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Transport theory for low-energy positron thermalization and annihilation in helium
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A transport theory that explicitly incorporates loss of flux due to annihilating collisions is developed and
applied to low-energy positron diffusion and annihilation. The use of more complete momentum transfer and
annihilation cross sections for helium has resulted in improved descriptions of the time dependence of 〈Zeff〉 for
positrons injected into gaseous helium. Similarly, the variation of 〈Zeff〉 versus E/n0 for experiments where the
annihilation region is immersed in an electric field is in closer agreement with experimental data. Inclusion of
loss of flux due to annihilation was found to have a very small effect on the derived 〈Zeff (t)〉 for helium.
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I. INTRODUCTION

In the classic positron gas annihilation experiment [1–3],
positrons are emitted into a gas, undergo thousands of inelastic
collisions while thermalizing, and eventually a mixture of low-
energy positrons and ortho-positronium is left in the gas. The
free positrons and ortho-positronium then experience elastic
collisions until they are in thermal equilibrium with the gas.
When positrons collide with atoms, there is always the pos-
sibility of in-flight annihilation of the positron with the atomic
electrons and experiments typically result in the determination
of a number of annihilation parameters. One parameter is the
positronium fraction, i.e., the number of positrons surviving
in the form of free positronium. Another parameter is the
annihilation parameter, Zeff(v), which can be defined in terms
of the spin-averaged annihilation cross section, σann(v), by
the identity [4],

Zeff(v) = v σann(v)

πcr2
0

, (1)

where r0 is the classical electron radius, v is the positron
velocity, and c is the speed of light. The annihilation parameter
is determined by measuring the intensity of 2γ annihilation
as a function of time. Finally, there is the pick-off annihilation
rate which is a consequence of annihilating collisions between
the positron in long-lived triplet positronium and the electrons
in the target atom.

In addition, the time dependence of 〈Zeff〉 during thermal-
ization contains information about the momentum transfer
cross section, the initial energy distribution of the positrons,
and the energy dependence of 〈Zeff〉. The time-dependent
behavior of 〈Zeff〉 for positrons annihilating in the rare gases
has been extracted from the annihilation signal [2,5–8].
Experimental information about the energy dependence of
the positron-atom momentum transfer and annihilation cross
sections can also be obtained by performing experiments in a
static electric field [9]. The presence of the electric field leads
to the drifting and diffusing positrons having a different energy
distribution at equilibrium.

The present work solves the Boltzmann equation to de-
termine the behavior of 〈Zeff(t)〉 for positrons thermalizing
in helium. The simulations are restricted to positrons with

an energy below the positronium formation threshold where
the only possible processes are elastic scattering and positron
annihilation with the atomic electrons. The present solutions
gave a fit to the experimental data [2,7] that was significantly
improved over previous simulations [7,10]. The variation of
the equilibrium 〈Zeff〉 versus electric field strength has also
been determined and again the agreement with experimental
data was a significant improvement over previous calcula-
tions [9,10].

II. TRANSPORT MODEL

In positron annihilation studies, positrons are released
from a source with an unknown distribution of energies
well above thermal energies. The positrons then thermalize
through energy and momentum exchanging collisions with the
background gas, before eventually annihilating. The process is
necessarily nonequilibrium and the positron velocity distribu-
tion is non-Maxwellian during the thermalization process. For
positron annihilation studies conducted in the presence of an
applied electric field, the field drives the electrons out of ther-
mal equilibrium, and the steady-state distribution is no longer
Maxwellian in nature. The connection between microscopic
scattering processes and macroscopic properties including the
measured annihilation rates is made under nonequilibrium
conditions through Boltzmann’s equation [11]. Under spatially
homogeneous conditions, the motion of a dilute ensemble of
positrons (charge e) moving through a dense background gas of
neutral atoms (density n0) in the presence of an applied electric
field E can be described by the linear Boltzmann equation,

∂f̃

∂t
+ eE

m
· ∂f̃

∂v
= −J (f̃ ,f0), (2)

where f̃ (v,t) is the single-particle positron velocity distri-
bution function, which is a function of velocity v and time
t . The collision operator J (f̃ ,f0) takes into account binary
interactions between the positrons of mass m and the atoms of
mass m0, where f0(v0) denotes the background gas velocity
(v0) distribution function, which is assumed to be Maxwellian
at the gas temperature T0. For the regime of interest, the inter-
action processes determining the macroscopic properties are
elastic scattering and annihilation, characterized, respectively,

1050-2947/2014/89(2)/022712(9) 022712-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.022712


