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Detuning-induced stimulated Raman adiabatic passage in atoms with hyperfine structure
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We theoretically study the generation of coherence in generalized two-level atoms with hyperfine structure
by utilizing the detuning-induced stimulated Raman adiabatic passage (D-STIRAP). As expected, the degree
of attainable coherence between the ground and excited states cannot be as large as that for the ideal two-level
atoms without hyperfine structure. However, we find that the substantial degree of coherence can still be produced
with small modulations, and the modulation period is essentially determined by the hyperfine splittings in the
ground and excited states. The D-STIRAP scheme in generalized two-level atoms is sufficiently robust against
the various parameters such as intensities of lasers, initial detuning, time delay between the laser pulses, and
Doppler broadening. As a specific example, we show realistic results for the D1 transition of Na.
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I. INTRODUCTION

Studies on atomic coherence have drawn a lot of attention
for decades. Atomic coherence can be utilized in many
interesting and important phenomena such as electromag-
netically induced transparency (EIT) [1], lasing without
inversion (LWI) [2], and stimulated Raman adiabatic passage
(STIRAP) [3]. It also plays an essential role in the currently
popular area of quantum information [4].

Atomic coherence can also be utilized to enhance the
conversion efficiency of various nonlinear optical processes
such as four-wave mixing (FWM). For instance, maximum
coherence prepared between the two ground states in � or
double-� systems results in high conversion efficiency of the
FWM field within one coherence length, which means that
the phase matching condition is not required for the efficient
FWM processes [5–7]. Similarly, large coherence prepared
between the ground and highly excited states can lead to the
enhancement of FWM processes in the vacuum ultraviolet
(VUV) or extreme ultraviolet (XUV) regions [8–15], which is
known to be a very difficult task [16–19].

Due to the broad applications such as those mentioned
above, many different schemes have been proposed to optically
control the generation of atomic coherence. For instance, there
are a variety of choices [20–24] to prepare large coherence
between two ground states. Nevertheless, there is no concrete
scheme known to produce large coherence between the ground
and highly excited states, which is a key to efficiently generate
the VUV-XUV light through FWM. The resonant two-photon
excitation scheme, which is the simplest for this purpose,
suffers from the strict requirements on the pulse intensity and
frequency. This means that the Doppler broadening can easily
spoil the conversion efficiency of FWM processes.

Recently a much more robust scheme has been proposed to
generate coherence between the ground and excited states [25],
which has also been studied earlier in Ref. [26] in a slightly
different context. It is a variant of the ordinary STIRAP
scheme, and we call it D-STIRAP (detuning-induced STI-
RAP). The D-STIRAP scheme is shown in Fig. 1. The essence
of the D-STIRAP scheme is that the Bloch equations for a
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two-level system, which consists of the three variables, is
mathematically similar to the Schrödinger equations for a
three-level � system. In the standard STIRAP scheme (with
a three-level � system), a complete population transfer will
occur from the initially occupied ground state to the initially
unoccupied third state if the pump and Stokes pulses interact
with atoms in the counterintuitive pulse sequence, while in
the D-STIRAP scheme, stable and maximum coherence will
be produced between the initially occupied lower and initially
unoccupied upper states if the detuning pulse is turned on
earlier than the pump pulse (see Fig. 1). For this process to
occur, the adiabatic condition

∫ ∞
−∞

√
�2 + �2dt � π/2 must

be satisfied, in which � is the detuning and � is the Rabi
frequency of the pump pulse. The process can be realized by
using a linearly chirped pump pulse [27] or transform-limited
pump pulse together with an off-resonant Stark pulse [12]
to induce dynamic detuning during the pump pulse. Related
studies with the D-STIRAP scheme show that this scheme is
not sensitive to pump pulse intensity, detuning, or the time
delay between the two (Stark and pump) pulses [12,28], and
consequently the Doppler broadening of the target atomic gas
does not spoil the generation of high coherence [12].

In practice, however, it is not always easy to realize a two-
level system. This is particularly true for the case in which
pulsed lasers are employed: With a pulsed laser excitation a
hyperfine structure cannot be easily resolved, as a result of
which each lower and upper state consists of a few unresolved
hyperfine sublevels. That is why there are many works which
deal with the influence of the presence of hyperfine structure
on various coherent control schemes [29–32] such as EIT and
coherent population trapping (CPT).

