING REMARKS

We used HE-OD to study the pathway dynamics in the
optimal quantum control of atomic Rb with the five-level
model in Fig. 1. Population can be driven from the initial
state to the target state through pathway 1, 5S1/2 → 5P3/2 →
5D3/2, or pathway 2, 5S1/2 → 5P1/2 → 5D3/2, which consti-
tute the two lowest order routes for reaching 5D3/2. These
two pathways present an interesting dynamical situation. The
intermediate state 5P3/2 of pathway 1 is coupled to both
the target state 5D3/2 and the additional state 5D5/2. Thus,
pathway 1 leads to an undesired “leakage.” Nevertheless, the
transition dipoles of pathway 1 are larger, which somewhat
balances the leakage effect. On the other hand, the intermediate
state 5P1/2 of pathway 2 can only be excited to the target
state. The competition between the two pathways will be
determined by the balance of the factors above and also
the freedom available in the field to manage the dynamics.
Three cases were analyzed using HE-OD. In case 1, the four
amplitude parameters are constrained to a small value, and
only the second- and fourth-order pathways have significant
contributions and cooperate with each other to achieve the task.
In case 2, the four amplitude parameters are constrained to a
higher range such that the pulse drives most of the population
to the target state through pathway 2 in order to avoid losing
population to the undesired state. The laser fields for these two
cases have modest peak amplitude. In case 3, the control field is
much stronger, and higher than fourth-order pathways become
dominant. We also obtain an analytical explanation regarding
the oscillation of the ratio of the two pathway amplitudes.
A simple analytical model shows that the frequency of the
oscillation may be determined by the frequency difference
between the 5S1/2 → 5P3/2 and 5P3/2 → 5D3/2 transitions.

The theoretical analysis here illustrates the use of HE-
OD for finding quantum control mechanisms. HE-OD is a
broadly applicable input-output modulation tool, which can
be flexibly applied in a variety of circumstances. For example,
under modulation, the intrinsic properties of the system will
result in particular signatures in the output, which may be
employed to identify key system characteristics (i.e., error
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identification for quantum devices). Our analysis gives a
quantitative relationship between the oscillation behavior (i.e.,
the oscillation period and average value of |U1/U2|) and
the system Hamiltonian, which illustrates the possible use
of HE-OD for Hamiltonian identification. Since extracting
the quantum mechanism also allows for its manipulation
[28], HE-OD guided experiments may be used for steering
about quantum dynamics. This capability may be applied
in quantum state preparation or possibly to avoid chemical
reaction bottlenecks, etc. The laser fields used in this work
differ from the laboratory fields used in Refs. [28,29] in that
the laboratory fields had a much larger bandwidth possibly
leading to more complex mechanisms. Nevertheless, the
model considered here provides a reasonable physical picture.
Planned further developments of HE-OD include the treatment
of open quantum systems, which may allow for the study of
decoherence processes.
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APPENDIX: RESONANT AND NONRESONANT
DECOMPOSITION OF THE TWO DYSON TERMS

Consider a field of the form E(t) =∑4
k=1 Ak cos (ωkt + ϕk). In the RWA approximation,

the resonant term of U1 at t is

V
(13)

13 = 1
2ei(ϕ1+ϕ3)t2. (A1)

The largest non-resonant terms are

V
(13)

11 = e2iϕ1eit(ω1−ω3){[1 − it(ω1 − ω3)] − e−it(ω1−ω3)}
(ω1 − ω3)2

,

(A2)

V
(13)

33 = e2iϕ3{[1 − it(ω1 − ω3)] − e−it(ω1−ω3)}
(ω1 − ω3)2

, (A3)

V
(13)

31 = ei(ϕ1+ϕ3){[1 + it(ω1 − ω3)] − eit(ω1−ω3)}
(ω1 − ω3)2

. (A4)

The other nonresonant terms are w

V
(13)

21 = ei(ϕ1+ϕ2)

