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Relativistic many-body calculations of van der Waals coefficients for Yb-Li and Yb-Rb dimers
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We derive the relativistic formulas for the van der Waals coefficients of Yb–alkali-metal dimers that correlate
to ground and excited separated-atom limits. We calculate C6 and C8 coefficients of particular experimental
interest. We also derive a semiempirical formula that expresses the C8 coefficient of heteronuclear A + B dimers
in terms of the C6 and C8 coefficients of homonuclear dimers and the static dipole and quadrupole polarizabilities
of the atomic states A and B. We report results of calculation of the C6 coefficients for the Yb-Rb 3P o

1 + 5s 2S1/2

and 1S0 + 5p 2P o
1/2 dimers, and the C8 coefficients for the Yb-Li 1S0 + 2s 2S1/2 and Yb-Rb 1S0 + 5s 2S1/2 dimers.

Uncertainties are estimated for all predicted properties.
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I. INTRODUCTION

The subject of long-range interactions of Yb atoms and Yb–
alkali-metal atoms has recently became of much interest owing
to study of quantum gas mixtures [1–19], development of
optical lattice clocks [20,21], study of fundamental symmetries
[22], quantum computing [23], and practical realization of
quantum simulation proposals [24–26]. Yb is a particularly
suitable candidate for all of these applications owing to its
five bosonic and two fermionic stable isotopes in natural
abundance, the 1S0 ground state, the long-lived metastable
6s6p 3P o

0 state, and transitions at convenient wavelengths for
laser cooling and trapping.

Presently there is much interest in forming cold molecules
with both electric and magnetic dipole moments because
of the greater possibilities for trapping and manipulation
[2,6,17,18,27]. Unlike ultracold alkali-metal dimer molecules
[28] with largely diamagnetic ground states, the alkali-metal–
Yb dimers possess unpaired electron spin, and thereby can
be controlled by both electric and magnetic fields. This
added control enlarges the class of many-body Hamiltonians
that can be simulated with ultracold molecules [24]. The
characterization of Yb interactions with alkali-metal atoms
is crucial for selecting efficient pathways for assembling
Yb–alkali-metal molecules via photo- or magnetoassociation
techniques [2,3]. Predictions of magnetically tunable Feshbach
resonance positions and widths were recently reported for
Yb-Li, Yb-Rb, and Yb-Cs [2,3].

Quantum degenerate mixtures of Li and Yb were realized in
[8,9] using sympathetic cooling of Li atoms by evaporatively
cooled Yb atoms. Controlled production of ultracold YbRb*
molecules by photoassociation in a mixture of Rb and Yb
gases was recently reported in [17,18]. In particular, Ref. [17]
explored production of ultracold Yb-Rb 1S0 − 5p 2P o

1/2 dimers
by photoassociation in a mixture of Rb and Yb gases. The spec-
troscopic investigation of vibrational levels in the electronic
ground state of the 176Yb87Rb molecule was recently carried
out in [18]. Unusually strong interactions in a thermal mixture
of 87Rb and 174Yb ultracold atoms which caused a significant
modification of the spatial distribution were observed in [19].

This brings urgency to understanding the collisional inter-
actions of Yb, both among its various isotopes and with other
atoms, in particularly Li [2,6,8–10] and Rb [3,17–19]. Knowl-
edge of the C6 and C8 long-range interaction coefficients in
Yb–alkali-metal dimers is critical to understanding the physics
of dilute gas mixtures for the applications mentioned above.
Recently we evaluated the C6 and C8 coefficients for the Yb-Yb
(1S0 + 1S0) dimer and found them to be C6 = 1929(39) [29]
and C8 = 1.88(6) × 105 [30], in excellent agreement with the
experimental results C6 = 1932(35) and C8 = 1.9(5) × 105

[15]. However, the expressions for the C6 and C8 coefficients
used there cannot be applied to calculations for the Yb-
Rb (3P o

1 + 5s 2S1/2) and (1S0 + 5p 2P o
1/2) dimers due to the

presence of the Yb 3P o
1 − 1S0 and Rb 5p 2P o

1/2 − 5s 2S1/2

decay channels and different angular couplings.
In this work we derive relativistic expressions for the C6

coefficients of heteronuclear dimers involving excited state
atoms with strong decay channels to the ground state. The
nonrelativistic formalism has been described in Refs. [31–33].
We apply the resulting formulas to evaluate the C6 coefficients
for the (3P o

1 + 5s 2S1/2) and (1S0 + 5p 2P o
1/2) dimers. We also

evaluate the C8 coefficients for the Yb-Li (1S0 + 2s 2S1/2) and
Yb-Rb (1S0 + 5s 2S1/2) dimers.