BOYLE, CASEY, WHITE, AND MITROY PHYSICAL REVIEW A 89, 022712 (2014)

by a differential elastic cross section σ (vcm,χ ) (where vcm and
χ are the speed and scattering angle in the center-of-mass
frame), and the annihilation cross section σann(vcm). The
collision operator is then the sum of the respective operators
for each process: J (f̃ ,f0) = Jelast(f̃ ,f0) + Jann(f̃ ,f0). Inte-
grating Eq. (2) over velocity space results in the normalization
condition:

dN

dt
= −〈λ(t)〉N, (3)

where N (t) = ∫
f̃ (v,t)dv is the total number of positrons at

time t , and 〈λ(t)〉 is the average annihilation rate:

〈λ(t)〉 = 1

N (t)

∫
Jann(f̃ (v,t),f0)dv

= 1

N (t)

∫ {∫
vcmσann(vcm)f0(v0)dv0

}
f̃ (v,t)dv. (4)

Equations (2) and (4) constitute a system of nonlinear equa-
tions that must be solved for f̃ (v,t). Normalizing the velocity
distribution function such that f (v,t) = N (t)−1f̃ (v,t), results
in the kinetic equation,

∂f

∂t
+ 〈λ〉f + eE

m
· ∂f

∂v
= −J (f,f0), (5)

where

〈λ(t)〉 =
∫ {∫

vcmσann(vcm)f0(v0)dv0

}
f (v,t)dv. (6)

Equations (5) and (6) constitute a system of nonlinear
equations that must be solved for f (v,t).

Solution of the hierarchy of kinetic equations (5) requires
decomposition of f (v) in velocity space. The first step in
any analysis is typically the representation of the distribution
function in terms of the directions of velocity space through
an expansion in spherical harmonics [12]:

f (v,t) =
∞∑
l=0

l∑
m=−l

f (l)
m (v,t)Y [l]

m (v̂), (7)

where Y [l]
m (v̂) are spherical harmonics and v̂ denotes the angles

of v. While common practice is to set the upper bound of
the l summation to 1 (i.e., the two-term approximation) and
consider only m = 0 (i.e., a Legendre polynomial expansion),
we do not make any such restrictive assumptions in this theory.
In best practice, the integer lmax is successively incremented
until a prescribed accuracy criterion is met, as considered
below. This is a multiterm solution of Boltzmann’s equation.
Combining Eqs. (5) and (7) leads to the following system of
coupled partial integro-differential equations for f (l)

m :

∑
l′m′

〈lm| ∂

∂t
+ 〈λ〉 + eE

m
· ∂

∂c
+ J |l′m′〉 f

(l′)
m′ = 0. (8)

Expressions for the matrix elements of the streaming op-
erators are given in [12,13]. The collision matrices, e.g.,
〈lm |J | l′m′〉 = [J l

elast + J l
ann]δll′δmm′ are all diagonal in l and

m, since the collision operators are all scalars.
For positrons in atomic gases, we take advantage of the

small mass ratio and utilize the Davydov operator to describe

elastic collisions:

J 0
elastf

(0)
0 = m

m0v2

∂

∂v

{
vνm(v)

[
vf

(0)
0 + kT0

m

∂

∂v
f

(0)
0

]}
, (9)

J l
elastf

(l)
m = νl(v)f (l)

m δll′δmm′ for l � 1, (10)

and

νl(v) = n0v2π

∫ π

0
σ (vcm,χ ) [1 − Pl(cos χ )] sin χdχ. (11)

We note for l = 1, ν1 = νm = n0vσMT is the momentum
transfer collision frequency for elastic collisions. In this low
mass-ratio limit, the annihilation collision operator takes the
form,

J l
annf

(l)
m = νann(v)f (l)

m δll′δmm′ for l � 0, (12)

where νann = n0vσann(v) is the annihilation collision fre-
quency, and hence,

〈λ(t)〉 = 4π

∫
νann(v)f (0)

0 (v,t)v2dv. (13)

The annihilation rate can be expressed in terms of the Zeff(v)
parameter via

Zeff(v) = 1

πr2
0 cn0

νann(v). (14)

Likewise the average of Zeff(v) is related to the average
annihilation rate via

〈Zeff(t)〉 = 1

πr2
0 cn0

〈λ(t)〉. (15)

The value of 〈Zeff(t)〉 when thermal equilibrium is reached
for a given gas temperature is denoted as 〈Zeff〉T . Another
macroscopic variable of interest in the current investigation is
the mean energy of the positrons:

