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Compensation for parameter dispersion is a significant challenge for control of inhomogeneous quantum
ensembles. In this paper, we present the systematic methodology of sampling-based learning control (SLC)
for simultaneously steering the members of inhomogeneous quantum ensembles to the same desired state. The
SLC method is employed for optimal control of the state-to-state transition probability for inhomogeneous
quantum ensembles of spins as well as �-type atomic systems. The procedure involves the steps of (i) training
and (ii) testing. In the training step, a generalized system is constructed by sampling members according to
the distribution of inhomogeneous parameters drawn from the ensemble. A gradient flow based learning and
optimization algorithm is adopted to find an optimal control for the generalized system. In the process of testing,
a number of additional ensemble members are randomly selected to evaluate the control performance. Numerical
results are presented, showing the effectiveness of the SLC method.
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I. INTRODUCTION

Control of quantum phenomena lies at the heart of emerging
quantum technology [1–5]. Quantum control theory has many
components including controllability assessment, optimal
control, feedback control, etc. Most existing results focus on
control design of single quantum systems [1–19]. Another
important issue is control design for quantum ensembles. A
quantum ensemble consists of a large number (up to ∼1023)
of single quantum systems (e.g., spin systems), and every
quantum system is referred to as a member of the ensemble.
This paper considers an ensemble in the sense of the individual
systems slightly varying over a distribution of characteristics,
rather than in the content of a mixed state. Quantum ensembles
have wide applications in emerging quantum technology
including quantum computation [20], long-distance quantum
communication [21], quantum memory [22], and magnetic-
resonance imaging [23]. Several results on quantum ensemble
control have been presented including unitary control in homo-
geneous quantum ensembles for maximizing signal intensity
in coherent spectroscopy [24] and feedback stabilization of
quantum ensembles [25].

In practical applications, the members of a quantum ensem-
ble could have variations in the parameters that characterize
the system dynamics [26,27]. For example, the spins of an
ensemble in nuclear magnetic-resonance (NMR) experiments
may encounter large dispersion in the strength of the applied
radio frequency field (rf inhomogeneity) as well as the mem-
bers exhibiting variations in their natural frequencies (Larmor
dispersion) [28,29]. In this paper, these situations are referred
to as inhomogeneous quantum ensembles. It is generally
impractical to employ different control inputs for individual
members of a quantum ensemble in the laboratory. Hence,
it is important to develop the means for designing control
fields that can simultaneously steer the ensemble of systems
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from an initial state to a desired target state when variations
exist in the system parameters. Such controls are also called
compensating pulse sequences in NMR spectroscopy [26,30].
Other applications include control of a randomly oriented
ensemble of molecules in physical chemistry [31], the design
of slice selective excitation and inversion pulses in magnetic-
resonance imaging, and the correction of systematic errors in
quantum information processing [27]. Theoretical results show
that under commonly arising conditions there exist optimal
laser fields to control all molecules in an inhomogeneous
ensemble, regardless of their orientation or spatial location
[32,33]. Recent studies considered the controllability and
optimal control of inhomogeneous spin ensembles [23,27,34–
37]. An additional investigation examined the stabilization of
an inhomogeneous ensemble of noninteracting spin systems
using Lyapunov control methodology [38]. However, a system-
atic method is lacking for designing effective control fields that
can simultaneously steer the members of an inhomogeneous
quantum ensemble to the same target state.

This paper presents a systematic methodology for control
design of inhomogeneous quantum ensembles for the state-to-
state transition probability, illustrated for spins and three-level
�-type systems. The proposed method involves the steps of
(i) training and (ii) testing, which we call sampling-based
learning control (SLC). In the training step, we sample several
members according to the distribution of inhomogeneous
parameters from the ensemble and construct a generalized
system using these collective samples. Then, we employ
a gradient flow based learning and optimization algorithm
[39] to find the control providing good performance for the
generalized system. In the process of testing the deduced
controls, we randomly select a number of sampling members
to evaluate the control performance. Numerical simulations
show that the SLC method has potential for practical control
design of various inhomogeneous quantum ensembles. These
findings support the previous theoretical analysis, suggesting
that control of inhomogeneous ensembles should generally be
feasible [31–34].
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The paper is organized as follows. Section II formulates the
control problem for inhomogeneous quantum ensembles and
presents the details of SLC. The SLC method is illustrated for
two-level and three-level inhomogeneous quantum ensembles,
respectively, in Secs. III and IV. Conclusions are presented in
Sec. V.

