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Identification of atoms that can bind positrons
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Calculations of the positron binding energies to all atoms in the Periodic Table are presented and atoms where
the positron-atom binding actually exists are identified. The results of these calculations and accurate calculations
of other authors (which existed for several atoms only) are used to evaluate recommended values of the positron
binding energies to the ground states of atoms. We also present the recommended energies of the positron excited
bound levels and resonances (due to the binding of positron to excited states of atoms) which cannot emit
positronium and have relatively narrow widths. Such resonances in positron annihilation and scattering may be
used to measure the positron binding energy.
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I. INTRODUCTION

In this work we apply the relativistic linearized coupled-
cluster single-double (SD) approximation to calculate positron
binding energies for the atoms in the whole Periodic Table.
Calculating the positron-atom bound states is a challenging
theoretical problem due to the strong electron-positron corre-
lation effects and virtual positronium (Ps) formation [1–3].
The existence of such states was predicted by many-body
calculation [4] and verified variationally [5,6] more than a
decade ago. Since that time a number of theoretical papers were
published but only few atomic systems were studied. The most
accurate calculations were performed for 11 positron-atom
systems involving Li, Na, Ag, Cu, Au, Be, Mg, Ca, Zn, Sr,
and Cd atoms [7–18]. A recent empirical fitted expression
involving the polarizabilities (α), ionization potentials (I ),
and numbers of valence s electrons has also been based
on the best calculations mentioned above [19]. A number
of positron-atom bound states involving atoms with open d

subshells were studied in our previous paper [20]. In spite of all
these predictions no experimental evidence for positron-atom
bound states has been found so far.

The situation is better for positron-molecule interaction
since the resonant annihilation is observed for positrons
in many polyatomic molecules [21]. The incident positron
is captured into the bound state with the target molecule,
with the excess energy being transferred to vibrations. Since
the vibrational motion of the molecules is quantized, these
transitions can only take place at specific positron energies.
These energies correspond to vibrational Feshbach resonances
of the positron-molecule complex [21–23]. The majority of the
resonances observed are associated with individual vibrational
modes of the molecule. The energy of the positron binding is
then extracted from the downshift of the resonance energy,
relative to the energy of the vibrational excitation [24,25].
Hence, by observing the resonances, the positron binding
energy can be found. In this way, binding energies for
over 60 polyatomic species have been determined [26–29]
by measuring positron annihilation using a high-resolution,
tunable, trap-based positron beam [30].

A similar effect in atoms has been proposed for experi-
mental detection of positron-atom bindings in Ref. [31]. It
was suggested that the resonances in the positron annihilation
with atoms can be observed and associated with binding
of the positron to a low-energy electronic excitation. These

resonances can be found in open-shell atoms. If such atoms
can bind a positron in the ground state, then it is very likely
that they can bind a positron in the excited state of the same
configuration. One can then consider the following process:

e+ + A → e+A∗ → A+ + 2γ. (1)

First, a positron loses some energy by exciting the atom and
becomes trapped to a bound state with the excited atom. Then,
it annihilates with one of the electrons, and the resulting γ

quanta can be detected. The first step of process (1) is obviously
reversible. Hence, to estimate the efficiency of the resonant
annihilation one needs to evaluate the rates of both positron
annihilation (�a

ν ) and autodetachment (�e
ν). One may estimate

�e
ν ∼ 1–10 meV for a Feshbach resonance at ε ∼ 1 eV,

populated through a quadrupole transition [31]. Hence, the
resonances are sufficiently narrow to produce observable sharp
features in the energy dependence of the annihilation rate Zeff .
For a binding energy εb = 150 meV, the estimated annihilation
width is �a

ν = 4 × 10−7 eV and the branching ratio �e
ν/�ν ≈ 1

(�ν is the total width of the resonance). For a positron beam
with the energy spread δε ∼ 25 meV, the peak resonant value
of the annihilation rate is given by Zeff ∼ 103 in Ref. [31]. This
indicates that the positron-atom resonances could be observed
with a trap-based-beam technique similar to what was used for
measuring resonances in the positron-molecule annihilation
[25]. Resonances also manifest themselves in the positron
scattering. Another method—measurement of the positron
binding energies through laser assisted photorecombination—
was suggested in Ref. [32].