The purpose of this paper is, with a similar spirit, to
theoretically study the influence of hyperfine structure on
the generation of coherence in generalized two-level atoms
through the D-STIRAP scheme. To be most specific we con-
sider the 32S1/2 and 32P1/2 states of 23Na (nuclear spin = 3/2,
natural abundance = 100%), each of which consists of hy-
perfine sublevels and associated magnetic sublevels. Starting
from the formal derivation of time-dependent equations for the
system of interest we recast them into the generalized Bloch
equations. The generalized Bloch equations turn out to be very
useful to make some analysis under the simplified conditions.
After the simple analysis we present numerical results with
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FIG. 1. (Color online) Prototype of the D-STIRAP scheme in a
two-level system. With a counterintuitive time sequence of the detun-
ing and pump pulse, stable and maximum coherence is generated.

some typical parameters and then with the precise parameters
of Na.

Finally we note that our study on the D-STIRAP with
single-photon excitation may be easily extended to the D-
STIRAP with two-photon excitation. This implies that the
present work is relevant to efficiently generate VUV-XUV
light through the FWM processes [12] in which the hyperfine
structure of the involved states are not spectrally resolved by
the employed laser pulses.

II. FOUR-LEVEL SYSTEM AND GENERALIZED
BLOCH EQUATIONS

The level schemes we consider are shown in Fig. 2. They
consist of the 32S1/2 and 32P1/2 states of 23Na. Due to the
presence of nuclear spin 3/2, each state has a hyperfine
structure. By taking into account the selection rule of dipole
transitions, we arrive at the schemes shown in Figs. 2(a)
and 2(b) for the cases of linearly and left-circularly polarized
pump pulses, respectively. The use of the right-circularly
polarized pump pulse leads to the scheme similar to that of

m
F
=2

m
F
=1m

F
=0m

F
=-1

m
F
=-2

 

2

2−

 

2

2−
 

2

2−
 

4

6−

 

4

2−
 

4

2

 

4

6−
 

2

2

F=132P
1/2

32S
1/2

Ω

linearly 
polarized

F=2

F=1

F=2

Na

4

6−
 

4

2

4

2−
 

4

6−

189MHz

1.8GHz

(a)

 

2

1−

 

2

3

4

2−

 

4

6

 

4

6−

 

4

2
 

4

6−
 

4

2
 

2

1−

 

2

3−

m
F
=2

m
F
=1m

F
=0m

F
=-1

m
F
=-2

F=132P
1/2

32S
1/2

Ω

left-circularly 
polarized

F=2

F=1

F=2

Na

(b)

 

4

2

 

4

2
 

4

6−

FIG. 2. (Color online) Level schemes considered in this work.
The 32S1/2 and 32P1/2 states of 23Na are coupled by the near-resonant
pump pulse with (a) linear or (b) left-circular polarization. Scheme
(a) consists of the two-level and double-� subsystems, while scheme
(b) consists of the V, �, and double-� subsystems. The numbers
written in each scheme represent the relevant angular coefficients for
the corresponding dipole moments.
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FIG. 3. (Color online) Four-level system. By properly setting the
coupling coefficients, ηji , to 0 or 1, the four-level system can be
reduced to the two-level, V, �, and double-� subsystems which
appear in Fig. 2.

using the left-circularly polarized pump pulse, and we do not
discuss it here. A closer look at the schemes reveals that the
entire system consists of several independent subsystems such
as two-level, V, �, and double-� subsystems. The numbers
written in Fig. 2 are the relevant angular coefficients for the
corresponding dipole moments.

Since both 32S1/2 and 32P1/2 states split into the two
hyperfine sublevels, any one of the four subsystems mentioned
above is a special case of the most general four-level system,
which consists of the two hyperfine sublevels of 32S1/2 and
those of 32P1/2. Therefore we now focus on the four-level
system as shown in Fig. 3. In this four-level system, all
possible dipole couplings and the corresponding detunings
are taken into account. ηji in Fig. 3 represents the coupling
coefficient for the dipole transition between the lower state
i and upper state j . By properly setting ηji to 0 or 1 we
can reduce the four-level system to the two-level, V, �, or
double-� subsystems.