II. METHODOLOGY

A. Model and problem formulation

Consider a finite-dimensional closed quantum system with
the evolution of its state |ψ(t)〉 described by the Schrödinger
equation (setting � = 1):

d

dt
|ψ(t)〉 = −iH (t)|ψ(t)〉,

(1)
t ∈ [0,T ], |ψ(0)〉 = |ψ0〉.

The solution of Eq. (1) is given by |ψ(t)〉 = U (t)|ψ0〉, where
the propagator U (t) satisfies

d

dt
U (t) = −iH (t)U (t),

(2)
t ∈ [0,T ], U (0) = Id.

In this paper, we consider an inhomogeneous ensemble
in which the Hamiltonian of each member has the following
form:

Hω,θ (t) = g(ω)H0 + b(θ )
M∑

m=1

um(t)Hm, (3)

where H0 is the free Hamiltonian and
∑M

m=1 um(t)Hm cor-
responds to the time-dependent control Hamiltonian that
represents the interaction of the system with the external
fields um(t) (real-valued and square-integrable functions)
through the Hermitian operators Hm. The functions g(ω)
and b(θ ) characterize the inhomogeneous distribution in the
free Hamiltonian and control Hamiltonian, respectively (see
Fig. 1). In this paper, we assume that g(ω) = ω and b(θ ) = θ ,
and the parameters ω and θ are time independent and uni-

FIG. 1. (Color online) A schematic for modeling an inhomoge-
neous ensemble parametrized with g(ω) and b(θ ), and the selection
of samples to construct a generalized system. An ensemble of inho-
mogeneous members on the left is mapped into a space determined
by g(ω) and b(θ ) on the right, where g(ω) and b(θ ) characterize the
distribution of inhomogeneity in the free Hamiltonian and control
Hamiltonian, respectively. Samples for ensemble control design are
drawn from the distribution of inhomogeneous parameters. These
samples are used to construct a generalized system for learning a
control field with the performance as an average on the samples.

formly distributed over [1 − �,1 + �] and [1 − �,1 + �],
respectively. The constants � ∈ [0,1] and � ∈ [0,1] represent
the bounds of the parameter dispersion. The objective is to
design the controls {um(t),m = 1,2, . . . ,M} to simultaneously
drive the members (with different ω and θ ) of the quantum
ensemble from an initial state |ψ0〉 to the same target state
|ψtarget〉 with high fidelity. The control outcome is described
by a performance function J (u) for each control strategy
u = {um(t),m = 1,2, . . . ,M}. The control problem can then
be formulated as a maximization problem as follows:

max
u

J (u) := max
u

E[Jω,θ (u)],

such that
d

dt
|ψω,θ (t)〉 = −iHω,θ (t)|ψ(t)〉,t ∈ [0,T ],

|ψω,θ (0)〉 = |ψ0〉, (4)

Hω,θ (t) = ωH0 + θ

M∑
m=1

um(t)Hm,

ω ∈ [1 − �,1 + �],

θ ∈ [1 − �,1 + �],

where Jω,θ (u) is the fidelity measure of each member of the
ensemble andE[Jω,θ (u)] denotes the average value of Jω,θ over
the ensemble. The fidelity between the final state |ψω,θ (T )〉 and
the target state |ψtarget〉 is defined as follows [40]:

F (|ψω,θ (T )〉,|ψtarget〉) = |〈ψω,θ (T )|ψtarget〉|. (5)

The fidelity F is used to evaluate the performance of a designed
control in the testing step. However, for convenient calculation
of a gradient flow in the training step, we take the performance
function J (u) = F 2; i.e.,

Jω,θ (u) := |〈ψω,θ (T )|ψtarget〉|2.
Note that Jω,θ depends implicitly on the control u through the
Schrödinger equation.

B. Sampling-based learning control of inhomogeneous
quantum ensembles

Gradient-based methods [5,39,4142] have been success-
fully applied to search for optimal solutions to a vari-
ety of quantum control problems, including in theoretical
and laboratory applications. In this paper, a gradient-based
learning method is employed to optimize the controls for
inhomogeneous quantum ensembles. We present a systematic
methodology for ensemble control design utilizing selected
samples (as shown in Fig. 1) from the ensemble. These samples
are drawn from the distribution of inhomogeneous parameters
to design the control. Then the resultant control is applied to
additional ensemble members to test the control performance.
As such, the SLC method includes the steps of (i) training and
(ii) testing.

