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Scientific research fields for future source of energy such as inertial confinement fusion research and
astrophysics studies, especially with satellite observatories, advance into stages of precision physics. The relevant
atomic data are not only enormous but also of accuracy according to requirements, especially for both energy
levels and the collision data. We propose a scenario to provide such abundant atomic data with enough accuracy
based on analytical continuation properties of the scattering matrices, which is a combination of indispensable
theoretical computations and benchmark experimental measurements. Using our modified R-matrix method
we can directly calculate the scattering matrices in the whole energy regions, from which we can obtain all
energy levels and the related scattering cross sections with accuracies comparable with spectroscopic precision.
The e+Kr+ system is used as an illustrative example; the degrees of accuracies of scattering matrices of each
partial wave are calculated within about 6%, which should be much more accurate than state-of-the-art scattering
experiments.
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I. INTRODUCTION

Understanding the detailed dynamics of electron-atom
(ion) interactions is of fundamental importance to various
plasma applications in the fields of astrophysics [1–3], fusion
energy research [4,5], semiconductor lithography [6], and
so on. For such plasmas, whether of astrophysical origin
or man-made, to numerically simulate temporal-spatial mo-
tions of plasmas and to perform diagnostic analysis about
plasma’s conditions requires knowledge about atomic energy
levels and related collision processes. Because the above-
mentioned scientific research fields advance into precision
physics stage—for example, new telescopes operating over
a wider range of wavelengths as well as new generation
satellite observatories with higher spectroscopic resolution
and higher sensitivities are under construction—the necessary
atomic data are not only enormous but also accurate enough
for their requirements. Therefore, compiling such atomic data
cannot be finished completely by experimental measurements.
Theoretical computations should play an indispensable role
to satisfy needs. Numerous efforts as well as progress have
been made in this field during the last 60 years; see, e.g.,
Ref. [7]. However, the physical precision of the electron-ion
scattering cross sections is difficult to determine due to the
state-of-the-art experiment precision which is about 10% of
absolute measurements [8]. On the other hand, based on
analytic continuation of the scattering matrices, there exist
intimate relations between atomic energy levels and the related
electron-ion collision processes [9,10]. According to this
property, in the present paper we propose a scenario to provide
such atomic data with enough physical precisions which
can be readily comparable with spectroscopic accuracies.
Our scenario is a combination of indispensable theoretical
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computations and benchmark experimental measurements.
More specifically, we have modified both Breit-Pauli [11,12]
and Dirac R-matrix codes [13], referred to as R-eigen and
R-R-eigen [14], to directly calculate scattering matrices in the
whole energy regions of interest, i.e., either discrete energy
region or continuum energy region, on equal footing. Using
these codes, the scattering matrices in the discrete energy
region can be calculated with enough accuracy which can be
determined readily by comparisons with precise spectroscopic
measurements [15] based on multichannel quantum defect
theory (MQDT) [9,10,16–19]. Through analytical continua-
tion properties of the scattering matrices, we anticipate the
calculation precision in the continuum energies, which are
treated in a unified manner as discrete energies, will also
achieve the spectroscopic precision. Note that such scattering
matrices correspond to the eigenchannel parameters used in
the multichannel quantum defect theory (MQDT) [9,10,16–
19], from which we can further obtain all energy levels,
(generalized) oscillator strengths, and so on, to meet the needs
for relevant research fields in the stage of precision physics.
To demonstrate the validity of the scenario, we use the e+Kr+
system (i.e., the energy levels of Kr as well as the collision
processes of electron and Kr+) as an illustrative example. The
full relativistic R-R-eigen code [14] is adopted for this system.
For the calculation of collision processes, we use seven partial
waves for each parity to ensure the partial wave expansion
convergence. By comparisons between the calculated energy
level positions and the accurate spectroscopic measurements
[15], the calculation accuracy of scattering processes can
be determined readily to within a few percent. Then the
calculated low-energy electron scattering cross sections are
compared with the available experimental measurements [20].
Our calculated differential cross section is in agreement with
the experimental one at low angles, and the deviations at large
angles are discussed, which can show the indispensable role
of theoretical calculations.
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II. THEORETICAL METHOD AND CALCULATION
RESULTS