We also would like to mention a possibility to capture the
positron to a shallow bound level using a pulse of a very strong
magnetic field. Such a field of the strength up to 100 T is
available, for example, in the Los Alamos laboratory. Indeed,
energy of an upper Zeeman component of the shallow positron-
atom bound state may come above the ionization threshold
and cross with the level of the free positron resulting in the
positron capture (the same mechanism may be used to capture
an electron to a negative ion state). This possibility deserves a
separate publication, and we do not proceed any further in the
present paper.

These possibilities to create the positron-atom bound states
motivate us to survey the whole Periodic Table for positron
binding and tabulate the results for experimentalists.
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In the present paper we extend the study started in our
previous paper [20] to all atoms in the Periodic Table up to
uranium. Almost all previous calculations considered positron
interacting with either a closed-subshell atom or an atom
with a single electron above a closed-subshell core. The only
exceptions are our recent works [20,31]. The reason for this
is simple, there is no adequate theoretical method to perform
accurate calculations for positron binding to open-shell atoms.
In our previous paper [20] we suggested to use the linearized
coupled-cluster single-double (SD) approach for this purpose.
In this approach the interparticle interaction is included to all
orders via an iterative procedure. The corresponding subset
of terms includes the so-called ladder diagrams. This class of
diagrams is very important in the positron-atom problem since
it describes the effect of a virtual Ps formation. Summation
of the electron-positron ladder-diagram series was performed
earlier by solving a linear matrix equation for the electron-
positron vertex function for hydrogen [33], noble-gas atoms
[34], and halogen negative ions [35].

The linearized coupled-cluster method in its single-double
approximation has been applied for a number of very accurate
calculations for atoms and ions with one external electron
above closed shells (see, e.g., [36–40]). Hence it is expected
that the modified SD equations for the case of a positron
interacting with a closed-shell atom should also give a reliable
and accurate result.

A very brief summary of the SD equations for positron-atom
interaction is provided in Sec. II. The details of the theory
are given in our previous paper [20]. Comparison of our
results for closed-shell atoms with the most accurate available
calculations is described in Sec. III A. This provides us with
an estimate of our accuracy. How the method is applied
to the open-shell atoms is explained in Sec. III B where
we also present positron binding energies to the ground
state configuration of every atom in the Periodic Table.
Determination of the energies of the resonances and excited
bound states is explained in Sec. III C. The calculations for
the positron binding to the excited electronic configurations of
atoms are also presented in the same section. The paper ends
with Sec. IV where all our results are summarized.

The recommended values of the positron binding energies
are presented in Table V. The recommended values of the
excited bound states and resonances are presented in Tables VI,
VII, and X.

II. THEORY

Many-body atomic calculations for the positron-atom
binding need construction of the single-particle basis sets
separately for electron states and positron states. We use
the relativistic Hartree-Fock (RHF) method and the B-spline
technique [41] to do this. The self-consistent RHF procedure
is initially done for the atom without a positron. Then full sets
of single-electron and positron states are constructed using
B-splines in a cavity of a reasonably large radius R. The radius
must be larger than the size of the atom and should be chosen
in such a way that the total positron-atom system fits into the
cavity. We use R = 30 a.u. The effect of the finite cavity size
on the positron-atom binding energy was studied and found to
be negligible.

The single-particle basis states are found by constructing
them as a linear combination of B-splines and diagonalizing
the matrix of the RHF Hamiltonian:

h = cα · p + (β − 1)mc2 − γ
Ze2

r
+ γVd − ζVexch. (2)

Here α, β are the Dirac matrices, and Vd and Vexch are the
direct and exchange RHF potentials, respectively. The pair
(γ,ζ ) is taken (1,1) for electron and (−1,0) for positron.
The wave function of an atom with a positron in state v

can be written in the single-double (SD) approximation as an
expansion

|
v〉 =
⎡
⎣1 +

∑
na

ρnaa
†
naa + 1

2

∑
mnab

ρmnaba
†
ma†

naaab

+
∑
r �=v

prva
†
r av +

∑
rna

prnvaa
†
r ava

†
naa

⎤
⎦|�v〉, (3)

where |�v〉 is the zeroth-order wave function of the frozen-core
atom in the relativistic Hartree-Fock approximation with the
positron in state v. It can be written as