〈ε(t)〉 = 4π

∫
1

2
mv2f

(0)
0 (v,t)v2dv. (16)

Details of the numerical solution of the system of equation
can be found in [14]. First, it must be emphasized that we do not
assume that annihilation can be treated perturbatively [7] (i.e.,
setting Jann ≈ 0). The explicit modification of the distribution
function due to the annihilation processes is strictly accounted
for in a self-consistent manner. Secondly, this is a true
multiterm theory, with none of the limitations of the two-term
approximation used in previous treatments [7,10]. There are
no a priori assumptions on the quasi-isotropy of the velocity
distribution function. Further, higher-order collision frequen-
cies of Eq. (11) including further angular dependence (i.e.,
beyond the momentum transfer cross sections) are accurately
included in this multiterm theory.

III. COLLISION MODEL

The collision model is based upon an earlier semiempirical
model of positron scattering and annihilation [15]. In this
model, the interaction between the positron and the atoms
was written as the sum of two terms. The first term is the
repulsive direct interaction as computed from the Hartree-Fock
wave function of the target atom. The second term is a
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semiempirical polarization potential. In the earlier work [15],
a single polarization potential was used for all partial waves.
In the present work, the polarization potential depends on the
orbital angular momentum L of the colliding positron. The
effective Hamiltonian (in atomic units) for the positron with
coordinate r0 moving in the field of the atom is

H = − 1
2∇2

0 + Vdir(r0) + V L
pol(r0). (17)

The polarization potential is given the form,

V L
pol(r0) = −αd

[
1 − exp

(−r6
0

/
ρ6

L

)]
2r4

0

, (18)

where αd is the static dipole polarizability. The adjustable
parameter ρL is fixed by reference to some external factor,
e.g., the value of the scattering length as deduced from a high
precision ab initio calculation. All the complicated many-body
interactions between the positron and atomic electrons can
be absorbed into the polarization potential. There have been
many investigations of positron-atom interactions in the past
that have used conceptually similar Hamiltonians [16–23].

The underlying philosophy of the collision model is
semiempirical; no attempt at determining the specific form
of the polarization potential by ab initio calculation is made.
Phase shifts and cross sections produced by this approach have
been shown to reproduce ab initio calculations over an energy
range up to 10 eV provided the adjustable parameter in the
polarization potential, namely ρL is tuned to reproduce the ab
initio phase shift at some energy [15]. The total elastic σT and
momentum transfer σMT cross sections are calculated using
formulas from [24], namely,

σT = 4π

v2

∑

=0

(2
 + 1) sin2(δ
), (19)

σMT = 4π

v2

∑

=0

(
 + 1) sin2(δ
+1 − δ
), (20)

where δ
 are the phase shifts.
Besides reproducing the low-energy elastic cross section,

this model potential approach also does a reasonable job of
reproducing Zeff(v). The annihilation parameter is computed
from the scattering wave function using [4,25,26]

Zeff(v) = Ne

∫
d3τ |�(r1, . . . ,rN )�(v,rN )|2 , (21)

where �(r1, . . . ,rN ) is the antisymmetrized wave function of
the target atom, �(v,rN ) is the positron scattering function,
and d3τ represents an integration over all electron co-
ordinates. Equation (21) is not completely general as the
total system wave function is assumed to have the product
form �(r1, . . . ,rN )�(v,r0). The expression for Zeff(v) given
by Eq. (21) is spin averaged. In the plane wave Born
approximation, where the positron wave function is written
as a plane wave, the annihilation parameter is equal to the
number of atomic electrons, i.e., Zeff(v) = Ne.

The Zeff(v) predicted by Eq. (21) is likely to be an
underestimate. The attractive nature of the electron-positron
interaction leads to strong electron-positron correlations that
increase the electron density at the position of the positron,
and consequently enhances the annihilation rate [27–30].

Therefore, an L-dependent enhancement factor GL is used
to rescale the calculated Zeff(v) for a given partial wave by
a multiplicative factor GL, i.e., values for ZG

eff(v) would be
computed by

ZG
eff(v) =

∑
L

ZG
L,eff(v) =

∑
L

GLZL,eff(v), (22)

where ZL,eff(v) is the partial annihilation rate for a positron
with angular momentum L scattering from the model potential.
The values of GL are fixed by reference to a high-quality
ab initio calculation or to experimental data. This work
is concerned with low-energy scattering and under these
circumstances the relative collision momentum distribution
of the annihilating electron-positron pair is not expected
to change much as the positron energy changes slightly.
This means that the errors in using an energy-independent
enhancement factor should not be too large [31,32]. There have
been a number of investigations that have shown that a single
multiplicative factor (for each L) can adequately represent
the magnitude and energy dependence over the energy range
below the first excitation threshold [15,33–36].