The equation of motion of the four-level system shown in
Fig. 3 can be described by the Liouville equation,

i�ρ̇ = [H,ρ], (1)

in which H is the total Hamiltonian and ρ is a density operator.
More explicitly H can be written, after the rotating-wave
approximation, as

H = �

⎛
⎜⎜⎜⎝

0 0 η31�31 η41�41

0 ω21 η32�32 η42�42

η31�31 η32�32 �ω31 0

η41�41 η42�42 0 �ω41

⎞
⎟⎟⎟⎠, (2)

where �ji = μjiE(t)/2� is the Rabi frequency between states
|i〉 and |j 〉 with μji and E(t) being the corresponding dipole
moment and the envelope of the electric field of the pump
pulse, respectively. Without a loss of generality we assume
that �ji is a real number. ω21 represents the hyperfine splitting
of the lower state, and �ωji is the detuning of the pump
pulse with respect to the transition frequency, ωji , for the
dipole transition between |i〉 and |j 〉. Note that we do not
take into account any decay from the upper states due to the
spontaneous decay and ionization loss, so that we can obtain
simple expressions which are of great help to understand the
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dynamics. Using Eqs. (1) and (2), we obtain the set of density
matrix equations, which reads

ρ̇11 = −iη31�31(ρ31 − ρ13) − iη41�41(ρ41 − ρ14),

ρ̇22 = −iη32�32(ρ32 − ρ23) − iη42�42(ρ42 − ρ24),

ρ̇33 = −iη31�31(ρ13 − ρ31) − iη32�32(ρ23 − ρ32),

ρ̇44 = −iη41�41(ρ14 − ρ41) − iη42�42(ρ24 − ρ42),

ρ̇12 = iω21ρ12 + iη32�32ρ13 + iη42�42ρ14

− iη31�31ρ32 − iη41�41ρ42,

ρ̇13 = i�ω31ρ13 − iη31�31(ρ33 − ρ11) + iη32�32ρ12

− iη41�41ρ43,

ρ̇14 = i�ω41ρ14 − iη41�41(ρ44 − ρ11) + iη42�42ρ12

− iη31�31ρ34,

ρ̇23 = i�ω32ρ23 − iη32�32(ρ33 − ρ22) + iη31�31ρ21

− iη42�42ρ43,

ρ̇24 = i�ω42ρ24 − iη42�42(ρ44 − ρ22) + iη41�41ρ21

− iη32�32ρ34,

ρ̇34 = iω43ρ34 + iη41�41ρ31 − iη31�31ρ14

+ iη42�42ρ32 − iη32�32ρ24, (3)

where ω43 represents the hyperfine splitting of the upper state,
and �ω32 = �ω31 − ω21 and �ω42 = �ω41 − ω21.

We note that the four kinds of coherence exist in the
four-level system, i.e., ρ31, ρ32, ρ41, and ρ42, and obviously
they evolve differently in time. Our interest, however, is how
much coherence can be generated in total between hyperfine
manifolds of states 32S1/2 and 32P1/2. Therefore we now recast
the set of density matrix equations, Eq. (3), into the generalized
Bloch equations by introducing some convenient parameters.
For this purpose we first consider the expression of atomic
polarization. The atomic polarization of the four-level system
under consideration is written as

P =
∑
j,i

ηjiμjiρji . (4)

If we regard the four-level system as a generalized two-level
system in which the lower and upper states have hyperfine
structures, it is natural to define the atomic polarization by

P = |μeff|ρeff, (5)

where μeff and ρeff , respectively, are the effective dipole
moment and the effective coherence term between the lower
and upper state manifolds. If we define μeff as |μeff| =√∑

j,i(ηjiμji)2, then we notice that ρeff should be written,

from the comparison of the right-hand sides of Eqs. (4)
and (5), as

ρeff =
∑
j,i

ηjiAjiρji , (6)

in which Aji = μji/|μeff|. Note that |μeff| simply serves as a
normalization factor for μji . We point out that the effective
coherence term, ρeff , may have an opposite sign from those
of ρ31, ρ32, ρ41, and ρ42, because we have assumed that the

effective dipole moment, |μeff|, is always positive, although
it may not necessarily be so. The sign of the coherence term,
ρeff , however, does not influence the observable quantity, since
it is simply a matter of the choice of the phase factor.

By recalling that the Bloch equations consist of the three
variables, namely, the population inversion term and the real
and imaginary coherence terms, we can recast Eq. (3) for
the four-level system into the generalized Bloch equations
for the effective two-level system with the aid of Eq. (6),
which describes the effective complex (real plus imaginary)
coherence term. They read

Ẇeff = −i�eff(ρ
∗
eff − ρeff),

(7)
ρ̇∗

eff = i�ω32ρ
∗
eff − 1

2 i�effWeff + f1 + f2,

in which Weff(= ρjj − ρii) and �eff(= |μeff|E(t)/�) represent
the effective population inversion and effective Rabi frequency
of the effective two-level system. ρ∗

eff is a complex conjugate of
ρeff . Note that �ji in Eq. (3) and �eff are connected through the
relation of �ji = Aji�eff/2. By comparing with the ordinary
Bloch equations, we notice that the two additional terms, f1

and f2, appear in Eq. (7). They read

f1 = iω21(η31A31ρ13 + η41A41ρ14)