A. The calculation of short-range scattering matrices

The N+1-electron Dirac-Coulomb Hamiltonians can be
solved by the relativistic R-matrix method [13] which is aimed
to treat the interactions of the excited electron with the N -
electron-ion core efficiently. From the picture of electron-ion
collision processes, the N -electron-ion core target states and
the excited electron with the appropriate angular momen-
tum couplings form channels for the N+1-electron excited
complex with a specific total angular momentum. Based on
the R-matrix theory [11–14,16], the logarithmic derivative
boundary matrix R(E) can be obtained by solving the N+1-
electron problem variationally within the R-matrix box, i.e.,
the reaction zone. With the R(E) matrix, the reaction matrix
K(E) can be calculated with the following standing-wave
expressions on the boundary of the reaction zone (i.e., r = r0):

�i(E) = �ifi(rN+1,E) +
np∑
j=1

�jgj (rN+1,E)Kij

+
np+nc∑

j=np+1

�j�j (rN+1,E),

i � np (physical channels). (1)

The indexes i and j denote channels. The wave function �i

consists of the N -electron target-state wave function combined
with the angular and spin parts of the excited electron wave
function in the ith channel. In a specific energy range, there
are only finite channels that are responsible for physical states,
such as spectral structures, and are called physical channels
(i � np). In the ith physical ionization channel, fi(r,E) and
gi(r,E) are regular and irregular Coulombic wave functions
[21,9], respectively, which are continuous functions of the
orbital energy across the ionization threshold, i.e., from the
negative region to the positive region. Therefore we can extend
the scattering matrices normally defined in the positive energy
regions to the whole energy regions from Eq. (1), which forms
the so-called “semiscattering” physical picture. For the rest of
the channels (np < i � np + nc), the excited electron orbitals
have deeply negative orbital energies and have exponentially
decaying radial wave functions �i which should be negligible
on the reaction zone surface and are called computational chan-
nels. The computational channels are used to take into account
the electron correlations adequately. Note that, as the energy
region varies, the physical channels may change. However, the
same physical channel should be smoothly connected.

In the eigenchannel representation [10,14,16–19], the short-
range reaction matrix with a specific total angular momentum
and parity Jπ will be diagonalized, namely,

KJπ

ij =
∑

α

Uiαtan(πμα)Ujα. (2)

Therefore, the eigenchannel physical parameters (np eigen
quantum defects μα and np × np transformation matrix Uiα)
and the corresponding eigenchannel wave functions �Jπ

α with
normalization per unit energy are calculated over an energy
range of interests (including bound states and continuous

states) [10,16–19]. The eigenchannel wave functions �Jπ
α

represent detailed dynamical characters of an excited electron
and the ionic core within the reaction zone. For the orthogonal
transformation matrix Uiα , it can be expressed in np(np − 1)/2
independent generalized Euler angles θlm [17,22]. A one-to-
one correspondence between any orthogonal matrix and its
expression in terms of generalized Euler angles can be found
in Ref. [22]. Note that {Uiα; μα} vary smoothly with the energy
because of the analytical property of the short-range scattering
matrix. As an illustrative example, let us first consider the Jπ =
1− partial wave of the e+Kr+ system in the energy range of
−3.80 to 2.20 eV with respected to the Kr+(4p52P3/2) thresh-
old. In the energy region of −3.80 to −2.74 eV, there are only
two s-wave physical channels, namely, Kr+(2P3/2)ns1/2/εs1/2

and Kr+(2P1/2)ns1/2/εs1/2. In the energy region of −2.73 to
2.20 eV, there are five physical channels with an additional
three d-wave channels, because of the mathematical properties
of d-wave Coulomb wave functions (i.e., ε>−1/l2), namely,
Kr+(2P3/2)ns1/2/εs1/2, Kr+(2P3/2)nd3/2/εd3/2, Kr+(2P3/2)
nd5/2/εd5/2, Kr+(2P1/2)ns1/2/εs1/2, and Kr+(2P1/2)nd3/2