−ω1 + ω2

(−1 + eit(ω1−ω3)

ω1 − ω3
− −1 + eit(ω2−ω3)

ω2 − ω3

)
,

(A5)

V
(13)

41 = e−i(tω3−ϕ1−ϕ4)

(ω1 − ω3)(ω1 − ω4)(ω3 − ω4)
[eitω4 (−ω1 + ω3)

+ eitω3 (ω1 − ω4) + eitω1 (−ω3 + ω4)], (A6)

V
(13)

12 = ei(ϕ1+ϕ2){−1 + eit(ω2−ω3)[1 − it(ω2 − ω3)]}
(ω2 − ω3)2

, (A7)

V
(13)

22 = e−it(ω1−2ω2+ω3)+2iϕ2

(ω1 − ω2)(ω2 − ω3)(ω1 − 2ω2 + ω3)

× [eit(ω1−2ω2+ω3)(ω1 − ω2) − ω2 + ω3

− eit(ω1−ω2)(ω1 − 2ω2 + ω3)], (A8)

V
(13)

32 = e−i(T ω1−ϕ2−ϕ3)

(ω1 − ω2)(ω1 − ω3)(ω2 − ω3)

× [eit(ω1+ω2−ω3)(−ω1 + ω2)

+ eitω1 (ω1 − ω3) + eitω2 (−ω2 + ω3)], (A9)

V
(13)

42 = ei(ϕ2+ϕ4)

ω1 − ω4

(
1 − eit(ω2−ω3)

ω2 − ω3
+ it

)
, (A10)

V
(13)

23 = e−i(tω1−ϕ2−ϕ3){−eitω2 + eitω1 [1 − it(ω1 − ω2)]}
(ω1 − ω2)2

,

(A11)

V
(13)

43 = e−i(tω1−ϕ3−ϕ4){−eitω4 + eiT ω1 [1 − it(ω1 − ω4)]}
(ω1 − ω4)2

,

(A12)

V
(13)

14 = e−i[t(ω3−ω4)−ϕ1−ϕ4][1 − eit(ω3−ω4) + it(ω3 − ω4)]

(ω3 − ω4)2
,

(A13)

V
(13)

24 = ei(ϕ2+ϕ4)

ω1 − ω2

(
1 − eit(ω4−ω3)

ω4 − ω3
+ it

)
, (A14)

V
(13)

34 = e−i[t(ω1+ω3)−ϕ3−ϕ4]

(ω1 − ω3)(ω1 − ω4)(−ω3 + ω4)

× [eit(ω1+ω3)(ω1 − ω3) + eit(ω3+ω4)(ω3 − ω4)

+ eit(ω1+ω4)(−ω1 + ω4)], (A15)

V
(13)

44 = e2iϕ4

(
1 − e−it(ω1+ω3−2ω4)

(ω1 + ω3 − 2ω4)(ω1 − ω4)

+ 1 − e−it(ω3−ω4)

(ω3 − ω4)(−ω1 + ω4)

)
. (A16)

In the same way, the resonant term of U2 can be derived as

V
(24)

24 = 1
2ei(ϕ2+ϕ4)t2. (A17)

The largest nonresonant terms are

V
(24)

13 = ei(ϕ1+ϕ3){[1 − it(ω1 − ω2)] − e−it(ω1−ω2)}
(ω1 − ω2)2

, (A18)

V
(24)

23 = ei(ϕ2+ϕ3)e−it(ω1−ω2){[1 + it(ω1 − ω2)] − eit(ω1−ω2)}
(ω1 − ω2)2

,

(A19)

V
(24)

14 = ei(ϕ1+ϕ4){[1 + it(ω1 − ω2)] − eit(ω1−ω2)}
(ω1 − ω2)2

. (A20)
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The other nonresonant terms are

V
(24)

11 = e2iϕ1

ω1 − ω2

(−1 + eit(ω1−ω4)

ω1 − ω4
+ −1 + eit(2ω1−ω2−ω4)