For the case when A and B are the spherically symmetric
atomic states and there are no downward transitions from
either of these states, we derive a semiempirical formula for
the C8 coefficient of heteronuclear (A + B) dimers following
a method suggested by Tang [34]. The resulting expression
allows us to evaluate this property using the C6 and C8

coefficients of both homonuclear (A + A) and (B + B) dimers
and static dipole α1(0) and quadrupole α2(0) polarizabilities
of the atoms A and B. We find that this semiempirical formula
gives the same value of C8 for Yb-Li and Yb-Rb as our ab initio
numerical calculation within our estimated uncertainties.

We have evaluated the uncertainties of all quantities calcu-
lated in this work. The results obtained here can be used for
the analysis of existing measurements and for planning future
experiments. The expressions for the C6 and C8 coefficients
derived in this work as well as the methodology of calculations
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can be used for evaluation of van der Waals coefficients in
similar systems.

The paper is organized as follows. In Secs. II and III
we present the general formalism and derive the analytical
expressions for the C6 coefficients for the (3P o

1 + 5s 2S1/2) and
(1S0 + 5p 2P o

1/2) dimers. In Sec. IV we briefly describe the
method of calculations. Section V is devoted to discussion of
the results and Sec. VI contains concluding remarks.

Unless stated otherwise, we use atomic units (a.u.) for all
matrix elements and polarizabilities throughout this paper: the
numerical values of the elementary charge |e|, the reduced
Planck constant � = h/2π , and the electron mass me are set
equal to 1. The atomic unit for polarizability can be converted
to SI units via α/h[Hz/(V/m)2] = 2.48832 × 10−8α (a.u.),
where the conversion coefficient is 4πε0a

3
0/h and the Planck

constant h is factored out in order to provide direct conversion
into frequency units; a0 is the Bohr radius and ε0 is the electric
constant.

II. GENERAL FORMALISM

We investigate the molecular potentials that asymptotically
correlate to separated |A〉 and |B〉 atomic states. The general
formalism for homonuclear dimers has been discussed in [30]
and we only give a brief outline here. We take the Rb atom to be
in the state |JAMA〉 and the Yb atom to be in the state |JBMB〉.
The model space for treatment of Yb-Rb dimer consists of the
product states

�� = |JAMA〉 |JBMB〉, (1)

where � = MA + MB is the sum of the projections of the
total angular momenta MA and MB on the internuclear axis.
We assume that � is a good quantum number for all Yb-Rb
dimers studied here, i.e., the coupling scheme can be described
by the Hund’s case (c). The correct molecular wave functions
can be obtained by diagonalizing the molecular Hamiltonian

Ĥ = ĤA + ĤB + V̂ (R) (2)

in the model space, where ĤA and ĤB represent the Hamil-
tonians of the two noninteracting atoms. V̂ (R) is the residual
electrostatic potential defined as the full Coulomb interaction
energy of the dimer excluding interactions of the atomic
electrons with their parent nuclei.

The multipole expansion of the potential V (R) is given by

V (R) =
∞∑

l,L=0

VlL/Rl+L+1 , (3)

where VlL are given in general form in [35]. We restrict
our consideration by the dipole-dipole and dipole-quadrupole
interactions in the second-order perturbation theory. The first
two terms of the expansion given by Eq. (3) are

Vdd (R) = − 1

R3

1∑
μ=−1

w(1)
μ (dμ)A(d−μ)B, (4)

Vdq(R) = 1

R4

1∑
μ=−1

w(2)
μ [(dμ)A(Q−μ)B − (Qμ)A(d−μ)B],

(5)

where d and Q are the dipole and quadrupole operators,
respectively. The dipole and quadrupole weights are

w(1)
μ ≡ 1 + δμ0,

(6)

w(2)
μ ≡ 6√

(1 − μ)! (1 + μ)! (2 − μ)! (2 + μ)!
.

Numerically w
(2)
−1 = w

(2)
+1 = √

3 and w
(2)
0 = 3.

The resulting dispersion potential can be approximated as

U (R) ≈ −C6(�)

R6
− C8(�)

R8
, (7)

where the second-order corrections, associated with the C6

and C8 coefficients, are given by

C6(�)

R6
=

∑
�i �=��

〈��|V̂dd |�i〉〈�i |V̂dd |��〉
Ei − E , (8)

C8(�)

R8
=

∑
�i �=��

〈��|V̂dq |�i〉〈�i |V̂dq |��〉
Ei − E . (9)

and the intermediate molecular state |�i〉 with unperturbed
energy Ei runs over a complete set of two-atom states,
excluding the model-space states, Eq. (1). The energy E is
given by E ≡ EA + EB , where EA and EB are the atomic
energies of the |A〉 and |B〉 states. The complete set of doubled
atomic states meets the condition

∑
�i

|�i〉〈�i | = 1.