A. Defining ρL and GL for He

The ability of the model potential calculations to realisti-
cally describe the low-energy elastic and annihilation cross
sections depends crucially upon the choice of ρL and GL. A
number of sources have been used to provide the reference
data which was used to fix ρL and GL which are tabulated in
Table I. The cross section computed with the values in Table I
is termed the model potential (MP) cross-section set.

The value of ρ0 was almost the same used in [15]. This was
set by the requirement that the phase shift at v = 0.2 a−1

0 was
the same as that from a Kohn variational calculation from the
University College London (UCL) group [38]. We have also
used the confined variational method (CVM) [42] to compute
the s-wave phase shift at v = 0.2 a−1

0 . The CVM phase shift
of 0.0406 rad is compatible with the UCL phase shift of
0.041(1) rad [38].

The value of G0 was set using Zeff(v = 0) as calculated with
the Kohn variational method [39] using a basis of explicitly
correlated Gaussians [43]. This calculation was performed at
Charles Darwin University (CDU). The annihilation parameter
converges slowly as the basis set increases and one typically
finds that Zeff(v) increases as the dimension of the basis in-
creases. The CDU value of Zeff(v = 0) is about 2% larger than
the Kohn variational value of 3.93 from the UCL group [40].
The CDU value is preferred for two reasons. First, there were
absolutely no constraints imposed upon the representation of
the helium ground-state wave function. Such constraints are
a potential issue with the Kohn calculations from the UCL
group [44]. Second, the UCL Zeff(v = 0) value comes from
an analytic representation of the low-energy Zeff(v) which has
an incorrect functional form. The UCL fitting formula contains
a term linear in v, but this is not compatible with the effective
range expansion for the low-energy Zeff(v) [45]. Moreover,
the zero-energy Zeff of 3.99 implies that the room temperature
value should be 3.953 and this is compatible with the most
precise experimental value of 3.945(20) [2].
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TABLE I. The parameters αd , ρL, and GL for helium in the model potential. The particular numerical criteria (and their source) used to fix
ρL and GL are specified.

Atom αd (a3
0) L ρL (a0) Source GL Source

He 1.383 [37] 0 1.510 δ0(v = 0.2) = 0.041 [38] 2.979 Zeff (v = 0.0) = 3.99 [39]
1 1.440 δ1(v = 0.3) = 0.019 [38] 3.96 Zeff (v = 0.4) = 0.497 [40]
2 1.00 δ2(v = 0.8) = 0.025 [41] 4.65 He+ (G2 − 1)/(G1 − 1) = 1.233 [36]

The value of ρ1 was set by reference to the L = 1 Kohn
variational phase shift at v = 0.3 a−1

0 [38]. The value of G1 was
set by digitizing the p-wave Zeff(v) taken from Fig. 1 of [38].
The G1 value of 3.96 is 30% larger than G0. The tendency
for the p-wave enhancement factor to be significantly larger
than the s-wave enhancement factor has been noticed for other
systems [34–36,46].

The value of ρ2 was tuned to the L = 2 phase shift from
a convergent close coupling (CCC) calculation [41]. Since
there have been no values of Z2,eff(v) published, recourse
is made to recent calculations of the He+ ion [35,36]. The
d-wave enhancement factor is 20% larger than the p-wave
enhancement factor.

The elastic cross section is depicted in Fig. 1 and compared
with other calculations and experiment. Cross sections from
a polarized orbital (PO) calculation [26,49] are shown in
addition to the calculations mentioned previously. The MP
cross section lies very close to the most recent Kohn variational
elastic cross section of the UCL group [38]. This was expected
since the UCL cross section was used to set the cutoff
parameters. The PO calculation gives a scattering length
which is larger in magnitude and with a Ramsauer minimum
occurring at a higher velocity. The CCC calculation [41]
has a scattering length that is slightly smaller in magnitude
resulting in a smaller cross section at energies below the
Ramsauer minimum. There are two sets of experimental data
that are included, those by the Australian National University
(ANU) [50] and Kyoto [51]. Cross sections from some older

0.0 0.2 0.4 0.6 0.8 1.0
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ANU 2008

FIG. 1. (Color online) The elastic cross section, σT(v) (in units
of πa2

0) for positron scattering from helium.

experiments [52,53] are not included to reduce clutter in the
figure.