|�v〉 = a†
v|0C〉, (4)

where |0C〉 is the RHF wave function of the atomic core. Note
that the following notations have been used to label the basis
state in the rest of the paper: Indices a,b,c refer to electron
states in the core, indices m,n,k,l refer to electron states above
the core, indices v,r,w refer to positron states, and indices i,j

refer to any states. The expansion coefficients ρna and ρmnab

in Eq. (3) represent single- and double-electron excitations
from the core. The coefficients prv represent excitations of the
positron, and the coefficients prnwa represent simultaneous
excitations of the positron and one of the electrons. The SD
equations for the core excitation coefficients (ρna and ρmnab) do
not depend on the external particle and they are the same in the
electron and positron cases. These are well known equations
from the linearized coupled-cluster theory, the details of the
theory can be found, for instance, in Ref. [36]. The first step is
to solve these equations iteratively to obtain the single-electron
coefficients ρma and the double-electron coefficients ρmnab for
the core and to fix them in the rest of the calculation. The
convergence of the core equations is maintained by observing
the correlation correction to the energy of the core. One can
refer to our previous paper [20] for the explicit form of the
core equations.

After solving the SD equations for the core, one can start
iterating the SD equations for the external particle. The SD
equations for the positron can be obtained by substituting
the state |
v〉 from Eq. (3) into the relativistic many-body
Schrödinger equation,

H |
v〉 = ε0|
v〉. (5)

Projecting this equation onto a†
w|0C〉 gives the equation for

pwv ,

(ε0 − εw)pwv = −
∑
bm

qwbvmρmb +
∑
bmr

qwbrmprmvb. (6)
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TABLE I. Positron-atom binding energies relative to the channel e+ + A (εb in meV) for closed-shell atoms obtained using the SD
equations (SD) with the third-order correction (E3). I is the ionization energy from the ground state and α is the polarizability. The combination
S = mαI 2/2�

2 is a dimensionless parameter called the potential strength. The best calculations in the literature are presented in the last column.
The negative εb means the positron is not bound. Atoms with similar shells in their ground configurations are placed in the same group in
increasing order of their atomic numbers Z. The first group is divided into two subgroups according to I ≶ 6.8 eV.

Ground I αd
a This work (meV) Best other

Z Atom configuration (eV) (10−24 cm3) S SD E3 Total calc. (meV)

20 Ca 4s2 6.113 22.8 3.9 1382 50 1432 1201b

38 Sr 5s2 5.695 27.6 4.1 1638 48 1687 1461b

56 Ba 6s2 5.212 39.7 4.9 1974 48 2023
70 Yb 4f 146s2 6.254 20.9 3.7 1359 43 1403
88 Ra 7s2 5.279 38.3 4.9 1902 40 1943

2 He 1s2 24.587 0.205 0.6 −145 0 −145
4 Be 2s2 9.322 5.6 2.2 187 27 214 86e

12 Mg 3s2 7.646 10.6 2.8 596 39 636 464c

30 Zn 4s2 9.394 5.75 2.3 211 23 235 103f

48 Cd 5s2 8.993 7.36 2.7 273 79 352 178d

80 Hg 6s2 10.437 5.7 2.8 64 61 126

10 Ne 2s22p6 21.564 0.394 0.8 −145 0 −145
18 Ar 3s23p6 15.759 1.641 1.9 −123 4 −119
36 Kr 4s24p6 13.999 2.4844 2.2 −106 8 −98
54 Xe 5s25p6 12.130 4.044 2.7 −68 14 −54
86 Rn 6s26p6 10.748 5.3 2.8 −26 29 3

46 Pd 4d10 8.34 4.8 1.5 −39 9 −29

aGround state atomic static dipole polarizabilities from Ref. [43].
bThe positron binding energies of 356 and 514 meV for atoms Sr and Ca, respectively, relative to the lowest threshold A+ + Ps have been
obtained by the CI∞FC3 method in Ref. [8]. Here FC3 means fixed core with 3 particles treated explicitly, CI is the configuration interaction,
and ∞ indicates an extrapolation to lmax → ∞ in the basis expansion. In the table the binding energies relative to the threshold e+ + A are
presented to compare with the present calculations.
cCalculation by the SVMFC3 method from Ref. [8], where SVM means the stochastic variational method.
dCalculation by the CI∞FC3 method from Ref. [9].
eCalculation by the SVM method from Ref. [10].
fCalculation by the CI∞FC3 method from Ref. [12].