+ iω43(η41A41ρ14 + η42A42ρ24) (8)

and

f2 = − 1
2 i�efff3, (9)

where

f3 = −(
η41A

2
41 + η42A

2
42

)
ρ33 − (

η31A
2
31 + η32A

2
32

)
ρ44

+ (
η32A

2
32 + η42A

2
42

)
ρ11 + (

η31A
2
31 + η41A

2
41

)
ρ22

− (η31η32A31A32 + η41η42A41A42)(ρ12 + ρ21)

+ (η31η41A31A41 + η32η42A32A42)(ρ34 + ρ43). (10)

It is very important to note that the time derivative of f3

reads

ḟ3 = −iω21(η31η32A31A32 + η41η42A41A42)(ρ12 − ρ21)

− iω43(η31η41A31A41 + η32η42A32A42)(ρ34 − ρ43)

+ i�eff
(
η32η41η42A32A41A42 − η31η42A31A

2
42

)
×(ρ31 − ρ13)

+ i�eff
(
η32η41A

2
32A41 − η31η32η42A31A32A42

)
×(ρ14 − ρ41)

+ i�eff
(
η31η41η42A31A41A42 − η32η41A32A

2
41

)
×(ρ32 − ρ23)

+ i�eff
(
η31η32η41A31A32A41 − η31η42A

2
31A42

)
×(ρ42 − ρ24), (11)

which will be frequently used in the following analysis.

III. DISCUSSION

In this section we discuss the behavior of the four-level
system shown in Fig. 3 through the simple analysis as well as
the numerical calculations to solve the set of density matrix
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equations given by Eq. (3). In order to obtain the simple
expressions and clear physical picture thereby, we perform the
analysis for the case in which all the hyperfine splittings are
zero, i.e., degenerate hyperfine structure. Such an assumption
is lifted later in this section when we resort to the numerical
calculations to solve Eq. (3). As expected, the simple analysis
turns out to be very helpful to understand the numerical results.

A. Analysis of the four-level system with degenerate
hyperfine structure

Although Eqs. (3) and (7) are mathematically equivalent,
it is more convenient to use the generalized Bloch equations
given by Eq. (7) to carry out the analysis of the four-level
system. To simplify the expressions for maximum clarity, we
assume, for a moment, that all the hyperfine splittings are zero,
i.e., ω21 = ω43 = 0. This means that Eq. (8) is reduced to

f1 = 0. (12)

In the following, we consider the special case of the four-
level system by appropriately setting various η′s to 0 or 1
to reduce the system to the two-level, V, �, and double-�
subsystems, which appear in the schemes shown in Fig. 2.

1. Two-level subsystem

The prototype of the D-STIRAP scheme has been studied in
the two-level system, and its behavior is well understood [25].
Nevertheless, we start our analysis with a two-level subsystem
to demonstrate the validity of the generalized Bloch equations
and our analysis.

If we set one of the four η′s in Fig. 3 to 1 while all others
are set to 0, the four-level system is reduced to the two-level
subsystem. As a first case, we now set η42 = 1, while η31 =
η32 = η41 = 0 so that the two-level subsystem is realized by
states |2〉 and |4〉. Then, from Eq. (11), we find that ḟ3 = 0,
and hence f3 is a constant at all time. By referring to Eq. (9)
we notice that the value of f2 also remains the same with that
at t = 0. If the initial condition is ρ22 = 1, then, from Eqs. (9)
and (10) we obtain

f2 = 0. (13)

By substituting Eqs. (12) and (13) into Eq. (7), we find
that the generalized Bloch equations are now reduced to the
standard Bloch equations for the two-level system. Obviously,
if the pulse sequence of the D-STIRAP is applied to the two-
level subsystem, we know that |ρeff| = 0.5.

2. V subsystem

As a second case, we now set η32 = η42 = 1 and η31 =
η41 = 0 to form the V subsystem by states |2〉, |3〉, and |4〉.
From Eq. (11), we again find that ḟ3 = 0. If the initial condition
is again ρ22 = 1, then, from Eqs. (9) and (10) we obtain

f2 = 0. (14)

This indicates that the generalized Bloch equations for
the V subsystem still look the same as the standard Bloch
equations for the two-level system. This implies that, if the
pulse sequence of the D-STIRAP is applied to the V subsystem,
the maximum effective coherence will be |ρeff| = 0.5.