The ANU and Kyoto group elastic cross sections do lie
closer to the CCC cross sections at the lowest energies. How-
ever, the cross sections based on Kohn variational calculations
should be preferred. The Kohn variational phase shifts have
been validated by new calculations based on the CVM [39,42]
which reproduce the experimental 〈Zeff〉. The impact of
systematic errors in the experiments can become more severe
at the lower energies.

Figure 2 plots the momentum transfer cross section as a
function of v for energies below the Ps-formation threshold.
It is compared with the Kohn variational momentum transfer
cross section from the UCL group [38] and the CCC momen-
tum transfer cross section of the Curtin group [41]. The MP
cross section lies very close to the momentum transfer cross
sections from the UCL and Curtin groups.

The annihilation parameter as a function of v is depicted in
Fig. 3. The original Zeff(v) of Campeanu and Humberston [7]
is characterized by the small size of Zeff(v) near v = 0.5 a−1

0 .
However, there are some obvious problems with the Campeanu
and Humberston Zeff . This curve shows a variation of Zeff(v)
near v = 0 that is linear in v. However, an application of
effective range theory to annihilating collisions has shown
that Zeff(v) ≈ Z0 + v2Z2 where Z0 and Z2 are constants [45].
Another limitation of this earlier calculation is the omission
of contributions from partial waves with L > 1. For these
reasons the Campeanu and Humberston Zeff(v) should be
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π
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FIG. 2. (Color online) The momentum transfer cross section
σMT(v) (in units of πa2

0) for positron scattering from helium.
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FIG. 3. (Color online) The annihilation parameter Zeff (v) for
positron scattering from helium. The 1977 Kohn variational Zeff (v)
was taken from Ref. [47] while the 1998 Kohn Zeff (v) was taken from
Ref. [48].

regarded as being superseded by the later Kohn variational
calculations [40,48].

The later variational calculation [48] did include contribu-
tions from the d wave, and the functional form of Zeff(v) near
v = 0 is more compatible with the expectations of effective
range theory. This later calculation had larger values of Zeff(v)
at the minimum despite not including contributions from
partial waves with L > 2. The MP calculations do include
terms from these higher partial waves, with the contribution to
Zeff at v = 1.1 a−1

0 being 0.101. This partly explains why the
MP Zeff(v) is larger than the Kohn variational Zeff(v).

IV. POSITRON DIFFUSION AND THERMALIZATION
CALCULATIONS

A. Positron annihilation in helium under field-free conditions

Initially we consider positron annihilation experiments
where positrons are released into a gas of known pressure
and the annihilation spectra is measured and interpreted in
terms of the transient 〈Zeff(t)〉 and the steady-state value 〈Zeff〉.
For helium, the experimental results of the UCL group for
〈Zeff(t)〉 are displayed in Fig. 4 as a function of the reduced
time n0t . Comparison with the calculated transient 〈Zeff(t)〉
provides some assessment of the positron-helium elastic and
annihilation cross sections.

There is limited information regarding the appropriate
initial conditions for the speed distribution of the positrons
at the start of the 〈Zeff(t)〉 measurements. Accordingly, there
is little point in experimenting with a variety of initial velocity
distributions. The initial distributions will have positrons with
energies up to the positronium formation threshold. This
choice was also made by Campeanu and Humberston [7].
With this choice, there are two obvious distribution functions
that can be adopted.

The first of these would be a constant speed distribution, i.e.,
f

(0)
0 (v) = C where C is a constant up to some cutoff velocity,

0.0 1.0 2.0 3.0

3.2

3.4

3.6

3.8

4.0

n0t (units of 103 ns amagat)

Z
ef

f(
t)

MP Const   ,  = 10.68 eV
MP Const   ,  = 0.90 eV
MP Const ε,  = 8.90 eV
CH 1977
UCL 1975

v
v

ε
ε
ε

FIG. 4. (Color online) Temporal variation of 〈Zeff (t)〉 for
positrons thermalizing in gaseous helium at a temperature of 293 K.
The simulations are compared with the UCL experimental data [2,7]
and the CH simulation [7]. The curve representing the UCL
experimental 〈Zeff (t)〉 was taken by digitizing Fig. 3 from [7] with
the constraint that the large t asymptote was 3.945 [2]. The different
initial distributions are characterized by varying distributions and
average energies; Const v is a constant distribution in v space below
the Ps threshold; Const ε is a constant distribution in energy space
below the Ps threshold. See text for details.

vmax = √
2εmax/m. The mean energy of this distribution func-

tion is given by the identity, 〈ε〉 = (3/5)(mv2
max/2). For helium,

with vmax = 1.1438 a.u., this leads to 〈ε〉 = 0.39249 a.u. =
10.68 eV.