1. Training

In the training step, we select N sampled members from
the quantum ensemble according to the distribution (e.g.,
uniform distribution) of the inhomogeneous parameters and
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then construct a generalized system as follows:

d

dt

⎛
⎜⎜⎝

|ψω1,θ1 (t)〉
|ψω2,θ2 (t)〉

...
|ψωN,θN

(t)〉

⎞
⎟⎟⎠ = −i

⎛
⎜⎜⎝

Hω1,θ1 (t)|ψω1,θ1 (t)〉
Hω2,θ2 (t)|ψω2,θ2 (t)〉

...
HωN,θN

(t)|ψωN,θN
(t)〉

⎞
⎟⎟⎠ , (6)

where Hωn,θn
= ωnH0 + θn

∑
m um(t)Hm with n =

1,2, . . . ,N . The performance function for the generalized
system is defined by

JN (u) := 1

N

N∑
n=1

Jωn,θn
(u) = 1

N

N∑
n=1

|〈ψωn,θn
(T )|ψtarget〉|2.

(7)

The goal of the training step is to find a control u∗ that
maximizes the performance function defined in Eq. (7). The
performance function is JN (u0) with an initial control u0 =
{u0

m(t)}. We apply the gradient flow method [5,29,39–42] to
seek an optimal control u∗ = {u∗

m(t)}. The detailed gradient
flow algorithm is provided in the Appendix (Algorithm 1).
The time interval [0,T ] is divided equally into Q time slices
�t , and we assume that the controls are constant within each
time slice. The time index is tq = qT /Q, where Q = T/�t

and q = 1,2, . . . ,Q.
The motivation behind SLC is to design the control using a

minimal number of sample members. Therefore, it is necessary
to choose a representative set of samples. For example, when
the distributions of both ω and θ are uniform, we may choose
equally spaced samples in the ω − θ space. In this case, the
intervals of [1 − �,1 + �] and [1 − �,1 + �] are divided
into N� + 1 and N� + 1 subintervals, respectively, where N�

and N� are conveniently chosen positive odd integers. Then
the total number of samples is N = N�N�, where ωn and θn

are chosen from all combinations of (ωn�
,θn�

) as follows:

ωn ∈
{
ωn�

= 1 − � + (2n� − 1)�

N�

, n� = 1,2, . . . ,N�

}
,

θn ∈
{
θn�

= 1 − � + (2n� − 1)�

N�

, n� = 1,2, . . . ,N�

}
.

(8)

2. Testing

For testing, we apply the optimal control u∗ obtained in
the training step to additional samples randomly selected
from the inhomogeneous quantum ensemble and evaluate the
control performance of each sample in terms of the fidelity
F (|ψ(T )〉,|ψtarget〉) between the final state achieved by each
sample |ψ(T )〉 and the target state |ψtarget〉. If both the average
value and the minimum value of the fidelity F (|ψ(T )〉,|ψtarget〉)
for all the tested samples are satisfactory, we accept the
designed control law and end the control design process.
Otherwise, we return to the training step and generate another
optimized control strategy (e.g., restarting the training step
with a new initial control strategy or a new set of samples
guided by the performance of the tested members).

III. CONTROL OF TWO-LEVEL INHOMOGENEOUS
QUANTUM ENSEMBLES

In this section, we apply SLC to two-level inhomogeneous
ensembles. Several groups of numerical experiments are given
to evaluate the performance of SLC.

A. Two-level inhomogeneous ensemble

Consider a quantum ensemble consisting of two-level quan-
tum systems (e.g., spins). The Pauli matrices σ = (σx,σy,σz)
are denoted as follows:

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (9)

We let the free Hamiltonian be H0 = 1
2σz and its two

eigenstates are denoted as |0〉 and |1〉. The control Hamiltonian
is Hu = 1

2u1(t)σx + 1
2u2(t)σy . Then we have

|ψ̇(t)〉 = −iH (t)|ψ(t)〉, (10)

where H (t) = H0 + Hu(t) = 1
2σz + 1

2u1(t)σx + 1
2u2(t)σy .