3. � subsystem

As a third case, we set η41 = η42 = 1 and η31 = η32 = 0,
which reduces the four-level system into the � subsystem
formed by states |1〉, |2〉, and |4〉. As in the case of the V
subsystem, we find that ḟ3 = 0 from Eq. (11). However, the
natural initial condition for this case is ρ11 = ρ22 = 0.5, and
hence f2 �= 0 as we see from Eqs. (9) and (10). Namely,

f2 = − 1
2 i�eff

(
A2

42ρ11 + A2
41ρ22

)
= − 1

4 i�eff . (15)

Now the generalized Bloch equations read

Ẇ ′
eff = −i�eff(ρ

∗
eff − ρeff),

(16)
ρ̇∗

eff = i�ω32ρ
∗
eff − 1

2 i�effW
′
eff,

where W ′
eff = Weff + 1

2 . Note that these equations are identical
to the standard Bloch equations for the two-level system.
This means that if the pulse sequence of the D-STIRAP is
applied to this subsystem, the initial value of the population
inversion term, W ′

eff , is completely transferred to the real
part of the coherence term, Re(ρeff), i.e., W ′

eff → 2Re(ρeff).
Since the initial value of Weff is −1 for this case, W ′

eff = − 1
2 ,

and Re(ρeff) = − 1
4 . Consequently, the degree of effective

coherence is |ρeff| = 0.25, which is only half of the values
for the two-level and V subsystems.

4. Double-� subsystem

We can continue the similar analysis for the double-�
subsystem by setting η31 = η41 = η32 = η42 = 1. If we look
into Eq. (11) carefully, we notice that the common term of
B = A31A42 − A32A41 appears frequently. Depending on the
specific values of A31, A42, A32, and A41, B may be zero or
nonzero, and we consider those two cases separately.

The first case of B = 0 is very similar to the case of �

subsystem, and ḟ3 = 0 from Eq. (11). If we assume the most
natural initial condition of ρ11 = ρ22 = 0.5, then, f2 is found,
from Eqs. (9) and (10), as

f2 = − 1
4 i�eff . (17)

Following the argument we have made for the � subsystem,
we can conclude that |ρeff| = 0.25.

The second case of B �= 0 is different, because ḟ3 �= 0. As
a result, f2 cannot be expressed in a simple form, which means
that we cannot obtain a simple analytical result for |ρeff|.

B. Numerical calculations

Having clarified the attainable degree of coherence in the
four kinds of subsystems, we now numerically solve the set
of density matrix equations described in Eq. (3) and estimate
the degree of effective coherence defined by Eq. (6). In order
to connect the previous analysis for the case of degenerate
hyperfine structure and the numerical results to be presented
here, we perform numerical calculations for the cases of both
degenerate and nondegenerate hyperfine structures.

The coupling coefficients such as ηji�ji we need to solve
Eq. (3) for Fig. 3 are taken from those given in Fig. 2 for
the Na atom. Accordingly, the states |1〉 and |2〉 (|3〉 and |4〉)
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in Fig. 3 should be read as the F = 1 and F = 2 states of
32S1/2 (32P1/2). Note that the different magnetic sublevels
of the hyperfine states have to be appropriately chosen for
the different subsystems. For all calculations presented in
this paper we introduce two pulses, i.e., the off-resonant and
resonant pulses. The former serves as the detuning pulse
through ac Stark shifts which result in the time-dependent
detuning of �eff(t), and the latter serves as the pump pulse
with the effective Rabi frequency of �eff(t). If we assume
that both pulses have Gaussian temporal shapes, they can be
written as

�eff(t) = �0exp

[
−ln4

(
t

τ�

)2]
+ δ0 (18)

and

�eff(t) = �0
effexp

[
−1

2
ln4

(
t − tdelay

τ�

)2]
. (19)

In these equations, �0 and �0
eff represent the peak ampli-

tudes of the detuning pulse and the effective Rabi frequency,
respectively. tdelay is the time delay between the two pulses,
and δ0 stands for the initial detuning of the pump pulse with
respect to the transition frequency ω32 between |2〉 and |3〉.
τ� and τ�, respectively, are the durations of the detuning and
pump pulses defined for the intensity. Note that the additional
factor of 1/2 in front of ln 4 appears only in Eq. (19), since
the Rabi frequency is defined for the field amplitude. In our
case we have set them to be τ� = √

2τ� = 1. In the following
calculations, all the parameters are chosen with respect to
τ�. The time delay tdelay is defined in the unit of τ� while
other parameters such as �0, �0

eff , δ0, and also the hyperfine
splittings ω21, ω43, are defined in units of 1/τ�.