/εd3/2. In our calculation, we also adopt another 106 com-
putational channels to fully take into account the dipole-
polarization effects of the 4s24p5 core and some important
quadrupole-polarization effects. Our calculated result of μα

and θlm for Jπ = 1− partial wave of Kr is shown in Fig. 1.
From Fig. 1 we can clearly see that both μα and θlm vary
smoothly with the energy. The two physical channels and five
physical channels are smoothly connected at the position of
−2.736 eV, as the dotted blue line indicates.

Let us return to consider the Jπ = 1+ partial wave of the
e+Kr+ system in the energy range of −4.08 to 2.20 eV with
respect to the Kr+(4p5 2P3/2) threshold for another example.
In the energy region of −4.08 to −1.36 eV, there are four
p-wave physical channels, namely, Kr+(2P3/2)np1/2/εp1/2,
Kr+(2P3/2)np3/2/εp3/2, Kr+(2P1/2)np1/2/εp1/2, and
Kr+(2P1/2)np3/2/εp3/2. In the energy region of −1.36
to 2.20 eV, there are five physical channels with one additional
f -wave channel, because of the mathematical properties
of f -wave Coulomb wave functions (i.e., ε>−1/l2),
namely, Kr+(2P3/2)np1/2/εp1/2, Kr+(2P3/2)np3/2/εp3/2,
Kr+(2P3/2)nf5/2/εf5/2, Kr+(2P1/2)np1/2/εp1/2, and
Kr+(2P1/2)np3/2/εp3/2. Our calculated result of μα and
θlm for Jπ = 1+ partial wave of Kr is shown in Fig. 2. From
Fig. 2 we can also clearly see that both μα and θlm vary
smoothly with the energy. The four physical channels and
five physical channels are smoothly connected at the position
of −1. 36 eV, as the dotted blue line indicates. Note that the
smooth crossings of the threshold in Figs. 1 and 2 illustrate
analytic properties of the short-range scattering matrices.

B. The estimation of the calculation precision
of the scattering matrices

Based on MQDT, the physical wave functions are the linear
combination of eigenchannel wave functions [10,14,16–19],

�(E) =
∑

α

Aα�α(E), (3)
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FIG. 1. (Color online) Eigen-quantum defects μα , Euler angles θlm for Uiα matrix in J π = 1− symmetry of Kr. The dotted blue line
indicates the connection position of two channels and five channels. The solid red line is the position of the ionization threshold of 2P3/2.

with the mixing coefficients Aα determined by elec-
tron asymptotic boundary conditions [10,14,16–19]. For
bound states, the asymptotic boundary conditions require
[14,16–19]

N∑
α

Uiαsinπ (νi,n + μα)Aα = 0 for all i. (4)

Therefore, the energy levels En of the Rydberg states are
determined by the following equations:

F = det |Uiαsinπ (νi,n + μα)| = 0, (5a)

En = Ii − R

ν2
i,n

for all i, (5b)

FIG. 2. (Color online) Eigen-quantum defects μα , Euler angles θlm for Uiα matrix in J π = 1+ symmetry of Kr. Note that lines 2 and 3 are
very close to each other. The dotted blue line indicates the connection position of four channels and five channels. The solid red line is the
position of the ionization threshold of 2P3/2.
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FIG. 3. (Color online) Quantum defect −ν3/2 (mod 1) vs ν1/2 plot
of Kr J π = 1− partial wave. Crossing points are level positions. The
solid curves indicate the curve F = 0, i.e., Eq. (5a). The relation
−ν3/2 between ν1/2, i.e., Eq. (5b), shown by dashed lines. Note that
there are only two thresholds 2P3/2,1/2 corresponding to ν3/2 and ν1/2.
The dotted blue line indicates the connection position of two channels
and five channels. The solid red line is the position of the ionization
threshold of 2P3/2.