Using Eqs. (1), (4), and (8) we separate the angular and ra-
dial parts of the C6 coefficient and, after some transformations,
arrive at the expression

C6(�) =
JA+1∑

j=|JA−1|

JB+1∑
J=|JB−1|

AjJ (�) XjJ , (10)

where

AjJ (�) =
∑
μmM

{
w(1)

μ

(
JA 1 j

−MA μ m

)

×
(

JB 1 J

−MB −μ M

)}2

, (11)

with � = MA + MB = m + M .
The quantities XjJ are given by

XjJ =
∑
γn,γk

|〈A||d||γn,Jn = j 〉|2 |〈B||d||γk,Jk = J 〉|2
En − EA + Ek − EB

,

(12)

where the total angular momenta of the intermediate atomic
states Jn and Jk are assumed to be fixed and equal to j and
J , respectively; γn and γk include all the quantum numbers
except the total angular momenta Jn and Jk .

If A and B are spherically symmetric atomic states and
there are no downward transitions from either of them, we can
apply the Casimir-Polder identity,

1

x + y
= 2

π

∫ ∞

0
dω

x

x2 + ω2

y

y2 + ω2
; x > 0, y > 0,

(13)
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to simplify the general expressions. For the (A + B) dimer we
obtain the well known C6 and C8 coefficient formulas (see,
e.g., [36])

CAB
6 = CAB(1,1),

(14)
CAB

8 = CAB(1,2) + CAB(2,1),

where the coefficients CAB (l,L) (l,L = 1,2) are quadratures of
electric-dipole α1(iω) and electric-quadrupole α2(iω) dynamic
polarizabilities at an imaginary frequency:

CAB(1,1) = 3

π

∫ ∞

0
αA

1 (iω) αB
1 (iω) dω, (15)

CAB(1,2) = 15

2π

∫ ∞

0
αA

1 (iω) αB
2 (iω) dω,

(16)

CAB(2,1) = 15

2π

∫ ∞

0
αA

2 (iω) αB
1 (iω) dω.

The derivation of formulas for the C6 coefficients for the
Yb-Rb 1S0 + 5p 2P o

1/2 and 3P o
1 + 5s 2S1/2 dimers, which have

strong downward transitions, and final resulting expressions
are given in Secs. V B and V C.

III. SEMIEMPIRICAL EXPRESSIONS FOR
C6 AND C8 COEFFICIENTS

Using the method suggested by Tang [34], we are able to
derive approximate formulas for the CAB

6 and CAB
8 coefficients.

Following Tang, we express the dynamic 2K -pole polarizabil-
ity of a state X at the imaginary values of the frequency iω

as

αX
K (iω) =

∑
n

fnX

ω2
nX + ω2

=
∑

n

fnX

ω2
nX

1

1 + (ω/ωnX)2
, (17)

where fnX are the oscillator strengths. Tang’s procedure
involves approximating Eq. (17) by

αX
K (iω) ≈ αX

K (0)

1 + (
ω φX

K

)2 . (18)

Here φX
K is a free parameter that is determined below.

If we substitute Eq. (18) into (15) we find [34]

φX
1 = 3

4

(
αX

1 (0)
)

2

CXX
6

, (19)

where X is A or B. Using this expression we find that the C6

coefficient for a heteronuclear dimer can be approximated by
the following formula [34]:

CAB
6 ≈ 2 αA

1 (0) αB
1 (0) CAA

6 CBB
6

CBB
6

(
αA

1 (0)
)

2 + CAA
6

(
αB

1 (0)
)

2
, (20)

where αA
1 (0) and αB

1 (0) are the electric dipole static polar-
izabilities of the atomic states A and B, and CAA

6 and CBB
6

are the C6 coefficients for the (A + A) and (B + B) dimers,
respectively.