1. Degenerate hyperfine structure

We first assume that all the hyperfine splittings are zero,
i.e., ω21 = ω43 = 0. Then, all the detunings in Eq. (3) are
solely induced by the detuning pulse, i.e., �ωji = �eff(t).
Under such an assumption we find that the numerical solutions
agree well with the previous analysis, which again confirms
the correctness of our treatment using the generalized Bloch
equations.

In Fig. 4 we show the color-coded plot of the variation
of the degree of effective coherence for the two-level and V
subsystems under the D-STIRAP pulse sequence. The former
subsystem is realized by choosing |32S1/2 F = 2,mF = −2〉
and |32P1/2 F = 2,mF = −2〉 as |2〉 and |4〉, respectively,
for which A42 = 1. The latter subsystem is realized by
choosing |32S1/2 F = 2,mF = 2〉, |32P1/2 F = 1,mF = 1〉,
and |32P1/2 F = 2,mF = 1〉 as |2〉, |3〉, and |4〉, respectively,

for which A32 =
√

3
2 and A42 = − 1

2 . Figures 4(a) and 4(b)
clearly show, respectively, that the results are identical for
both subsystems. Under the parameter range which satisfies the
adiabaticity of D-STIRAP, the degree of effective coherence
reaches 0.5, and it is reasonably robust against the changes
of �0

eff and �0 [Fig. 4(a)]. A similar relation is true for the
changes of tdelay and δ0 [Fig. 4(b)].

We make similar plots for the � and double-� sub-
systems. The results are shown in Fig. 5. The former
subsystem is realized by choosing |32S1/2 F = 1,mF = −1〉,

FIG. 4. (Color online) Color-coded plot of the variation of the
degree of effective coherence, |ρeff |, in two-level and V subsystems
as functions of (a) effective Rabi frequency, �0

eff , and detuning,
�0, with tdelay = 1.5τ� and δ0 = 0, and (b) time delay, tdelay, and
initial detuning, δ0, with �0

eff = 15/τ� and �0 = 20/τ�. Note that
the results in graphs (a) and (b) are respectively identical for both
subsystems.

|32S1/2 F = 2,mF = −1〉, and |32P1/2 F = 2,mF = −2〉 as

|1〉, |2〉, and |4〉, for which A41 = −
√

3
2 and A42 = − 1

2 . The
latter subsystem is realized by choosing |32S1/2 F = 1,mF =
0〉, |32S1/2 F = 2,mF = 0〉, |32P1/2 F = 1,mF = −1〉, and
|32P1/2 F = 2,mF = −1〉 as |1〉, |2〉, |3〉, and |4〉, for which

A31 =
√

2
4 , A32 =

√
2

4 , A41 = −
√

6
4 , and A42 = −

√
6

4 , and these

FIG. 5. (Color online) Similar to Fig. 4 but for the � and double-
� subsystems with B = 0. Note that the results in graphs (a) and (b)
are respectively identical for both subsystems.
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FIG. 6. (Color online) Similar to Fig. 5 but for the double-�
subsystem with B = − 1

2 .

values of A’s result in B = 0. Again, Figs. 5(a) and 5(b) show,
respectively, that the results are identical for both subsystems.
Note that the pattern of Figs. 4 and 5 are almost the same
except for the coloring. Namely, the difference between them
arises from the difference of peak values of |ρeff|: |ρeff| = 0.25
in Fig. 5, while |ρeff| = 0.5 in Fig. 4.

As we have found in Sec. III A, the dynamics of the
double-� subsystem can be different, depending on the values
of B, which have been defined as B = A31A42 − A32A41. In
the above example used for Fig. 5, B = 0. We now consider
the case of B �= 0 for the double-� subsystem. It can be
realized, for instance, by choosing |32S1/2 F = 1,mF = −1〉,
|32S1/2 F = 2,mF = −1〉, |32P1/2 F = 1,mF = −1〉, and
|32P1/2 F = 2,mF = −1〉 as |1〉, |2〉, |3〉, and |4〉, for which

A31 = −
√

2
4 , A32 = −

√
6

4 , A41 = −
√

6
4 , and A42 =

√
2

4 , and
consequently B = − 1

2 . The corresponding results are shown
in Fig. 6. It turns out that, apart from the coloring, the pattern
of the graphs in Fig. 6 is somehow similar to that in Figs. 4
and 5. Moreover, the degree of the effective coherence in
Fig. 6 is |ρeff| = 0.35, which is between the values in Fig. 4
(|ρeff| = 0.5) and Fig. 5 (|ρeff| = 0.25). Although we expect
to see more difference due to the fact that ḟ3 �= 0 if B �= 0,
it does not seem to be the case, as far as we can notice by
comparing Figs. 5 and 6.