The second initial distribution would be one that was
constant in energy space, i.e., f

(0)
0 (ε)ε1/2 = C where C is a

constant up to some cutoff velocity vmax. The mean energy
of this distribution would be 〈ε〉 = (1/2)(mv2

max/2). 〈ε〉 =
0.32707 a.u. = 8.90 eV.

In Figs. 4 and 5 the calculated temporal variation of 〈Zeff (t)〉
and the mean energy 〈ε(t)〉 are plotted. Besides the two distri-
butions specified above, we also show an additional f

(0)
0 (v) =

C distribution with vmax = 0.3320 a.u. (〈ε〉 = 0.90 eV). Also
shown in Fig. 4 is the UCL experimental 〈Zeff(t)〉 and the
previous simulation by Campeanu and Humberston (CH) [7].
The UCL 〈Zeff(t)〉 initially has 〈Zeff(t = 0)〉 higher than its
equilibrium value; it decreases as t increases, until it stabilizes
before increasing to its equilibrium (thermal) value. This
indicates that the initial velocity distribution should have a
mean energy that is larger than the energy where Zeff(v)
is smallest. The CH profile, which used a constant speed
initial distribution, shows these qualitative features. But, the
minimum 〈Zeff(t)〉 during thermalization is 0.3 smaller than
the minimum 〈Zeff(t)〉 seen for the UCL data and the value
after thermalization is achieved is too small by 2.3%.

The 〈Zeff(t)〉 computed with the MP cross sections are in
better agreement with the UCL 〈Zeff(t)〉. The UCL 〈Zeff(t)〉
plotted in Fig. 4 were taken from Fig. 3 of [7]. The digitized
values were normalized so that the large-t experimental value
of 〈Zeff(t)〉 was 3.945 [2]. The asymptotic value of the MP
〈Zeff(t)〉 was 3.953. The minimum value of 〈Zeff(t)〉 is much

022712-5



BOYLE, CASEY, WHITE, AND MITROY PHYSICAL REVIEW A 89, 022712 (2014)

0.0 1.0 2.0 3.0

10
−1

10
0

10
1

n0t (units of 103 ns amagat)

ε(
t)

(u
ni

ts
of

eV
)

MP Const   ,  = 10.68 eV
MP Const   ,  = 0.90 eV
MP Const ε,  = 8.90 eV

v
v

ε
ε
ε

FIG. 5. (Color online) Variation of 〈ε(t)〉 for positrons thermal-
izing in helium for different initial conditions. The temperature of the
helium gas was taken as 293 K.

closer to the minimum observed in the UCL experiment. This
is a consequence of the larger value of Zeff(v) at the minimum.
The thermalization times are also compatible with the ther-
malization time for the UCL experiment. The initial uniform
in speed distribution has a slightly longer thermalization time
than the initial uniform in energy distribution.

The very close agreement between the MP and experimental
〈Zeff〉 has potential implications for the interpretation of the
positron lifetime experiment. The conversion factor of πr2

0 c

in Eq. (15) comes from a treatment of the positron-electron
systems without any quantum electrodynamic (QED) effects
and the constant is related to the positronium annihilation rate
in the 1Se state. The inclusion of QED effects decreases the
positronium 2γ -annihilation rate by 0.59% [54]. Incorporation
of a QED correction into the 〈λ(t)〉 to 〈Zeff(t)〉 conversion
of Fig. 4 would lead to an increase in the experimental
〈Zeff(t)〉 curve by about 0.024. Even with this shift, the level
of agreement between the large-t MP and experimental 〈Zeff〉
would still be better than 1%.

Both the MP and CH simulations start with Zeff(v) closer
to 4.0 at the v = 0 threshold. However, the asymptotic value
for the CH simulation as t → ∞ is more than 0.1 smaller than
experiment and the MP asymptotic values. This is due to the
incorrect functional dependence of the CH Zeff(v) with v near
v = 0. As mentioned earlier, the linear dependence of the CH
Zeff(v) with v is incompatible with effective range theory [45].

Figure 4 also depicts 〈Zeff(t)〉 for a positron distribution
with the mean energy located at an energy lower than the
minimum in the Zeff(v) profile. The distribution does not show
any sign of the minimum in the 〈Zeff(t)〉 profiles seen in UCL
experiment and other simulations.