To derive the corresponding approximate formula for
the C8 coefficient, we use Eqs. (16), (18), and (13). We
obtain

CAB
8 ≈ 15

4

[
αA

1 (0) αB
2 (0)

φA
1 + φB

2

+ αA
2 (0) αB

1 (0)

φA
2 + φB

1

]
. (21)

The quantity φX
1 is given by Eq. (19) and φX

2 can be determined
as follows. For a homonuclear X + X dimer we have from
Eq. (21)

CXX
8 ≈ 15

2

αX
1 (0) αX

2 (0)

φX
1 + φX

2

. (22)

If the CXX
8 coefficient is known, then we obtain from

Eq. (22)

φX
2 ≈ 15

2

αX
1 (0) αX

2 (0)

CXX
8

− φX
1

= 15

2

αX
1 (0) αX

2 (0)

CXX
8

− 3

4

(
αX

1 (0)
)

2

CXX
6

. (23)

Therefore, the heteronuclear CAB
8 coefficient can be obtained

using Eq. (21) if one knows the following quantities: αA
1 (0),

αA
2 (0), αB

1 (0), αB
2 (0), CAA

6 , CAA
8 , CBB

6 , and CBB
8 .

This approximate formula reproduces the result of the
first-principle calculations carried out in this work within
the uncertainty estimates, as discussed in Sec. V A. We
suggest that the semiempirical formula can be used to
estimate C8 coefficients for other systems, such as the Yb-Cs
dimer.

IV. METHOD OF CALCULATION

The dynamic electric-dipole and electric-quadrupole Rb
polarizabilities, needed to carry out calculations of the C6 and
C8 coefficients, were obtained elsewhere [37–39].

We calculated the Yb properties needed for this work
using the method that combines configuration interaction (CI)
and the coupled-cluster all-order approach (CI + all-order)
that treats both core and valence correlation to all orders
[40–42]. This approach has been demonstrated to give accurate
results for energies, transition properties, and polarizabilities
for a variety of divalent and trivalent neutral atoms and
ions [29,41–44]. The application of this method for Yb has
been discussed in [29,30] and we give only a brief outline
below.

We start from solving the Dirac-Fock (DF) equations,

Ĥ0 ψc = εc ψc,

where H0 is the relativistic DF Hamiltonian [41,45] and ψc and
εc are the single-electron wave functions and energies; the self-
consistent procedure was carried out for the [1s2, . . . ,4f 14]
closed core.

The wave functions and the low-lying energy levels are
determined by solving the multiparticle relativistic equation
for two valence electrons [46],

Heff(En)
n = En
n. (24)
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The effective Hamiltonian is defined as

Heff(E) = HFC + �(E), (25)

where HFC is the Hamiltonian in the frozen-core approxima-
tion and the energy-dependent operator �(E) accounts for the
virtual core excitations.

The CI space spans 6s–20s, 6p–20p, 5d–19d, 5f –18f ,
and 5g–11g orbitals and is effectively complete. The operator
�(E) is constructed using the linearized coupled-cluster
single-double method [41]. For all-order terms evaluation we
use a finite B-spline basis set, consisting of N = 35 orbitals
for each partial wave with l � 5 and formed in a spherical
cavity with radius 60 a.u.

The dynamic polarizability of the 2K -pole operator T (K),
dμ ≡ T (1)

μ , Qμ ≡ T (2)
μ , at imaginary argument is calculated as

the sum of the valence and core polarizabilities

αK (iω) = αv
K (iω) + αc

K (iω). (26)

The core polarizability αc
K (iω) includes small vc part that

restores the Pauli principle. The valence part of the dynamic
polarizability αv

K (iω) of an atomic state |
〉 is determined
by solving the inhomogeneous equation in the valence space
[47]. The core contributions to multipole polarizabilities
are evaluated in the relativistic random-phase approximation
(RPA).

The uncertainties of the C6 and C8 coefficients may be ex-
pressed via uncertainties in the static multipole polarizabilities
of the atomic states A and B (A �= B) (see Refs. [30,38] for
more detail):

δCAB(l,L) =
√(

δαA
l (0)

)
2 + (

δαB
L (0)

)
2 (27)

and

�CAB
6 = �CAB(1,1),

(28)
�CAB

8 =
√

(�CAB(1,2))2 + (�CAB(2,1))2.

Here prefixes δ and � stand for the fractional and absolute
uncertainties, respectively.

We discuss the results of calculations and evaluation of
the uncertainties of the C6 and C8 coefficients in the next
section. For brevity we use shorter notations for the Li ground
state, 2s 2S1/2 ≡ 2s, and for the Rb ground and excited states,
5s 2S1/2 ≡ 5s and 5p 2P o

1/2 ≡ 5p1/2.

V. RESULTS AND DISCUSSION

A. Yb-Li (6s2 1S0 + 2s) and Yb-Rb (6s2 1S0 + 5s) dimers

The C6 coefficient for the ground state case 1S0 + 5s

was previously calculated in Ref. [29]. The C8 coefficient is
calculated in the present work. Since we are considering the
dimers with Yb, Li, and Rb in the ground states, the C6 and
C8 coefficients are given by Eqs. (14)–(16).