where Ii are the ionization potentials with the Rydberg
constant R. The calculated ionization threshold of the ground
state (Jπ = 0+) of Kr atom is in excellent agreement with
the experimental one within 0.01%. Using the eigenchan-
nel parameters obtained above, we calculate the excitation
energies of the Jπ = 1− partial wave of Kr and compare
with the precision spectroscopic measurements [15]. For the
purpose of clarity, we give a graphical illustration of the
solution of Eqs. (5a) and (5b) as shown in Fig. 3. Below
the threshold of 2P3/2, the solid curves indicate the curve
of F = 0, i.e., Eq. (5a). The dashed red lines represent
the relation −ν3/2 between ν1/2, i.e., Eq. (5b). All energy
levels are the crossing points in Fig. 3. The F = 0 curves
in Fig. 3 are very sensitive to the values of μ. Therefore we
can examine the calculation precisions of the phase shifts
of continuum states very easily. Based on the experimental
energy levels En measured by precision spectroscopy, the
experimental (νexpt

1/2 ,ν
expt
3/2 )n can be readily calculated by Eq. (5b)

and compared with the theoretical calculated values in such
graphical representations to calibrate calculation precision.
All of the available 55 experimental data from NIST [15]
are presented in the figure. In the present work, with the
eigenchannel quantum defect μ to be adjusted within 6%, the
theoretical energy levels are in excellent agreement with all
available precision spectroscopic data. Since the experimental
spectroscopy data are very accurate, the percentage of the
adjustment of the eigenchannel quantum defects can be used to
reflect the calculation precision of the scattering matrices. Such
precision means the calculated scattering matrices should be
converged to within that percentage. From Fig. 3, we can also
easily see the connections between the energy levels and the
resonant scattering phase shifts, because above the threshold

FIG. 4. (Color online) Quantum defect −ν3/2 (mod 1) vs ν1/2 plot
of Kr J π = 1+ partial wave. Crossing points are level positions. The
solid curves indicate the curve F = 0, i.e., Eq. (5a). The relation
−ν3/2 between ν1/2, i.e., Eq. (5b), shown by dashed lines. The dotted
blue line indicates the connection position of four channels and five
channels. The solid red line is the position of the ionization threshold
of 2P3/2.

of 2P3/2, the solid curves are actually the relations between
the resonant phase shifts τ and ν1/2 instead of the relations
between −ν3/2 and ν1/2 below the threshold. Furthermore,
this figure can give us the information about short-range
dynamical interactions. For example, the avoided crossings
of three eigenphase shifts at the positions of about ν1/2 = 2.8,
3.8 illustrate very clearly the strong s-d wave mixings due
to the quadrupole-polarization interaction. Through analytical
continuation properties, the accuracy of short-range scattering
matrices can be ascertained. Note that for general cases
with more than two thresholds, the similar comparison can
be readily made for each two thresholds’ projection. More
specifically, we can choose two thresholds Ia , Ib (Ia < Ib)
in the system as we need to define the corresponding νa and
νb as two variables in Eq. (5a). The other values of the νi

corresponding to rest thresholds are fixed by Eq. (5b). Then
the position of the energy levels can be determined by the same
method as the present two thresholds’ cases.

We have also performed the calculations on other partial
waves existing in the experimental spectroscopy. The calcu-
lation accuracies are similar. For example, Fig. 4 is the result
for the Jπ = 1+ partial wave. Based on all of the available
55 experimental data from NIST [15], the precision of the
short-range scattering matrices is estimated to be within 2%.
Because of the analytical continuation property of the scatter-
ing matrices, as shown in Figs. 1 and 2, the precision of these
physical parameters in the electron collision region, i.e., above
the ionization threshold, should also be analytically continued.