−2ω1 + ω2 + ω4

)
,

(A21)

V
(24)

21 = ei(ϕ1+ϕ2){−1 + eit(ω1−ω4)[1 − it(ω1 − ω4)]}
(ω1 − ω4)2

, (A22)

V
(24)

31 = ei(ϕ1+ϕ3)

ω3 − ω2

(−1 + eit(ω1−ω4)

ω1 − ω4
− it

)
, (A23)

V
(24)

41 = ei(ϕ1+ϕ4)

(ω1 − ω2)(ω1 − ω4)(ω2 − ω4)

× [−ω2 + eit(ω1−ω4)(−ω1 + ω2)

+ eit(ω1−ω2)(ω1 − ω4) + ω4], (A24)

V
(24)

12 = ei(ϕ1+ϕ2)

−ω1 + ω2

(−1 + eit(ω1−ω4)

ω1 − ω4
+ 1 − eit(ω2−ω4)

ω2 − ω4

)
,

(A25)

V
(24)

22 = e2iϕ2{−1 + eit(ω2−ω4)[1 − it(ω2 − ω4)]}
(ω2 − ω4)2

, (A26)

V
(24)

32 = ei(ϕ2+ϕ3)

−ω2 + ω3

(−1 + eit(ω2−ω4)

ω2 − ω4
+ 1 − eit(ω3−ω4)

ω3 − ω4

)
,

(A27)

V
(24)

42 = ei(ϕ2+ϕ4)[1 − eit(ω2−ω4) + it(ω2 − ω4)]

(ω2 − ω4)2
, (A28)

V
(24)

33 = e−it(ω2−2ω3+ω4)+2iϕ3

(ω2 − ω3)(ω3 − ω4)(ω2 − 2ω3 + ω4)

× [eit(ω2−2ω3+ω4)(ω2 − ω3) − ω3 + ω4

− eit(ω2−ω3)(ω2 − 2ω3 + ω4)], (A29)

V
(24)

43 = e−i(tω2−ϕ3−ϕ4)

(ω2 − ω3)(ω2− ω4)(ω3− ω4)
[eit(ω2+ω3−ω4)(−ω2+ ω3)

+ eitω2 (ω2 − ω4) + eitω3 (−ω3 + ω4)], (A30)

V
(24)

34 = e−i(tω2−ϕ3−ϕ4){−eitω3 + eitω2 [1 − it(ω2 − ω3)]}
(ω2 − ω3)2

,

(A31)

V
(24)

44 = e2iϕ4 [1 − e−it(ω2−ω4) − it(ω2 − ω4)]

(ω2 − ω4)2
. (A32)
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[23] A. Mitra, I. R. Solá, and H. Rabitz, Phys. Rev. A 77, 043415

(2008).
[24] A. Mitra and H. Rabitz, Phys. Rev. A 67, 033407 (2003).
[25] A. Mitra and H. Rabitz, J. Chem. Phys. 125, 194107 (2006).
[26] A. Mitra and H. Rabitz, J. Chem. Phys. 128, 044112 (2008).
[27] R. Rey-de-Castro and H. Rabitz, Phys. Rev. A 81, 063422

(2010).
[28] R. Rey-de-Castro, Z. Leghtas, and H. Rabitz, Phys. Rev. Lett.

110, 223601 (2013).
[29] R. Rey-de-Castro, R. Cabrera, D. I. Bonder, and H. Rabitz, New

J. Phys. 15, 025032 (2013).
[30] S. B. Bayram, M. Havey, M. Rosu, A. Sieradzan, A. Derevianko,

and W. R. Johnson, Phys. Rev. A 61, 050502 (2000).
[31] Data of the energy levels and transition dipoles can

be found at the website http://www.steck.us/alkalidata/
rubidium85numbers.pdf.

[32] I. I. Rabi, N. F. Ramsey, and J. Schwinger, Rev. Mod. Phys. 26,
167 (1954).