Projecting Eq. (5) onto a†
wa

†
naa|0C〉 gives the equation for the

double-excitation coefficient pwnva ,

(ε0 + εa − εw − εn)pwnva

= qwnva −
∑
rm

qwnrmprmva +
∑
m

qwnvmρma

−
∑

b

qwavbρnb +
∑
mb

pwmvbg̃mabn

+
∑
rb

qwarbprbvn +
∑
mb

qwmvbρ̃mabn. (7)

In these equations g̃mnkl ≡ gmnkl − gmnlk and ρ̃mnkl ≡ ρmnkl −
ρmnlk . The coefficients gmnkl and qwnva are the Coulomb inte-
grals for the electron-electron interaction and electron-positron
interaction respectively. When solving these equations, the
correction to the energy of the positron state v,

δεv = −
∑
mb

qvbvmρmb +
∑
bmr

qvbrmprmvb, (8)

is used to control the convergence.
In contrast to the electrons-only case the calculations do

not stop here. When the SD equations are used to calculate the
energy and the wave function of the atom with single-valence

electron above closed shells the RHF approximation is already
a good approximation for the valence electron and only a small
correction is needed. The correction is given by expressions
similar to (6)–(8) (see, e.g., [36]). In the positron case there is
no good zeroth-order approximation for the wave function of
the bound positron. In the RHF approximation the positron-
atom interaction is repulsive, and all of the single-particle
positron basis states lie in the continuum. Since we cannot use
a single positron RHF state as initial approximation we have
to use all of them as a basis. The wave function of the positron
bound to an atom is presented as a linear combination of the
positron RHF states

ψp =
∑

v

cvψv. (9)

The energy ε0 and the expansion coefficients cv are found by
solving the eigenvalue problem

�̂X = ε0X, (10)

where X is the vector of expansion coefficients cv , ε0 is the
lowest eigenvalue (which must be negative), and the elements
of the effective Hamiltonian matrix �̂ are given by

σvw = εvδvw −
∑
mb

qwbvmρmb +
∑
bmr

qwbrmprmvb. (11)

022517-3



C. HARABATI, V. A. DZUBA, AND V. V. FLAMBAUM PHYSICAL REVIEW A 89, 022517 (2014)

TABLE II. Positron-atom binding energies relative to the channel e+ + A (εb in meV) for open-shell atoms obtained using the SD equations
(SD) with third-order correction (E3). I is the ionization energy from the ground state. The combination S = mαI 2/2�

2 is called the potential
strength. The negative εb means the positron is not bound. Atoms with similar shells in their ground configurations are placed in the same
group in increasing order of their atomic numbers Z. The group with similar ground configurations is divided into two subgroups according to
I ≶ 6.8 eV.

Ground I αa This work (meV)

Z Atom configuration (eV) (10−24 cm3) S SD E3 Total

21 Sc 3d4s2 6.561 17.8 3.5 908 129 1037
23 V 3d34s2 6.746 12.4 2.6 678 97 775
39 Y 4d5s2 6.217 22.7 4.0 845 256 1102
57 La 5d6s2 5.577 31.1 4.4 1223 324 1547
71 Lu 5d6s2 5.426 21.9 2.9 222 245 470
89 Ac 6d7s2 5.380 32.1 4.2 706 425 1131
90 Th 6d27s2 6.307 32.1 5.8 546 370 916

22 Ti 3d24s2 6.828 14.6 3.1 785 110 896
25 Mn 3d54s2 7.435 9.4 2.4 496 77 574
26 Fe 3d64s2 7.902 8.4 2.4 429 69 498
27 Co 3d74s2 7.881 7.5 2.1 360 61 422
28 Ni 3d84s2 7.635 6.8 1.8 295 55 350
40 Zr 4d25s2 6.634 17.9 3.6 729 209 939
43 Tc 4d55s2 7.119 11.4 2.6 461 133 594
72 Hf 5d26s2 6.825 16.2 3.4 305 198 503
73 Ta 5d36s2 7.549 13.1 3.4 274 166 441
74 W 5d46s2 7.864 11.1 3.1 235 141 377
75 Re 5d56s2 7.834 9.7 2.7 202 121 324
76 Os 5d66s2 8.438 8.5 2.8 167 105 273
77 Ir 5d76s2 8.967 7.6 2.8 137 91 229