The integrals over ω needed for the evaluation of C6 and
C8 are calculated using Gaussian quadrature of the integrand
computed on a finite grid of discrete imaginary frequencies
[37,54]. For example, the integral in the expression for CAB

6

coefficient given by Eq. (15) is replaced by a finite sum

CAB
6 = 3

π

Ng∑
k=1

Wk αA
1 (iωk) αB

1 (iωk) (29)

over values of αA
1 (iωk) and αB

1 (iωk) tabulated at certain
frequencies ωk yielding an Ng-point quadrature, where each
term in the sum is weighted by factor Wk . In this work we use
points and weights listed in Table A of Ref. [37] and Ng = 50.

The Li and Rb ground state dynamic electric-dipole and
electric quadrupole polarizabilities at imaginary frequencies
and the Li-Li (2s + 2s) and Rb–Rb (5s + 5s) C6 and C8

coefficients were determined earlier (see, e.g., [37,38], and
references therein). The ground state Yb-Yb C6 and C8

coefficients as well as the dynamic electric dipole and electric
quadrupole polarizabilities of the 1S0 state at imaginary
frequencies were obtained in our recent work [30]. These
values are compiled in Table I for reference and comparison
with selected other results [3,15,48,49,51]. We use the dynamic
polarizabilities from these works to determine the van der
Waals coefficients for Yb-Li (1S0 + 2s) and Yb-Rb (1S0 + 5s)
dimers.

The C8(1,2) and C8(2,1) values as well as the final value of
the C8 coefficient for the Yb-Rb (1S0 + 5s) dimer are given in
Table I. The final value of the C8 coefficient for (1S0 + 2s) Yb-
Li dimer is also listed in Table I. In an alternative approach we
also carried out the calculation using the approximate formula
Eq. (21) and obtained C8 ≈ 1.27 × 105 a.u. and C8 ≈ 3.20 ×
105 a.u. for Yb-Li and Yb-Rb, respectively. These values are
identical to our values obtained with Eqs. (14) and (16). Our
C6 value is in agreement with a very recent accurate analysis
of the photoassociation data [53], while our C8 result is lower
by 3σ than the Ref. [53] value.

We substitute the static polarizability uncertainties listed in
Table I into Eqs. (27) and (28) to estimate the uncertainty of the
C8(1S0 + 5s) coefficient. The evaluation of the polarizability
uncertainties was discussed in detail in Ref. [30]. The resulting
uncertainties in the Yb-Li C8(1S0 + 2s) and Yb-Rb C8(1S0 +
5s) coefficients is estimated to be 2%.

B. Yb-Rb (6s2 1S0 + 5 p1/2) dimer

The C6 coefficient for the 6s2 1S0 + 5p1/2 dimer cannot
be calculated using Eqs. (14) and (15) due to the downward
5p1/2–5s transition in Rb. We derive the expression for this C6

coefficient below. In this subsection we designate A ≡ 5p1/2

and B ≡ 1S0.
We start from the general formula Eq. (10), which in this

case is reduced to

CAB
6 (�) =

3/2∑
j=1/2

Aj1(�)Xj1. (30)

Since the projection of the Rb total angular momentum
MA = 1/2 and the projection of the Yb total angular momen-
tum MB = 0, the only possible value of � = MA + MB =
1/2. Substituting JA = MA = 1/2, JB = MB = 0, and J = 1
into Eq. (11) and setting � = 1/2, we obtain Aj1(� = 1/2) =
1/3 for both possible values j = 1/2 and j = 3/2.
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TABLE I. The values of the static electric-dipole α1 and electric-quadrupole α2 polarizabilities (in a.u.) for the Li, Rb, and Yb ground
states and the C6 and C8 coefficients for the Li-Li (2s + 2s), Rb-Rb (5s + 5s), Yb-Yb (1S0 + 1S0), Yb-Li (1S0 + 2s), and Yb-Rb (1S0 + 5s)
dimers. The C6 and C8 coefficients for the Yb-Li (1S0 + 2s) and Yb-Rb (1S0 + 5s) dimers are found by (i) using the dynamic polarizabilities and
Eqs. (14)–(16) and (ii) using the approximate formulas (20) and (21). The uncertainties are given in parentheses.