For the inhomogeneous ensemble, the Hamiltonian of each
member is described as

Hω,θ (t) = ωH0 + θHu(t). (11)

The state of the quantum system can be represented as |ψ(t)〉 =
c0(t)|0〉 + c1(t)|1〉. Denote C(t) = (c0(t),c1(t))T , where c0(t)
and c1(t) are complex amplitudes. We have

iĊ(t) = [H0 + Hu(t)]C(t). (12)

To construct a generalized system for the training step, we
select N members (n = 1,2, . . . ,N) from the ensemble, and
each satisfies(

ċ0,n(t)

ċ1,n(t)

)
=

(
0.5ωni θnf (u)

−θnf
∗(u) −0.5ωni

) (
c0,n(t)

c1,n(t)

)
, (13)

where f (u) = u2(t) − 0.5iu1(t), ωn ∈ [1 − �,1 + �], and
θn ∈ [1 − �,1 + �] have uniform distributions. The objective
is to find a control u(t) = {um(t),m = 1,2} to drive all the
inhomogeneous members from an initial state |ψ0〉 = |0〉, i.e.,
C0 = (1,0)T , to the target state |ψtarget〉 = |1〉, i.e., Ctarget =
(0,1)T . We construct a generalized system for the training
samples using Eq. (6) with the performance function JN (u) in
Eq. (7).

The task is to find the control u(t) to maximize the
performance function JN (u). For a given small threshold
ε > 0, if JN (u∗) > 1 − ε, then we have found a suitable
candidate optimal control for the generalized system. We
employ Algorithm 1 to find the optimal control u∗(t) =
{u∗

m(t),m = 1,2} for this generalized system. This optimal
control is then applied to other randomly selected members
to test its performance.

B. Numerical results

Several groups of numerical experiments are carried out
on an inhomogeneous spin ensemble to demonstrate SLC.
The parameter settings are as follows: � = 0.2 and � = 0.2;
the target time is T = 2, and the total time interval [0,T ] is
divided equally into Q = 200 time steps, 
t = T/Q = 0.01;
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FIG. 2. (Color online) The learned optimal control strategy that
maximizes JN (u) for the two-level ensemble with two controls.

the learning rate is set as ηk = 0.2; the control strategy is
initialized as uk=0(t) = {u0

1(t) = sin t,u0
2(t) = sin t}.

1. Performance with two controls

To construct a generalized system for the inhomogeneous
ensemble with parameter dispersion on both ω and θ , we
choose N� = 5 and N� = 5 such that N = N�N� = 25
samples are employed in the learning phase. Using Eq. (8),
we have

ωn = 1 − 0.2 + 0.2[2fix(n/5) − 1]

5
,

(14)

θn = 1 − 0.2 + 0.2[2(mod(n,5) − 1]

5
,

where n = 1,2, . . . ,25, fix(x) = max{z ∈ Z|z � x},
mod(n,5) = n − 5z (z ∈ Z and n

5 − 1 < z � n
5 ), and Z

is the set of integers. We set ε = 5 × 10−5. The algorithm
converges after around 380 iterations. The learned optimal
control strategy is given as in Fig. 2, and the testing
performance in Fig. 3 shows that the fidelities for the state
transition lie in the interval of [0.9985,1] with mean value
of 0.9997. For comparison, if we use only one sample
(ω = 1,θ = 1) for training to obtain a control law, the testing
performance gives fidelities that lie in [0.9436,1] with a mean
value of 0.9808.
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FIG. 3. (Color online) The testing performance (with respect to
fidelity) of the learned optimal control strategy for the two-level
ensemble with two controls (where ω and θ are randomly chosen
with 300 pairs of values).

The numerical results show that SLC is effective for
control design of the two-level inhomogeneous ensemble. The
fidelities of the controlled state for the randomly selected
members approach very near to 1 even with ±20% parameter
dispersion over a uniform distribution.

Using the optimal control strategy in Fig. 2, we randomly
select several thousand members and present the state tran-
sition trajectories of the two-level ensemble on the Bloch
sphere. For a two-level system on the Bloch sphere, its
state can be represented using a vector r = (x,y,z) where
x = tr{|ψ〉〈ψ |σx}, y = tr{|ψ〉〈ψ |σy}, z = tr{|ψ〉〈ψ |σz}. As
shown in Fig. 4, although the trajectories of these randomly
selected members considerably differ from each other due to
the inhomogeneity of the ensemble, they are all successfully
driven from the initial state |ψ0〉 = |0〉, i.e., r0 = (0,0,1), to the
same target state |ψtarget〉 = |1〉, i.e., rtarget = (0,0, − 1), with
the high fidelity indicated above.