59 Pr 4f 36s2 5.473 28.2 3.8 1786 108 1895
60 Nd 4f 46s2 5.525 31.4 4.4 1746 100 1846
61 Pm 4f 56s2 5.582 30.1 4.3 1701 93 1794
62 Sm 4f 66s2 5.644 28.8 4.2 1655 88 1743
63 Eu 4f 76s2 5.67 27.7 4.1 1617 85 1702
65 Tb 4f 96s2 5.864 25.5 4.0 1525 79 1604
66 Dy 4f 106s2 5.939 24.5 3.9 1490 76 1566
67 Ho 4f 116s2 6.02 23.6 3.9 1446 74 1521
68 Er 4f 126s2 6.107 22.7 3.9 1401 72 1474
69 Tm 4f 136s2 6.184 21.8 3.8 1354 71 1425

58 Ce 4f 5d6s2 5.538 29.6 4.1 1189 253 1442
64 Gd 4f 75d6s2 6.149 23.5 4.0 816 284 1100
91 Pa 5f 26d7s2 5.89 25.4 4.0 614 340 954
92 U 5f 36d7s2 6.194 24.9 4.4 517 333 850

24 Cr 3d54s 6.766 11.6 2.4 488 77 565
41 Nb 4d45s 6.759 15.7 3.3 527 172 699
42 Mo 4d55s 7.092 12.8 2.9 442 145 587
44 Ru 4d75s 7.36 9.6 2.4 310 109 419
45 Rh 4d85s 7.46 8.6 2.2 260 95 355
78 Pt 5d96s 8.959 6.5 2.4 -10 57 47

aGround state atomic static dipole polarizabilities from Ref. [43].

The first term on the right-hand side of Eq. (11) represents the
positron energies in the static RHF approximation. The second
and third terms describe the effect of the electron-positron
correlations. The SD equations (6) and (7) must be iterated
for every state in the expansion (9). Since these equations
depend on the energy ε0, which is found later from Eq. (10),
we start with an initial guess for ε0. The calculations are then
performed iteratively, solving the SD equations (6) and (7)

and diagonalizing the matrix (11) several times until ε0 has
converged.

The virtual Ps formation is described by an electron-
positron ladder diagram series. They are included in SD
equation in all orders. However, some third-order diagrams are
missed by the SD method. It is well known that the missing
third-order terms can give sizable corrections to the energy in
atomic systems (see, e.g., Ref. [38]). Including these terms can
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TABLE III. Positron-atom binding energies relative to the channel e+ + A (εb in meV) for open p shell obtained using the SD equations
(SD) with the third-order correction (E3). I is the ionization energy from the ground state. The combination S = mαI 2/2�

2 is the potential
strength. The negative εb means the positron is not bound. Atoms with similar shells in their ground configurations are placed in the same
group in increasing order of their atomic numbers Z. The group with similar ground configurations is divided into two subgroups according to
I ≶ 6.8 eV.

Ground I αa This work (meV)

Z Atom configuration (eV) (10−24 cm3) S SD E3 Total

13 Al 3s23p 5.986 6.8 1.1 −38 38 0
31 Ga 4s24p 5.999 8.12 1.3 −25 42 17
49 In 5s25p 5.786 10.2 1.6 166 75 242
81 Tl 6s26p 6.108 7.6 1.3 588 95 683

5 B 2s22p 8.298 3.03 1.0 −136 3 −133
6 C 2s22p2 11.260 1.67 1.0 −139 1 −138
7 N 2s22p3 14.534 1.10 1.1 −141 0 −141
8 O 2s22p4 13.618 0.802 0.7 −143 0 −143
9 F 2s22p5 17.422 0.557 0.8 −144 0 −144