2. Nondegenerate hyperfine structure

Now we turn to the more realistic situation where the
hyperfine splittings are nonzero. For this case, we do not have
to consider the case of the two-level subsystem because of
the absence of degeneracy or nondegeneracy and focus on the
cases of nondegenerate V, �, and double-� subsystems.

Representative results are shown in Fig. 7 for �0 = 20/τ�,
�0

eff = 15/τ�, and tdelay = 1.5τ� with the hyperfine splittings
chosen to be ω21 = 0.5/τ� and ω43 = 0.05/τ�. Figure 7(a)
shows the maximum values of the degree of effective coher-
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FIG. 7. (Color online) (a) Maximum values of the generated
effective coherence, |ρmax

eff |, as a function of initial detuning, δ0. (b)
Time evolution of effective coherence, |ρeff |, with the best choice of
initial detunings for the nondegenerate V, �, and double-� subsys-
tems. The employed parameters are �0 = 20/τ�, �0

eff = 15/τ�, and
tdelay = 1.5τ�.

ence, |ρmax
eff |, as a function of initial detuning, δ0, for the V, �,

and double-� subsystems. In particular the results with B = 0
and B �= 0 are both shown for the double-� subsystem.

What we can learn from Fig. 7(a) is that the value of δ0 has
to be carefully chosen to maximize the value of |ρmax

eff |, and
the best choice of δ0 is always at the slightly negative side of
δ0 = 0 for all subsystems; i.e., the pump laser frequency must
be between the two transition frequencies of the subsystems.
We also notice that the best value of δ0 for the case of the
V subsystem is closer to 0 compared with those of � and
double-�, simply because the hyperfine structure that matters
for the former is that of the upper state and hence the hyperfine
splitting is much smaller than that of the lower state, while it
is that of the lower states for the latter.

In Fig. 7(b), we plot the time evolution of the degree
of effective coherence for different subsystems at the best
choice of initial detuning. The degree of effective coherence
modulates with the frequencies which are essentially deter-
mined by the hyperfine splittings of the lower and upper
state manifolds. This is simply because the time evolution of
effective coherence is a collective result of the four coherence
terms, ρ31, ρ32, ρ41, and ρ42, as we see in Eq. (6). Figure 7(b)
also shows that, apart from the modulations due to the presence
of nonzero hyperfine splittings, the maximum values of |ρeff|
do not exceed the values predicted in Sec. III A, which have
been obtained by assuming the zero hyperfine splittings.

We repeat the similar calculations for the time evolution of
the degree of effective coherence with different values of the
amplitudes of the detuning pulse, �0, Rabi frequency, �0

eff ,
and time delay, tdelay. The results (not shown here) imply that
the time evolution of the degree of effective coherence is not
very sensitive to the variations of these parameters, which is
similar to the cases of Figs. 4–6.
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C. Application to the D1 transition of Na

Finally we perform calculations for the entire D1 transition
of the Na atom shown in Fig. 2. This means that we now deal
the entire system, which contains several different subsystems
discussed before. To quantify the degree of effective coherence
in the Na system (Fig. 2), we introduce a new variable, ρNa

eff ,
which is defined by

∣∣ρNa
eff

∣∣ =
∑

k Pk

∣∣ρk
eff

∣∣∑
k Pk

, (20)

where Pk is the population in the lower (F = 1 and 2 hyperfine)
states and |ρk

eff| is the generated effective coherence in the
subsystem denoted as k.

In the calculations we assume a linearly polarized pulse
at the wavelength of 1064 nm to induce the time-dependent
Stark shift, which serves as the detuning pulse. As for the pump
pulse, we assume a transform-limited pulse with linear or left-
circular polarization at the wavelength of 589 nm to be resonant
with the D1 transition. As in Sec. III B, we assume that both
detuning and pump pulses have Gaussian temporal shapes, and
their durations are set to be 10 ps (for the full width at half max-
imum of their pulse intensities). The bandwidth of the 10 ps
pump pulse is sufficiently broad to be resonant with all hyper-
fine transitions associated with the D1 transition, while the D2

transition, 32S1/2 → 32P3/2, is still far away from resonance.
We note that the amount of the Stark shifts induced by the

same detuning pulse are generally different for different hyper-
fine sublevels within the same hyperfine manifold. However,
for the hyperfine manifold with total angular momentum of
J = 1

2 , the amount of Stark shifts is exactly the same for all
hyperfine sublevels [33,34]. By making use of the equations
and values reported in Refs. [33,34], we can write the effective
detuning induced by the detuning pulse as