023416-9

http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1088/1367-2630/12/7/075008
http://dx.doi.org/10.1126/science.1095374
http://dx.doi.org/10.1126/science.1095374
http://dx.doi.org/10.1126/science.1095374
http://dx.doi.org/10.1126/science.1095374
http://dx.doi.org/10.1103/PhysRevLett.94.070405
http://dx.doi.org/10.1103/PhysRevLett.94.070405
http://dx.doi.org/10.1103/PhysRevLett.94.070405
http://dx.doi.org/10.1103/PhysRevLett.94.070405
http://dx.doi.org/10.1126/science.288.5467.824
http://dx.doi.org/10.1126/science.288.5467.824
http://dx.doi.org/10.1126/science.288.5467.824
http://dx.doi.org/10.1126/science.288.5467.824
http://dx.doi.org/10.1103/PhysRevLett.96.010504
http://dx.doi.org/10.1103/PhysRevLett.96.010504
http://dx.doi.org/10.1103/PhysRevLett.96.010504
http://dx.doi.org/10.1103/PhysRevLett.96.010504
http://dx.doi.org/10.1103/PhysRevLett.104.080503
http://dx.doi.org/10.1103/PhysRevLett.104.080503
http://dx.doi.org/10.1103/PhysRevLett.104.080503
http://dx.doi.org/10.1103/PhysRevLett.104.080503
http://dx.doi.org/10.1103/PhysRevA.78.042339
http://dx.doi.org/10.1103/PhysRevA.78.042339
http://dx.doi.org/10.1103/PhysRevA.78.042339
http://dx.doi.org/10.1103/PhysRevA.78.042339
http://dx.doi.org/10.1103/PhysRevA.75.012330
http://dx.doi.org/10.1103/PhysRevA.75.012330
http://dx.doi.org/10.1103/PhysRevA.75.012330
http://dx.doi.org/10.1103/PhysRevA.75.012330
http://dx.doi.org/10.1103/PhysRevA.82.022101
http://dx.doi.org/10.1103/PhysRevA.82.022101
http://dx.doi.org/10.1103/PhysRevA.82.022101
http://dx.doi.org/10.1103/PhysRevA.82.022101
http://dx.doi.org/10.1103/PhysRevA.79.052102
http://dx.doi.org/10.1103/PhysRevA.79.052102
http://dx.doi.org/10.1103/PhysRevA.79.052102
http://dx.doi.org/10.1103/PhysRevA.79.052102
http://dx.doi.org/10.1109/TAC.2009.2039238
http://dx.doi.org/10.1109/TAC.2009.2039238
http://dx.doi.org/10.1109/TAC.2009.2039238
http://dx.doi.org/10.1109/TAC.2009.2039238
http://dx.doi.org/10.1103/PhysRevLett.68.1500
http://dx.doi.org/10.1103/PhysRevLett.68.1500
http://dx.doi.org/10.1103/PhysRevLett.68.1500
http://dx.doi.org/10.1103/PhysRevLett.68.1500
http://dx.doi.org/10.1016/S0301-0104(01)00315-9
http://dx.doi.org/10.1016/S0301-0104(01)00315-9
http://dx.doi.org/10.1016/S0301-0104(01)00315-9
http://dx.doi.org/10.1016/S0301-0104(01)00315-9
http://dx.doi.org/10.1103/PhysRevLett.102.253001
http://dx.doi.org/10.1103/PhysRevLett.102.253001
http://dx.doi.org/10.1103/PhysRevLett.102.253001
http://dx.doi.org/10.1103/PhysRevLett.102.253001
http://dx.doi.org/10.1002/cphc.200200581
http://dx.doi.org/10.1002/cphc.200200581
http://dx.doi.org/10.1002/cphc.200200581
http://dx.doi.org/10.1002/cphc.200200581
http://dx.doi.org/10.1038/35018029
http://dx.doi.org/10.1038/35018029