14 Si 3s23p2 8.151 5.53 1.7 −88 20 −68
15 P 3s23p3 10.486 3.63 1.8 −102 12 −90
16 S 3s23p4 10.360 2.90 1.4 −111 8 −103
17 Cl 3s23p5 12.967 2.18 1.7 −118 6 −112
32 Ge 4s24p2 7.899 5.84 1.7 −77 24 −53
33 As 4s24p3 9.789 4.31 1.9 −88 17 −71
34 Se 4s24p4 9.752 3.77 1.6 −95 13 −82
35 Br 4s24p5 11.814 3.05 1.9 −101 10 −91
50 Sn 5s25p2 7.344 7.84 1.9 −33 32 −1
51 Sb 5s25p3 8.608 6.6 2.2 −49 25 −24
52 Te 5s25p4 9.009 5.5 2.0 −57 20 −37
53 I 5s25p5 10.451 4.7 2.3 −63 17 −46
82 Pb 6s26p2 7.416 6.98 1.7 51 62 113
83 Bi 6s26p3 7.285 7.4 1.8 −2 46 45
84 Po 6s26p4 8.414 6.8 2.2 −16 38 22
85 At 6s26p5 9.350 6.0 2.4 −19 33 14

aGround state atomic static dipole polarizabilities from Ref. [43].

lead to significant improvements in the accuracy of the results
(see Sec. III). Consequently, we include these contributions
for the positron-bound states with atoms in this work. The list
of the missing third-order diagrams in SD equations and the
corresponding perturbation-theory corrections to the energy of
the positron state are derived and listed in Ref. [20].

III. RESULTS AND DISCUSSION

In our previous paper [20] we have reported the calculations
of positron binding to 26 neutral atoms by using the current
method. The rest of atoms in the Periodic Table are examined in
this paper up to atomic number Z = 92 (uranium). All raw data
are presented in Tables I to IV. Although there is no rigorous
criterion for the positron binding to a neutral atom, it is widely
accepted that the static dipole polarizability α and ionization
potential I of the atom play an important role. Indeed, the
positron feels a strong attractive polarization potential −α/2r4

outside the atom. Therefore, a large value of α and small
radius of the atomic core increase the binding. Small radius
of the atomic core corresponds to a large ionization potential
I . Moreover, I and α may be combined as a single parameter
which we have called the strength of the polarization potential

[4]. It is a simple dimensionless parameter

S = mαI 2

2�2
. (12)

The ionization potentials I from Ref. [42] and the static dipole
polarizabilities α from Ref. [43] are shown in Tables I–IV for
every atom in their ground state. In Tables I–IV we also present
the values of the strength parameter S.

It seems natural to classify all atoms up to Z = 92
according to their ground state configurations, since they have
similar positron binding for similar valence configurations.
The arrangements of the first four tables are as follows. First,
the atoms with similar valence shells are grouped and placed
in the same table in increasing order of atomic number Z.
A group with similar ground configurations is divided into
two subgroups according to condition I ≶ 6.80 eV. For atoms
with I > 6.80 eV, the Ps-formation channel is closed. The
closest decay channel will be e+ + A. On the other hand,
for I < 6.80 eV the lowest channel is Ps + A+. In this work
the positron binding energies have always been obtained with
respect to the decay channel e+ + A, while in many papers
the binding energies have been reported relative to the closest
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TABLE IV. Positron-atom binding energies relative to the channel e+ + A (εb in meV) for open s shell atoms obtained using the SD
equations (SD) with the third-order correction (E3). I is the ionization energy from the ground state. The combination S = mαI 2/2�

2 is the
potential strength. The negative εb means positron is not bound, – means the iteration of the SD equations does not converge for those atoms.
Atoms with similar shells in their ground configurations are placed in the same group in increasing order of their atomic numbers Z. The group
with similar ground configurations is divided into two subgroups according to I ≶ 6.8 eV.

Valence I αa This work (meV) Best other

Z Atom configuration (eV) (10−24 cm3) S SD E3 Total calc. (meV)