The transient profiles, including the depth of the minimum,
are determined by an interplay between the σMT(v), the
annihilation cross section and the initial average energy of
the positrons. An initial distribution with positron energies up
to the Ps-formation threshold is crucial to giving a correct
prediction of the overall thermalization time. While there

are small uncertainties in the MP σMT(v), these uncertainties
have minimal impacts on the thermalization time and can be
effectively neglected as a source of error. The size of the
dip in 〈Zeff(t)〉 is primarily driven by the dip in Zeff(v). The
Zeff(v = 0.42)/〈Zeff〉T ratio is 0.872 for the MP calculation
with the f

(0)
0 (v) = C distribution. The ratio of the dip in

〈Zeff(t)〉 measured with respect to the 〈Zeff〉T for the UCL data
is 0.90. The ratio can be expected to show some sensitivity to
the initial positron distribution used to start the simulations.

One characteristic of all the calculated 〈Zeff(t)〉 in Fig. 4 is
shape of the minima which are sharper than the experimental
curve. However, the experimental 〈Zeff(t)〉 was taken with a
finite time resolution of 1.92 ns, and subjected to smoothing.
A more precise investigation of the effects of time resolution
is not possible since Fig. 3 [7] is given in terms of reduced
time and the density of the gas was not specified.

B. Positron annihilation in helium in an electric field

The application of an electric field in thermalization
experiments drives the positrons out of thermal equilibrium
with the background helium gas. The steady state is achieved
when the energy gain of the positrons in the electric field is
balanced by the energy loss from collisions with helium atoms.
The velocity distribution of the positrons in the steady state will
no longer be a Maxwellian distribution. As the field strength is
increased in magnitude, the cross sections and Zeff are sampled
over an increasingly larger energy range. Furthermore, the
electric field modifies the steady-state velocity distribution
function, and hence 〈Zeff〉, and necessarily modifies the
transient response 〈Zeff(t)〉. The application of an electric
field to the thermalization experiments represents a test on
the validity of the cross section set at energies higher than
thermal energies.

The variation of the steady-state 〈Zeff〉 with an applied
electric field is displayed in Fig. 6. The MP cross-section
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FIG. 6. (Color online) Comparison of steady-state 〈Zeff (E/n0)〉
for thermalized positrons in helium at T0 = 293 K. The curve labeled
MP 2014 uses the MP cross-section set. Also shown are experiments
from the Toronto [5], UBC [55], and UCL [9] laboratories. Previous
transport calculations are also depicted [7,10]).
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FIG. 7. (Color online) The steady-state 〈Zeff〉 and mean energy
〈ε〉 for positrons thermalizing in helium at T0 = 293 K under the
action of a reduced electric field E/n0 using the new cross-section
set.

set is shown as are results from two previous transport
calculations [7,10]. Experimental data from the University of
Toronto [5], University of British Columbia (UBC) [55], and
UCL [9] are presented. All calculated and experimental data
show the same trend; there is a tendency for 〈Zeff(E/n0)〉 to
decrease as the reduced electric field E/n0 is increased. The
reason for the decrease is easily explained by reference to
the functional dependence of Zeff(v) and the mean energy
of the positron cloud at increasing E/n0. The increase in
mean positron energy with E/n0 is shown in Fig. 7. The
rapid increase in 〈ε〉 beginning at 2 V/(cm amagat) is a
consequence of the Ramsauer-Townsend minimum in the
momentum transfer cross section at around 1.0 eV. For values
of E/n0 > 5 V/(cm amagat), the mean energy ranges from 1 to
3 eV where Zeff(v) has a broad minimum with Zeff(v) ≈ 3.5.

There are effectively four sets of experimental data: the
data of the Toronto [5] and UBC [55] experiments, and the
two UCL data sets [9] which were taken at densities of 3.5 and
35.7 amagat. The present MP 〈Zeff(E/n0)〉 tends to lie higher
than three of the experimental data sets. However, two of these
data sets (Toronto and UBC) should be given less weight since
they do not reproduce the accepted value for the zero-field
〈Zeff〉T . The 3.5-amagat data from the UCL experiment have
large error bars since the free positron annihilation signal was
barely resolvable from the signal due to pick-off annihilation
and ortho-Ps decay [9,56]. The most reliable experimental data
set would be the 35.7-amagat set from the UCL experiment.