C. The precision of the scattering observables

In electron-ion collision processes (i.e., in the continuous
energy region), according to asymptotic incoming boundary
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FIG. 5. (Color online) Eigenphase sum of each partial wave at
the incident energy 3.3 eV. The calculation precision of the scattering
matrices of each partial wave is indicated in the figure.

conditions [10], using the eigenchannel parameters we can
form the transition matrix T for a specific Jπ from an initial
state αoJ̃o to a final state αf J̃f as

T Jπ

ij (α0J̃o,αf J̃f ) = eiσi

[∑
α

Uiαexp(i2πμα)Ujα

]
eiσj − δij ,

(6)

where σi is the Coulomb phase shifts and αo, αf represent
the additional quantum numbers necessary to define the
target states completely. Based on the T matrix, using the
partial wave expansion method, we can calculate scattering
amplitudes, cross sections, and other scattering quantities
(such as spin polarizations, etc.). For example, for the incident
energy at 3.3 eV, we have considered the N+1 system
symmetries with J � 6 for both parities to ensure the partial
wave expansion convergence, as shown as the eigenphase sum
in Fig. 5. For each partial wave, we can estimate the calculation
precision following the procedure described in Sec. II B. In this
energy region, the contribution of the eigenphase sum is almost
coming from the s, p, d, f wave of the scattering electron.
The estimated calculation precisions of the scattering matrices
of the partial waves containing these scattering waves are also
indicated in Fig. 5. From our calculation results, the precisions
of the same scattering wave in different partial waves are nearly
the same. Therefore Fig. 3 shows us the result of the s and d

scattering wave and Fig. 4 shows us the result of the p and f

scattering wave.
The precision of the physical observables such as cross

sections usually are not equal to the precision of scattering
matrices. However, from the scattering matrices we can cal-
culate the scattering cross sections analytically. For example,
the differential cross sections are proportional to the square
of the scattering amplitudes, which are the results of coherent
superposition of the scattering matrix elements of each partial
wave. Considering the large number of partial wave expansions
and the channels in each partial wave, it should be very

expt 1999

FIG. 6. (Color online) Differential cross section of e+Kr+ at
3.3 eV.

complicated to ascertain the precision of the observables.
However, using computer simulation techniques, we can easily
obtain an upper limit of the errors. More specifically, using
the estimated precision of the scattering matrices (mainly
the precision of the eigenchannel phase shift πμα), we can
reconstruct short-range scattering K matrices of a partial wave
as

KJπ

ij (m) =
∑

α

Uiαtan[(1 + pma)πμα]Ujα, (7)

where a is the estimated precision of the scattering matrices,
pm is a random number from [−1,1], and m represents the mth
simulation. Then we can calculate the scattering observables
from these new K matrices. We repeat the above procedure
many times and pick out the largest and the lowest values
from these simulations. When the number of times m is large
enough, we can obtain the stable largest and lowest values
of the observables. Then we can obtain the precisions of the
scattering observables, which should be the upper limit of the
uncertainties.

With the eigenchannel parameters with precisions indicated
in Fig. 5, the calculated differential cross section (DCS) for
e + Kr+(2P3/2;1/2) → e + Kr+(2P3/2;1/2) process at 3.3 eV is
shown in Fig. 6, compared with the latest absolute exper-
imental measurements [20] as well as an early calculation
[23]. The dashed pink, cyan, and yellow lines are our calcu-
lated DCS of 2P3/2 − 2P3/2, 2P1/2 − 2P1/2, and 2P3/2 − 2P1/2

processes, respectively. The corresponding color areas are
the estimated precisions of these cross sections following
the above-mentioned procedures. Considering the experiment
cannot resolve the fine structure splitting of 2P3/2 and 2P1/2,
we average our calculated cross sections by statistical weights,
i.e., σA = 2/3[σ (2P3/2 − 2P3/2) + σ (2P3/2 − 2P1/2)] + 1/3
[σ (2P1/2 − 2P3/2) + σ (2P1/2 − 2P1/2)]. The dashed gray line
in the insertion is our theoretical averaged result convo-
luted with experiment instrumental profiles to represent the
energy and the angular spread in the experiments [20,24].
The corresponding color areas also represent the estimated
precision. The dash dot line is a previous theoretical calculation
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FIG. 7. The integral cross section of the electron impact excitation
from 2P3/2 to 2P1/2.