2. Performance with u1(t) = u2(t)

Here we consider the restriction of operating with only
one control by setting u(t) = u1(t) = u2(t) with the evolution
equation of the ensemble being(

ċ0(t)
ċ1(t)

)
=

(
0.5ωi θh(u)

−θh∗(u) −0.5ωi

)(
c0(t)
c1(t)

)
, (15)

where h(u) = u(t) − 0.5iu(t). We apply the same SLC design
method and parameter settings as in Sec. III.B.1 except that
ε = 2.0 × 10−2. After around 500 iterations, the algorithm
finds an optimal control field. The optimal control strategy is
shown in Fig. 5, and Fig. 6 gives the testing performance of
300 randomly selected testing members, whose fidelities lie
in [0.9727,1] with a mean value of 0.9939. Upon comparison
with the case in Sec. III.B.1, the restricted control has very
good but reduced fidelity.

IV. CONTROL OF THREE-LEVEL INHOMOGENEOUS
QUANTUM ENSEMBLES

In this section, we further demonstrate SLC with a �-
type three-level inhomogeneous ensemble. We conclude this
section with a summary of the state transition control fidelities
for all the cases in the paper.

A. Control of a �-type atomic ensemble

We consider a �-type atomic ensemble and demonstrate the
SLC design process. For a �-type atomic system [43,44], we
assume that the initial state is |ψ(t)〉 = c1(t)|1〉 + c2(t)|2〉 +
c3(t)|3〉 and denote C(t) = (c1(t),c2(t),c3(t)) where ci(t) are
complex amplitudes. We have

iĊ(t) = [H0 + Hu(t)]C(t). (16)

We take H0 = diag(1.5,1,0) and choose H1 and H2 in the
control Hamiltonian of Eq. (3) as follows [43]:

H1 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , H2 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ . (17)
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FIG. 4. (Color online) Demonstration of the state transition trajectories of the two-level ensemble with inhomogeneities due to both ω and
θ using the learned optimal control strategy as shown in Fig. 2 for the state transition problem of guiding the initial state r0 = (0,0,1) (i.e.,
|ψ0〉 = |0〉) to the target state rtarget = (0,0, − 1) (i.e., |ψtarget〉 = |1〉).

To construct a generalized system for the SLC training step,
we choose N samples from the ensemble to form⎛

⎜⎝
ċ1,n(t)

ċ2,n(t)

ċ3,n(t)

⎞
⎟⎠ =

⎛
⎜⎝

−1.5ωni 0 −iθnu2(t)

0 −ωni −iθnu1(t)

−iθnu2(t) −iθnu1(t) 0

⎞
⎟⎠

×

⎛
⎜⎝

c1,n(t)

c2,n(t)

c3,n(t)

⎞
⎟⎠ , (18)

where ωn ∈ [1 − �,1 + �] and θn ∈ [1 − �,1 + �] have
uniform distributions. The objective is to find a control strategy
u(t) = {um(t),m = 1,2} to drive all the inhomogeneous mem-
bers from |ψ0〉 = 1√

3
(|1〉 + |2〉 + |3〉), i.e., C0 = ( 1√

3
, 1√

3
, 1√

3
),

to |ψtarget〉 = |3〉, i.e., Ctarget = (0,0,1). We aim to maximize
the performance function JN (u) in Eq. (7) and employ
Algorithm 1 to find the optimal control u∗(t) = {u∗

m(t),m =
1,2} for this generalized system. Then the optimal control
strategy is applied to other randomly selected members to test
their performance.

B. Numerical example

We choose the parameter settings as follows: the control
strategy is initialized with uk=0(t) = {u0

m(t) = sin t,m = 1,2};
ε = 10−4; the other parameter settings are the same as those of
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(t

)
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FIG. 5. (Color online) The learned optimal control that maxi-
mizes JN (u) for the two-level ensemble with u1(t) = u2(t) = u(t).

the numerical experiments for the spin ensemble in Sec. III. To
construct a generalized system for the training step, we have
the training samples selected as follows:

ωn = 1 − 0.2 + 0.2[2fix(n/5) − 1]

5
,

(19)

θn = 1 − 0.2 + 0.2[2mod(n,5) − 1]

5
,

where n = 1,2, . . . ,25. The algorithm converges after around
2000 iterations. The learned optimal control strategy is given
in Fig. 7, and the testing results are given in Fig. 8, which
shows that the fidelities for all the 300 testing members lie
in the interval of [0.9881,1] with the mean value of 0.9972.
For comparison, if we use only one sample (ω = 1,θ = 1)
for training to obtain a control, the testing performance gives
fidelities that lie in [0.8279,1] with the mean value of 0.9449.