The two previous transport calculations of
〈Zeff(E/n0)〉 [7,10] both use roughly the same Zeff(v)
and both calculations give 〈Zeff(E/n0)〉 < 3.3 for E/n0 >

5 V/(cm amagat). The present MP calculations have
〈Zeff(E/n0)〉 ≈ 3.5 for E/n0 > 5 V/(cm amagat). The
present MP calculations have a larger 〈Zeff(E/n0)〉 simply
because the MP Zeff(v) is larger than the CH Zeff(v) for the
relevant values of v.

The most significant comparison in Fig. 6 is between the
present transport calculation with the MP cross sections and the
35.7-amagat data from the UCL experiment [9]. The UCL data

tend to be about 2%–3% smaller than the MP curve for E/n0 <

3 V/(cm amagat). However, this is a low-energy region where
the MP calculation should be most reliable. At these energies,
the functional dependence of Zeff(v) is largely governed by
effective range theory [45].

At higher electric fields, the MP 〈Zeff(E/n0)〉 are larger
than the Toronto and UBC data, although generally consistent
when the scatter in the data is considered. The MP 〈Zeff (E/n0)〉
are, however, slightly below the higher density experimental
data of the UCL group [9]. While the higher pressure UCL
results [9] are more accurate than their lower pressure results,
at 35.7 amagat, these results may include other multiple
scattering [57] and density effects [58] which have not been
included in our calculations. It is also worth noting that the
discrepancy is only 2%–3%.

C. On the accuracy of a perturbation treatment of
annihilation and the two-term approximation used

in positron transport theory

If the annihilation collision frequency νann(v), or
equivalently Zeff(v), increases (decreases) monotonically with
energy in the region sampled by the distribution function, there
exists a preferential loss of positrons within the higher (lower)
energy part of the distribution. The annihilation cross section is
usually many orders of magnitude smaller than the momentum
transfer cross section and so it is often assumed that annihi-
lation can be treated as a perturbation. The loss of flux due to
annihilation is typically omitted during the calculation of the
distribution function [i.e., neglect the explicit νann in Eq. (5)].

Calculations of positron transport in helium have also been
done with the flux loss due to annihilation included in the
calculation of the distribution function. At zero field, this
nonperturbative treatment will cause the distribution function
to deviate slightly from the expected Maxwellian distribution
(at the helium temperature) and therefore result in a small
change in the 〈Zeff〉T computed using Eqs. (13) and (15).
For helium, the differences between the actual temperature of
the thermalized distribution and gas temperature are less than
0.13%, resulting in a change to 〈Zeff〉T of 0.0015%.

The nonperturbative treatment can also be applied to treat
the steady-state diffusion of positrons in an electric field.
Figure 7 shows the thermalized 〈Zeff〉 and 〈ε〉 for positrons
diffusing in an electric field. The differences between the
perturbative and nonperturbative treatments are less than
4% for the mean energy and 0.14% for 〈Zeff〉 over the
range E/n0 ∈ [0,20] V/(cm amagat). These differences are
essentially not visible in Fig. 7.

The validity of the two-term approximation used in ear-
lier transport calculations [7,10] has been checked with an
investigation of the impact of the computational parameter
lmax in the spherical harmonic expansion in Eq. (7). This
parameter accounts for the anisotropic nature of the velocity
distribution function, and also enables greater account for the
anisotropy in the differential cross sections to be included.
The parameter lmax is incremented until some convergence
criteria is met, generally on the macroscopic parameters such
as 〈Zeff〉. It was found that the two-term approximation was
sufficient to guarantee accuracy to within 0.01% or better
for all transport properties over the range of reduced fields
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considered. This is expected since low-energy positron helium
elastic scattering is dominated by the s wave. Consequently,
collisional processes result in large momentum exchanges with
small energy exchanges and the quasi-isotropy of the velocity
distribution then follows.

V. CONCLUSION

Transport theory calculations of the thermalization and
annihilation of positrons diffusing in helium have been
completed. The collision cross sections for helium were
model potential values that were tuned to the best available
calculations and experiments. The present calculations of the
positron diffusion are largely compatible with the available
experimental information. Lack of detailed knowledge in the
energy distributions of the positrons at the start of the simu-
lation does mean that some uncertainty must be attached to

any conclusions. The present transport calculations, however,
provide a greater degree of consistency with experiment than
earlier calculations [10,47]. The closer agreement with the
experimental data has largely arisen from a more complete
description of the positron-helium annihilation cross section.
The use of a two-term distribution function and a perturbative
treatment of positron annihilation used in previous studies
are found to have a very small effect on the transient and
steady-state behavior of the positron cloud.
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