3 Li 2s 5.392 24.33 3.2 800 46 1015b 1477d

11 Na 3s 5.139 24.11 2.9 1042 48 1304b 1674c

19 K 4s 4.341 43.06 3.7 1746 72 2072b

37 Rb 5s 4.177 47.24 3.8 – – –
55 Cs 6s 3.894 59.42 4.1 – – –
87 Fr 7s 4.073 47.1 3.6 – – –

1 H 1s 13.598 0.667 0.6 −138 0 −138
29 Cu 4s 7.726 6.2 1.7 125 40 166 170,g 152h

47 Ag 5s 7.576 6.78 1.8 172 75 247 123,e 159f

79 Au 6s 9.225 5.8 2.2 −25 49 24 −87e

aGround-state atomic static dipole polarizabilities from Ref. [43].
bThe positron binding energies of alkali-metal atoms are obtained by extrapolating to the values for lmax → ∞ (see, for instance, Fig. 1 for the
extrapolation for Li).
cThe positron binding energies of 13 meV for Na relative to the lowest threshold Na+ + Ps is obtained by the SVMFC2 method in Ref. [17].
Here SVM means the stochastic variational method and FC2 means fixed core with 2 particles treated explicitly. In the table the binding energy
relative to the threshold e+ + Na is shown to compare with the present calculation.
dThe positron binding energies of 68 meV for Li relative to the lowest threshold Li+ + Ps is obtained by the SVM method in Ref. [18]. In the
table the binding energy relative to the threshold e+ + Li is shown to compare with the present calculation.
eCalculation by the CI + MBPT method, which is the relativistic configuration interaction plus many-body perturbation theory, from Ref. [13]
fCalculation by the SVMFC2 method from Refs. [14,16].
gCalculation by the CI + MBPT method from Ref. [7].
hCalculation by the SVMFC2 method from Refs. [15,16].

decay channel. The numbers are related by

εb = εPs − I + 6.80 eV, (13)

where εb is the positron binding energy relative to the channel
e+ + A, εPs is the positron binding energy relative to the
channel Ps + A+, I is atomic ionization potential, and 6.80 eV
is the binding energy of positronium.

The best calculations in the literature are presented in the
last columns of Tables I and IV. There are 11 atoms studied
accurately to predict the positron binding energies.

A. Closed-shell atoms

The results for a positron bound with closed-subshell atoms
are shown in Table I. We use these atoms to test our method
because these are the easiest systems from the computational
point of view and a number of accurate calculations is
available. The positron binding energies of 356, 514, 178, and
103 meV for Sr, Ca, Cd, and Zn atoms relative to the lowest
thresholds (A+ + Ps for Sr and Ca and e+ + A for Cd and Zn)
have been obtained by the CI∞FC3 method in Refs. [8,9,12]
by Mitroy and co-workers. Here FC3 means fixed core with 3
particles treated explicitly, CI is the configuration interaction,
and ∞ indicates an extrapolation to lmax → ∞ in the basis
expansion. All binding energies in the table are presented
relative to the positron detachment threshold e+ + A. Equation
(13) is used to convert the numbers when needed.

A stochastic variational method (SVM) was used for atoms
with a small number of electrons. The positron binding

energies of 464 and 86 meV were obtained for Mg and Be
by the SVMFC3 and SVM methods in Refs. [8,10]. The most
accurate value is probably for the Be atom because it is the
simplest system (four electrons in closed shells plus positron).
Our calculations give the binding energy of 214 meV, which is
128 meV larger than the 86 meV energy obtained in Ref. [10].
A somewhat similar binding energy access is observed when
comparing our results with available accurate calculations for
other systems, see Table I (we will use this 128 meV correction
to improve our results for a number of atoms where other
accurate calculations are not available, see below). Note that
the difference between our and the best earlier calculations
for heavier atoms (Mg, Ca, Zn, Sr, and Cd) could be slightly
larger due to the relativistic effects which have not been taken
into account in the works by the Mitroy group. In contrast, our
calculations are relativistic.

Our final raw results for the binding energy (εb) is the
sum of the solution of the eigenvalue equation (10) (SD) and
the third-order contributions (E3). The negative εb < 0 means
that there is no positron binding to an atom. The positron-atom
binding energy is very sensitive to the correlations. This leads
to a large uncertainty in the calculations. Therefore, some
negative values of εb might be within theoretical error bars.

As expected, increase of I and decrease of α lead to
decrease of the positron-atom binding energy εb (see Table I).
The first subgroup has larger εb than the rest of the table.
This is also expected since atoms in this subgroup have larger
potential strength S.
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TABLE V. Recommended positron-atom binding energies (εb in meV) for all atoms in the Periodic Table up to uranium based on the
current calculation and the most accurate values in the literature. The negative εb relative to any threshold shows that positron is not bound.
Binding energies relative to the lowest dissociation threshold are shown in bold. A graphical presentation of this Table is in Fig. 2. Ionization
potentials I are presented in Tables I–IV.