As a summary of the overall numerical tests of SLC, Fig. 9
shows the control performance (including some cases that have
been explicitly shown above) for the aforementioned spin and
�-type atomic ensembles. For the two-level inhomogeneous
ensemble with parameter dispersion only in ω, the fidelities of
all the 300 testing members are excellent and lie in the interval
of [1 − 10−6,1]. For the case with parameter dispersion only in
θ , the fidelities lie in the interval of [0.9987,1] with the mean
value 0.9994. If only u1(t) = u2(t) is allowed, the control
performance is not as good as that with two controls u1(t) and
u2(t). The collective numerical results further demonstrate the
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FIG. 6. (Color online) The testing performance (with respect to
fidelity) of the learned optimal control for the two-level ensemble
with u1(t) = u2(t) = u(t) (where ω and θ are randomly chosen with
300 pairs of values).
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FIG. 7. (Color online) The learned optimal control strategy to
maximize JN (u) for the �-type atomic ensemble.

theoretical predictions that ensemble control should be feasible
[32–34].

V. DISCUSSIONS AND CONCLUSIONS

In this paper, we presented a systematic methodology
for control design of inhomogeneous quantum ensembles.
The proposed SLC method includes the steps of (i) training
and (ii) testing. In the training step, the control is learned
for a generalized system constructed from samples using a
gradient flow based learning and optimization algorithm. In
the process of testing, the control obtained in the first step
is evaluated using additional randomly selected members.
In this paper, we employed a general gradient flow based
algorithm to find the control field. It is also straightforward
to extend the proposed approach with the use of other
specific gradient-type algorithms (e.g., GRAPE [29]). However,
stochastic search algorithms such as genetic algorithms and
differential evolution algorithms are not good candidates for
this task under consideration since too many parameters
need to be optimized and much more computation resources
would be consumed using this class of algorithms. For the
inhomogeneous parameters, we considered the case with a
uniform distribution. Our method also works well for other
distributions (e.g., Gaussian distribution). However, numerical
results showed that even inhomogeneous parameters have
a continuous Gaussian distribution; sampling members ac-
cording to a relevant uniform distribution can achieve better
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FIG. 8. (Color online) The testing performance (with respect to
fidelity) of the learned optimal control strategy for the �-type atomic
ensemble (where ω and θ are randomly chosen with 300 pairs of
values).

FIG. 9. (Color online) Control performance with respect to fi-
delity for the two-level and three-level inhomogeneous ensembles.

performance than sampling them according to this continuous
Gaussian distribution. The reason could be that these members
from a uniform distribution contain more information for
learning the control field than those from the Gaussian dis-
tribution. Moreover, the proposed method can also be applied
to multilevel systems with several inhomogeneous parameters.
However, too many inhomogeneous parameters would make
the algorithm difficult to converge. In the laboratory, one
approach would be to first learn a control field offline using
the SLC method and then generate and apply the control field
to an inhomogeneous quantum ensemble.
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APPENDIX: GRADIENT FLOW METHODS FOR
QUANTUM ENSEMBLE CONTROL

To get an optimal control strategy u∗ = {u∗
m(t),(t ∈

[0,T ]),m = 1,2, . . . ,M} for the generalized system Eq. (6),
one technique is to follow the gradient of JN (u) in the steepest
ascent direction.