(i) Numerical (ii) Approximate Other results

Li-Li α1(2s) 164.0(1)a 164.1125(5)b

α2(2s) 1424(4)c 1423.266(5)d

C6(2s + 2s) 1389(2)a 1393.39(16)d

C8(2s + 2s) 8.34(4) × 104c 8.34258(4) × 104d

Rb-Rb α1(5s) 318.6(6)a 322(4)e

α2(5s) 6520(80)c 6525(37)e

C6(5s + 5s) 4690(23)a

C8(5s + 5s) 5.77(8) × 105c

Yb-Yb α1(1S0) 141(2)f 141(6)g

α2(1S0) 2560(80)h

C6(1S0 + 1S0) 1929(39)f 1932(35)i

C8(1S0 + 1S0) 1.88(6) × 105e 1.9(5) × 105i

Yb-Li C6(1S0 + 2s) 1551(31)f 1594j

C8(1S0 + 2s) 1.27(3) × 105 1.27 × 105

Yb-Rb C6(1S0 + 5s) 2837(57)f 2814 2830j

2837(13)k

C8(1S0 + 5s)(1,2) 1.351(24) × 105 1.335 × 105

C8(1S0 + 5s)(2,1) 1.848(57) × 105 1.865 × 105

C8(1S0 + 5s) 3.200(65) × 105 3.199 × 105 4.9(6) × 105k

aReference [37].
bReferences [48,49].
cReference [38].
dReference [50].
eReference [51].
fReference [29].
gReference [52].
hReference [30].
iReference [15].
jReference [3], approximate formula.
kReference [53].

Furthermore, all states with j = 3/2 are above the 5p1/2

state, i.e., there are no downward transitions from the 5p1/2

state to any state with j = 3/2. Then, using Eqs. (12) and (13)
we obtain for X 3

2 1:

X 3
2 1 = 9

π

∫ ∞

0
αA

1 3
2
(iω) αB

1 (iω) dω, (31)

where αA
1j (iω) is the part of the dynamic electric dipole 5p1/2

polarizability at the imaginary frequency with Jn = j :

αA
1j (iω) = 1

3

∑
γn

(En − EA)|〈γnJn = j ||d||A〉|2
(En − EA)2 + ω2

(32)

and αB
1 is the dynamic electric-dipole polarizability of the 1S0

state:

αB
1 (iω) = 2

3

∑
k

(Ek − EB)|〈k||d∣∣∣∣1
S0

〉∣∣2

(Ek − EB)2 + ω2
. (33)

The case of j = 1/2 is more complicated because there is
the downward 5p1/2–5s transition, precluding direct applica-
tion of the Casimir-Polder identity (13). Using Eq. (12) we can

separate out the contribution of the 5s state from the sum over
n. Then we obtain

X 1
2 1 ≡ X

(1)
1
2 1

+ X
(2)
1
2 1

= |〈A||d||5s〉|2
∑

k

|〈B||d||k〉|2
−ωAs + ωkB

+
∑

γn �=5s,k

|〈A||d||γnJn =1/2〉|2 |〈B||d||k〉|2
ωnA + ωkB

, (34)

where ωAs ≡ EA − E5s , ωnA ≡ En − EA and ωkB ≡ Ek −
EB . Both frequencies ωnA and ωkB in the second term X

(2)
1
2 1

are positive for any n and k. Using Eq. (13) we can represent
this term by

X
(2)
1
2 1

= 2

π

∫ ∞

0
dω

∑
γn �=5s

ωnA |〈A||d||γnJn = 1/2〉|2
ω2

nA + ω2

×
∑

k

ωkB |〈B||d||k〉|2
ω2

kB + ω2
. (35)
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Next, we add and subtract the term |γn〉 = |5s〉 into the sum
over γn under the integral in Eq. (35) and use again Eq. (13):

X
(2)
1
2 1

= 9

π

∫ ∞

0
αA

1 1
2
(iω) αB

1 (iω) dω

+ |〈A||d||5s〉|2
∑

k

|〈B||d||k〉|2
ωkB + ωAs

. (36)

Combining X
(1)
1
2 1

and X
(2)
1
2 1

we arrive at

X 1
2 1 = 9

π

∫ ∞

0
αA

1 1
2
(iω) αB

1 (iω) dω

+ 3 |〈A||d||5s〉|2αB
1 (ωAs), (37)

where

αB
1 (ωAs) = 2

3

∑
k

ωkB |〈k||d||B〉|2
ω2

kB − ω2
As

. (38)

Taking into account that A 1
2 1 = A 3

2 1 = 1/3, and substitut-
ing the expressions for Xj1 into Eq. (30), we arrive at the final
expression for CAB

6 in the present case:

CAB
6 = 3

π

∫ ∞

0
αA

1 (iω) αB
1 (iω) dω

+ |〈5p1/2||d||5s〉|2 αB
1 (ωAs), (39)

where αA
1 (iω) is the dynamic electric dipole polarizability of

the 5p1/2 state at the imaginary argument iω.
The quantities needed to calculate the C6(1S0 + 5p1/2)

coefficient and to evaluate its uncertainty are summarized in
Table II. The Rb dynamic 5p1/2 polarizability was calculated
in [39] in the framework of DF + MBPT approximation
[45]. The Yb dynamic electric-dipole 1S0 polarizabilities at
the imaginary frequencies were calculated in [29]. Using
experimental and theoretical data, the static electric-dipole
polarizability of the 5p1/2 state was found to be 810.8(8) a.u.
[39]. Using these polarizabilities and evaluating the integral

TABLE II. The quantities (in a.u.) used to calculate the C6(1S0 +
5p1/2) coefficient and to estimate its uncertainty. α1(0) is the static
polarizability, α1(ωAs) is the Yb polarizability calculated at the
real frequency ωAs ≡ E5p1/2 − E5s . The uncertainties are given in
parentheses.

State Quantity Results

Rb 5p1/2 α1(0) 810.8(8)a Theory + Expt.
|〈5p1/2||d||5s〉| 4.228(6)b Experiment

Yb 1S0 α1(0) 141(2)c Theory
1S0 α1(ωAs) 183(3) This work

Yb-Rb 1S0 + 5p1/2 C6 7607(114) This work
1S0 + 5p1/2 C6 5684(98)d Experiment

aReference [39].
bReference [55].
cReference [29].
dReference [17].

using the finite sum Eq. (29), we obtain from Eq. (39)

3

π

∫ ∞

0
αA

1 (iω) αB
1 (iω) dω ≈ 4336 a.u. (40)

We use the experimental value for the matrix element
|〈5p1/2||d||5s〉| = 4.228(6) a.u. [55] in the the second term
of Eq. (39). The quantity αB

1 (ωAs) is the electric-dipole
ground-state Yb 1S0 polarizability at the real frequency ωAs ≡
E5p1/2 − E5s . Adding core and valence contributions (see [29]
for detail) we obtain

αB
1 (ωAs) = α

B(val)
1 + α

B(core)
1

≈ 177 + 6 = 183 a.u. (41)

Thus, the contribution of the second term in Eq. (39) to the C6

coefficient is

|〈5p1/2||d||5s〉|2 αB
1 (ωAs) ≈ 3271 a.u.

We note that both terms are comparable in their magnitude.
Adding these terms we obtain C6 ≈ 7607 a.u.

The uncertainty of this C6 coefficient can be evaluated using
Eqs. (27) and (28). Taking into account that the fractional
uncertainty of the Rb static 5p1/2 polarizability 0.1% is
negligible in comparison to the uncertainty of the Yb static 1S0

polarizability 1.5%, the accuracy of the first term in Eq. (39)
(4336 a.u.) is dominated by the the accuracy of the 1S0 polariz-
ability, i.e., 1.5%. In the second term (3271 a.u.) the fractional
uncertainty of the matrix element 〈5p1/2||d||5s〉 0.14% is
negligible in comparison with the fractional uncertainty of
the dynamic polarizability δαB

1 (ωsp) ≈ δαB
1 (0) ≈ 1.5%. Thus

we assume that the uncertainty in the second term is 1.5% and
the final uncertainty for the C6 coefficient is also 1.5%; C6 =
7607(114). The C6(1S0 + 5p1/2) coefficient is 33% larger than
the value obtained from the fit of the photoassociation data
with Leroy-Berstein method [17]. However, our C6(1S0 + 5s)
ground-state value of 2837(57) a.u. is 14% larger than result of
a similar fit that yielded 2485(21) a.u. [18]. Very recent accu-
rate analysis of the photoassociation data gives 2837(13) a.u.
[53], which is in perfect agreement with our central value. This
may indicate that the uncertainties of the values obtained by the
experimental data fit with the commonly used Leroy-Bernstein
method may be larger than expected, especially for the excited
states.

C. Yb-Rb (6s6 p 3P o
1 + 5s) dimer

This case also requires special attention because there is
the downward 3P o

1 –1S0 transition in Yb. In this subsection we
designate A ≡ 5s and B ≡ 6s6p 3P o

1 .
The general expression for the C6 coefficient, given by

Eq. (10), leads to

C6(�) =
3/2∑

j=1/2

2∑
J=0

AjJ (�)XjJ .

Taking into account that MA = 1/2 and MB = 0,1, the possi-
ble values of � are 1/2 and 3/2, where MB = 0 corresponds
to � = 1/2 and MB = 1 corresponds to � = 3/2.