(convoluted with experimental instrumental profile) using a
simple localized model potential [23]. As can be seen, there is
a large difference between our result and the previous simple
calculation, which is mainly the consequence of polarization
correlations. Compared with experiment, our calculation is
in fair agreement with experimental measurement for angles
ranging from about 120° to 140°, especially the existence of
the minima of the DCS, because the DCS should increase
with decreasing angles in the small scattering angle. However,
for angles above 140°, there exist large discrepancies, which
are far beyond the largest uncertainties of our calculated DCS
determined by precision spectroscopy measurements (in which
the exchange and polarization effects are taken into account
adequately). It should be mentioned that the experiment
is an absolute measurement. The trochoidal (E×B field)
spectrometer [20] is used to collect all backscattered electrons
simultaneously, from which the partial integral cross sections
for the electrons scattered in the angular range [π/2,π ] can be
obtained. For the DCS, a retarding potential difference analysis
on the backscattered electron signal is carried out [24] to get
the partial integral cross sections for the electrons scattered in
the angular range [θ0,π ]. Based on such partial integral cross
section, a curve is fitted to the experimental data. Then the
DCS shown in Fig. 6 is extracted by taking the derivative of the
fitted curve as a function of θ0. Note that the experimental error
bars shown in Fig. 6 are estimated mainly from the statistical
errors (also including some systemic errors) [24] in the partial
integral cross section. Since the present DCS experiment is
not a direct measurement [24], the discrepancies between
the theoretical calculation with spectroscopic precision and
the experimental measurement deserves further experimental
studies.

We also calculate the integral excitation cross section
with the precision estimated similarly between the two fine
structure levels of the ground state, i.e., e + Kr+(2P3/2) →
e + Kr+(2P1/2), as shown in Fig. 7. Such cross sections are very
important in the abundance determinations in astrophysics.
However, since the excitation energy is very small (within the

resolutions of experimental electron beams), these excitation
cross sections are very difficult to measure by state-of-the-
art experiment, which also deserves further experimental
studies.

III. DISCUSSION

We would like to conclude with the following comments.
Using our modified R-matrix code R-eigen and R-R-eigen
[14], we can calculate the eigenchannel physical parameters
{Uiα; μα} and the corresponding eigenchannel wave functions
�Jπ

α (with normalization per unit energy) which are smooth
functions of energy in the range of interests (including
bound states and continuum states) as shown in Figs. 1
and 2. Therefore it requires less computation effort and less
computation time. Based on these parameters, the electron-ion
collision cross sections as well as all energy levels (including
infinite number of Rydberg states and autoionization resonance
states without missing any one) can be calculated accurately
in the framework of multichannel quantum defect theory
[9,10,16–19], as shown in Figs. 3–7. Through analytical
continuation properties of short-range scattering matrices,
the precision spectroscopic measurements of atomic energy
levels can then serve as stringent tests of the accuracy of
the short-range scattering matrices, i.e., related electron-ion
collision data. Using the e+Kr+ system as an illustrative
example, the degree of accuracy of eigenchannel physical
parameters is readily calculated within about 6% by com-
parisons between the calculated energy level positions and the
accurate spectroscopic measurements, as shown in Fig. 5. The
corresponding electron-ion collision data are then obtained
with the same precision and compared with the available
experimental measurements, as shown in Figs. 6 and 7. For
the DCS, our calculation precision examined by spectroscopic
measurements is much smaller than the differences between
the experiment and our calculation at large angles, which
implies some experiment problems at large angles. The integral
excitation cross section of e + Kr+(2P3/2) → e + Kr+(2P1/2)
is also predicted, which shows the indispensable role of
our theoretical calculations. Therefore, with our modified R-
matrix code R-eigen and R-R-eigen [14], necessary abundant
atomic data can be provided with enough accuracies for
relevant research fields in the stage of precision physics with
less computation effort. Furthermore, for the electron-neutral
atom scattering processes, the present scenario can also be
used based on an extended MQDT theory [25], which deserves
future studies.
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