In practical applications, we use the following discrete
iteration rule to update the control field (for details relating

Algorithm 1 Gradient flow based iterative learning

1: Set the iteration index k = 0
2: Choose a set of arbitrary controls

uk=0(t) = {u0
m(t), m = 1,2, . . . ,M},t ∈ [0,T ]

3: repeat steps 4-6 (corresponding to one iteration)
4: Compute the propagator Uωn,θn

(t) with uk(t) for all the
training sample members (n = 1,2, . . . ,N )

5: Update each control uk+1
m (t) = uk

m(t) + ηkδk
m(t) with

δk
m(t) = 2

N

∑N

n=1 	(〈ψωn,θn
(T )|ψtarget〉〈ψtarget|Am(t)|ψ0〉) where

Am(t) = Uωn,θn
(T )U †

ωn,θn
(t)θnHmUωn,θn

(t) and m = 1,2, . . . ,M

6: k = k + 1
7: until the learning process ends (i.e., the algorithm converges)
8: The optimal control strategy u∗ = {u∗

m} = {uk
m}, m = 1,2, . . . ,M
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to gradient algorithms, see, e.g., [5,28,39,41,42]):

uk+1(t) = uk(t) + ηk∇JN (uk), (A1)

where ηk is the updating step size (learning rate) for the kth
iteration. By Eq. (7), we also obtain that

∇JN (u) = 1

N

N∑
n=1

∇Jωn,θn
(u). (A2)

In addition, we have

∇Jωn,θn
(u) = 2	(〈ψωn,θn

(T )|ψtarget〉〈ψtarget|A1(t)|ψ0〉), (A3)

where A1(t) = Uωn,θn
(T )U †

ωn,θn
(t)θnH1Uωn,θn

(t), 	(·) denotes
the imaginary part of a complex number, and the propagator
Uωn,θn

(t) satisfies

d

dt
Uωn,θn

(t) = −iHωn,θn
(t)Uωn,θn

(t), U (0) = Id.

The gradient flow method can be generalized to the case with
M > 1 as shown in Algorithm 1.

[1] D. Dong and I. R. Petersen, IET Control Theory Appl. 4, 2651
(2010).

[2] C. Altafini and F. Ticozzi, IEEE Trans. Automat. Control 57,
1898 (2012).

[3] H. M. Wiseman and G. J. Milburn, Quantum Measurement and
Control (Cambridge University Press, Cambridge, 2010).

[4] B. Qi, Z. B. Hou, L. Li, D. Dong, G. Y. Xiang, and G. C. Guo,
Sci. Rep. 3, 3496 (2013).

[5] C. Brif, R. Chakrabarti, and H. Rabitz, New J. Phys. 12, 075008
(2010).

[6] M. Mirrahimi, P. Rouchon, and G. Turinici, Automatica 41, 1987
(2005).

[7] X. Wang and S. G. Schirmer, IEEE Trans. Automat. Control 55,
2259 (2010).

[8] H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa,
Science 288, 824 (2000).

[9] N. Khaneja, R. Brockett, and S. J. Glaser, Phys. Rev. A 63,
032308 (2001).

[10] H. M. Wiseman and G. J. Milburn, Phys. Rev. Lett. 70, 548
(1993).

[11] R. van Handel, J. K. Stockton, and H. Mabuchi, IEEE Trans.
Automat. Control 50, 768 (2005).

[12] B. Qi and L. Guo, Syst. Control Lett. 59, 333 (2010).
[13] J. Zhang, L. Greenman, X. Deng, and K. B. Whaley,

arXiv:1210.7972 [quant-ph].
[14] C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S.

Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J.-M.
Raimond, and S. Haroche, Nature (London) 477, 73 (2011).

[15] M. R. James, H. I. Nurdin, and I. R. Petersen, IEEE Trans.
Automat. Control 53, 1787 (2008).

[16] D. Dong and I. R. Petersen, New J. Phys. 11, 105033 (2009).
[17] D. Dong and I. R. Petersen, Automatica 48, 725 (2012).
[18] D. Dong, C. Zhang, H. Rabitz, A. Pechen, and T. J. Tarn, J.

Chem. Phys. 129, 154103 (2008).
[19] R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 (1992).
[20] D. G. Cory, A. F. Fahmy, and T. F. Havel, Proc. Natl. Acad. Sci.

USA 94, 1634 (1997).
[21] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature

(London) 414, 413 (2001).

[22] G. Bensky, D. Petrosyan, J. Majer, J. Schmiedmayer, and
G. Kurizki, Phys. Rev. A 86, 012310 (2012).

[23] J. S. Li, J. Ruths, T. Y. Yu, H. Arthanari, and G. Wagner, Proc.
Natl. Acad. Sci. USA 108, 1879 (2011).

[24] S. J. Glaser, T. Schulte-Herbrüggen, M. Sieveking, O.
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