The coefficients AjJ (�) are given by Eq. (11). Their
calculation is straightforward and numerical values are listed
in Table III for different values of j , J , and �.
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TABLE III. The values of the AjJ (�) and XjJ coefficients for
different j , J , and �. The contributions to the C6 coefficients are listed
in the columns C6(� = 1/2) and C6(� = 3/2). The contributions of
δX1/2,0 and δX3/2,0 are given in the rows δ1/2 and δ3/2; they are
included in the terms X1/2,0 and X3/2,0, respectively. Final values
of the C6 coefficients and their uncertainties (in parentheses) are
presented in the row labeled “Total.”

AjJ C6

j J � = 1/2 � = 3/2 XjJ � = 1/2 � = 3/2

δ1/2 0 −189
1/2 0 2/9 0 680 151 0
1/2 1 1/18 1/9 4887 272 543
1/2 2 11/90 2/15 7419 907 989

δ3/2 0 −399
3/2 0 2/9 1/12 1327 295 111
3/2 1 1/18 11/72 9671 537 1478
3/2 2 11/90 11/120 14675 1794 1345

Total 3955(160) 4466(180)

Starting from the general expression for XjJ given by
Eq. (12) and using the approach discussed in the previous
subsection, we obtain

XjJ = 27

π

∫ ∞

0
αA

1j (iω) αB
1J (iω) dω + δXjJ δJ0, (42)

where αA
1j (iω) is a contribution to the Rb 5s elec-

tric dipole polarizability given by Eq. (32) (with A =
5s) and αB

1J (iω) is a contribution to the scalar part
of the Yb electric-dipole 3P o

1 polarizability, determined
as

αB
1J (iω) = 2

9

∑
γk

(Ek − EB)|〈γkJk = J ||d||B〉|2
(Ek − EB)2 + ω2

. (43)

The correction δXj0 to the Xj0 term is due to the downward
3P o

1 → 1S0 transition. One can show that it can be written as

δXj0 = 2
∣∣〈3P o

1

∣∣∣∣d∣∣∣∣1
S0

〉∣∣2

×
∑
γn

(En − EA) |〈γn,Jn = j ||d||A〉|2
(En − EA)2 − ω2

0

, (44)

where ω0 ≡ E3P o
1

− E1S0 and the total angular momentum of
the intermediate states Jn is fixed and equal to j . In our case,
j = 1/2 or 3/2.

The Rb dynamic 5s polarizabilities at imaginary frequen-
cies were obtained in Ref. [37]. We calculated δXj0 following
the approach discussed in [38,39]. The calculation of the scalar
part of the dynamic electric dipole 3P o

1 polarizability was

discussed in detail in [30]. The resulting contributions to C6

coefficient are listed in Table III.
We note that δXj0 < 0 for both j = 1/2 and j = 3/2.

As follows from Eq. (44), we need to calculate the dynamic
5s polarizability at the frequency ω0 = E3P o

1
− E1S0 ≈ 0.082

a.u. to determine δXj0. The dominant contribution to polar-
izability comes from the 5p1/2,3/2 states. Since E5pj

− E5s ≈
0.057 a.u., the energy denominators (E5pj

− E5s − ω0) will be
small and negative. It leads to the negative values of α5s

1j (ω0)
and, subsequently, δXj0, for both j = 1/2 and j = 3/2.

Since the uncertainty of the Rb static 5s polarizability 0.2%
is negligible in comparison with the uncertainty of the Yb
static scalar 3P o

1 polarizability (3.5%), the latter determines
the uncertainty of the C6 coefficient for the (3P o

1 + 5s) dimer.
Our final values are C6(� = 1/2) = 3955(160) and C6(� =
3/2) = 4466(180). Clearly at long range the � = 3/2 potential
is more attractive than the � = 1/2 potential.

VI. CONCLUSION

To summarize, in this work we obtained accurate C6 and
C8 values for the Yb-Rb and Yb-Li dimers of particular ex-
perimental interest which are needed for efficient production,
cooling, and control of molecules. For the case when A and
B are spherically symmetric atomic states and there are no
downward transitions from either of these states, we derived a
semiempirical formula for the C8 coefficient of heteronuclear
(A + B) dimers. We evaluated the C8 coefficient for the
Yb-Li 1S0 + 2s and Yb-Rb 1S0 + 5s dimers using the exact
and approximate expressions and found excellent agreement
between these values. Our calculations of C8 coefficients will
allow accurate extraction of C6 from the photoassociation
spectra and may allow us to estimate contribution of the C10

in the interaction potential. We performed detailed uncertainty
analysis and provided stringent bounds on all of the quantities
calculated in this work to allow future benchmark tests
of experimental methodologies and theoretical molecular
models.
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