�eff(rad/s) ≈ 201Idet(W/cm2), (21)

for all hyperfine sublevels in the ground state, where Idet is
the detuning pulse intensity. In order to satisfy the adiabatic
condition, it is chosen as Idet = 10 GW/cm2. The hyperfine
splittings of states 32S1/2 and 32P1/2 are 1.8 GHz and 189 MHz,
respectively, and they are much smaller compared with the
magnitudes of the effective detunings induced by the detuning
pulse. This means that �ωji � �eff in Eq. (3) when the pump
pulse is on. The effective transition dipole moment between
states 32S1/2 and 32P1/2 is μeff ≈ 3 × 10−29 C m taken on
Ref. [34], and accordingly we can write the effective Rabi
frequency as

�eff(rad/s) = 8.2 × 108
√

Ipump(W/cm2), (22)

in which Ipump is the pump pulse intensity and we set it at
Ipump = 3.3 MW/cm2. We adjust the time delay between the
detuning pulse and the pump pulse to be tdelay = 10 ps. For
completeness, we also include the spontaneous lifetime of the
excited 3p state, which is about 16 ns.

In Fig. 8 we show the time evolution of the degree of
coherence, |ρNa

eff |, in the Na atom for the linearly and left-
circularly polarized pump pulse. Just after the pump pulse the
degree of coherence takes the largest value, which is more than
0.4 for the linearly polarized pump pulse, since the dephasing
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a |
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FIG. 8. (Color online) Time evolution of the degree of coherence,
|ρNa

eff |, for the linearly (black) and left-circularly (red) polarized pump
pulse.

originating from the hyperfine splittings is negligible at this
time scale. As the time passes, however, the dephasing and
rephasing of coherence takes place. The slow modulation we
see in Fig. 8 is due to the hyperfine splittings of the upper
states. We also note that the lifetime of the upper states hardly
plays a role in the time scale presented in Fig. 8. Although we
cannot obtain stable coherence in this realistic case due to the
presence of nonzero hyperfine splittings, as we have already
learned in Sec. III A, we can still say that the average value of
the degree of coherence is about 0.3 for the linearly polarized
pump pulse. The result for the left-circularly polarized pump
pulse is worse and it cannot be better than 0.15. The reason
for this difference is clear if we look at Fig. 2 once more:
For the linearly polarized pump pulse [Fig. 2(a)], four of
the subsystems are two-level ones in which the degree of
coherence reaches the possible maximum value of 0.5, and
two of the subsystems are double-� ones with B = − 1

2 and
hence the degree of coherence can be 0.35. For the left-circular
pump pulse [Fig. 2(b)], none of the subsystems are two-level
ones, and there is only one V subsystem, one � subsystem,
and two double-� subsystems with B = 0. It is clear that the
performance of the latter case is not as good as that of the
former case. As we have already seen in Figs. 4–6, none of
the subsystems are sensitive to the pump pulse intensity,
detuning pulse intensity, initial detuning, and time delay
between the pump and detuning pulses. Accordingly the entire
system (which is a sum of the subsystems) is not sensitive to
those parameters either. As for the sensitivity of the degree of
generated coherence to the Doppler broadening, we can see
from Fig. 7(a) that it is essentially determined by the laser
pulse duration irrespective of the kind of employed atoms. For
the 10-ps pulses we have assumed here, the Doppler shift as
large as 10 GHz will not influence the result. Since the Doppler
broadening of the Na atomic vapor at room temperature is only
∼1 GHz, we may safely neglect it.

IV. CONCLUSIONS

In conclusion we have theoretically studied the generation
of coherence in generalized two-level atoms with hyperfine
structure by using the D-STIRAP pulse sequence. We have
found that the degree of attainable coherence between the
ground- and excited-state manifold cannot be as large as that in
ideal two-level atoms, which is somehow expected without any
calculations. However, we have also found that the substantial
degree of coherence can still be produced in real atoms
(such as Na) with small modulations, where the modulation
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periods are essentially determined by the hyperfine splittings
of the ground and excited states. We have also demonstrated
the robustness of the D-STIRAP scheme in atoms with
hyperfine structure against the various parameters such as the
pump pulse intensity, detuning pulse intensity, initial detuning,
time delay between the two pulses, and Doppler broadening.

To be most specific we have also presented the results for the
D1 transition of Na with hyperfine structure. Similar results
should be obtained with other atoms. Our finding would be

a useful benchmark to generate high atomic coherence in
real atoms with hyperfine structure toward applications in
nonlinear optics.
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