http://dx.doi.org/10.1038/35018029
http://dx.doi.org/10.1038/35018029
http://dx.doi.org/10.1126/science.1078726
http://dx.doi.org/10.1126/science.1078726
http://dx.doi.org/10.1126/science.1078726
http://dx.doi.org/10.1126/science.1078726
http://dx.doi.org/10.1038/nature05595
http://dx.doi.org/10.1038/nature05595
http://dx.doi.org/10.1038/nature05595
http://dx.doi.org/10.1038/nature05595
http://dx.doi.org/10.1038/16654
http://dx.doi.org/10.1038/16654
http://dx.doi.org/10.1038/16654
http://dx.doi.org/10.1038/16654
http://dx.doi.org/10.1103/PhysRevLett.105.073003
http://dx.doi.org/10.1103/PhysRevLett.105.073003
http://dx.doi.org/10.1103/PhysRevLett.105.073003
http://dx.doi.org/10.1103/PhysRevLett.105.073003
http://dx.doi.org/10.1016/S0301-0104(01)00223-3
http://dx.doi.org/10.1016/S0301-0104(01)00223-3
http://dx.doi.org/10.1016/S0301-0104(01)00223-3
http://dx.doi.org/10.1016/S0301-0104(01)00223-3
http://dx.doi.org/10.1103/PhysRevA.67.043409
http://dx.doi.org/10.1103/PhysRevA.67.043409
http://dx.doi.org/10.1103/PhysRevA.67.043409
http://dx.doi.org/10.1103/PhysRevA.67.043409
http://dx.doi.org/10.1103/PhysRevA.77.043415
http://dx.doi.org/10.1103/PhysRevA.77.043415
http://dx.doi.org/10.1103/PhysRevA.77.043415
http://dx.doi.org/10.1103/PhysRevA.77.043415
http://dx.doi.org/10.1103/PhysRevA.67.033407
http://dx.doi.org/10.1103/PhysRevA.67.033407
http://dx.doi.org/10.1103/PhysRevA.67.033407
http://dx.doi.org/10.1103/PhysRevA.67.033407
http://dx.doi.org/10.1063/1.2371079
http://dx.doi.org/10.1063/1.2371079
http://dx.doi.org/10.1063/1.2371079
http://dx.doi.org/10.1063/1.2371079
http://dx.doi.org/10.1063/1.2820787
http://dx.doi.org/10.1063/1.2820787
http://dx.doi.org/10.1063/1.2820787
http://dx.doi.org/10.1063/1.2820787
http://dx.doi.org/10.1103/PhysRevA.81.063422
http://dx.doi.org/10.1103/PhysRevA.81.063422
http://dx.doi.org/10.1103/PhysRevA.81.063422
http://dx.doi.org/10.1103/PhysRevA.81.063422
http://dx.doi.org/10.1103/PhysRevLett.110.223601
http://dx.doi.org/10.1103/PhysRevLett.110.223601
http://dx.doi.org/10.1103/PhysRevLett.110.223601
http://dx.doi.org/10.1103/PhysRevLett.110.223601
http://dx.doi.org/10.1088/1367-2630/15/2/025032
http://dx.doi.org/10.1088/1367-2630/15/2/025032
http://dx.doi.org/10.1088/1367-2630/15/2/025032
http://dx.doi.org/10.1088/1367-2630/15/2/025032
http://dx.doi.org/10.1103/PhysRevA.61.050502
http://dx.doi.org/10.1103/PhysRevA.61.050502
http://dx.doi.org/10.1103/PhysRevA.61.050502
http://dx.doi.org/10.1103/PhysRevA.61.050502
http://www.steck.us/alkalidata/rubidium85numbers.pdf
http://dx.doi.org/10.1103/RevModPhys.26.167
http://dx.doi.org/10.1103/RevModPhys.26.167
http://dx.doi.org/10.1103/RevModPhys.26.167
http://dx.doi.org/10.1103/RevModPhys.26.167