εb (meV) to thresholds εb (meV) to thresholds

Z Atom e+ + A Ps + A+ Z Atom e+ + A Ps + A+

1 H −138 6660 47 Ag 123d 899
2 He −273 17514 48 Cd 224 2417
3 Li 1477 68 49 In 114 −900
4 Be 86a 2608 50 Sn −129 415
5 B −261 1237 51 Sb −152 1656
6 C −266 4194 52 Te −165 2044
7 N −269 7465 53 I −174 3477
8 O −271 6547 54 Xe −182 5148
9 F −272 10350 55 Cs 2767 −139

10 Ne −273 14491 56 Ba 1895 307
11 Na 1674 13 57 La 1419 196
12 Mg 464b 1310 58 Ce 1314 52
13 Al −128 −942 59 Pr 1767 440
14 Si −196 1155 60 Nd 1718 443
15 P −218 3468 61 Pm 1666 448
16 S −231 3329 62 Sm 1615 459
17 Cl −240 5927 63 Eu 1574 444
18 Ar −247 8712 64 Gd 972 321
19 K 2400 −59 65 Tb 1476 540
20 Ca 1304 617 66 Dy 1438 577
21 Sc 909 670 67 Ho 1393 613
22 Ti 768 796 68 Er 1346 653
23 V 647 593 69 Tm 1297 681
24 Cr 437 403 70 Yb 1275 729
25 Mn 446 1081 71 Lu 282 −1092
26 Fe 370 1472 72 Hf 375 400
27 Co 294 1375 73 Ta 313 1062
28 Ni 222 1057 74 W 249 1313
29 Cu 170c 1092 75 Re 196 1230
30 Zn 107 2701 76 Os 145 1783
31 Ga −111 −912 77 Ir 101 2268
32 Ge −181 918 78 Pt −81 2078
33 As −199 2790 79 Au −87d 2400
34 Se −210 2742 80 Hg −2 3635
35 Br −219 4795 81 Tl 555 −137
36 Kr −226 6973 82 Pb −15 601
37 Rb 2528 −95 83 Bi −83 402
38 Sr 1559 454 84 Po −106 1508
39 Y 974 391 85 At −114 2436
40 Zr 811 645 86 Rn −125 3823
41 Nb 571 530 87 Fr 2578 -149
42 Mo 459 751 88 Ra 1815 294
43 Tc 466 785 89 Ac 1003 −417
44 Ru 291 851 90 Th 788 295
45 Rh 227 887 91 Pa 826 −84
46 Pd −157 1383 92 U 722 116

aCalculation by the SVM method from Ref. [10] is recommended.
bCalculation by the SVMFC3 method from Ref. [8] is recommended.
cThe result of our earlier calculation by the CI + MBPT method (the relativistic configuration interaction plus many-body perturbation theory)
from Ref. [7] as a recommended positron binding energy for the Cu atom.
dThe results of our earlier calculations by the CI + MBPT method from Ref.[13] as a recommended positron binding energy for Ag and Au
atoms.
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B. Open-shell atoms

Tables II–IV show the positron binding energies to the
ground state configurations of the open-shell atoms, which
were suggested in our previous works [20,31] as good
candidates for experimental detection of positron-atom bound
states via resonant annihilation or scattering.

To deal with the positron binding to open-shell atoms
with the SD approach we use an approximation in which
open shells are treated as closed ones but with fractional
occupation numbers [20]. For example, the ground state
electron configuration of neutral Fe is 3d64s2 above the
Ar-like core. We treat it as a closed-shell system but reduce
the contribution of the 3d subshell to the potential and CI
matrix elements (11) by the factor 6/10. Both members of
the fine-structure multiplet, 3d3/2 and 3d5/2, are included and
corresponding terms are rescaled by the same factor (see
Ref. [20] for more details). Note that the positron-atom binding
has no strong sensitivity to the valence shell being open or
closed because the Pauli principle is not applicable to the
positron-electron interaction.

Table II shows the results of our calculations of positron
binding energies εb for atoms with an open d shell and an
open f shell. Their common feature is that they have an s

orbital as the upper subshell in their ground configurations.
Our numerical calculations have shown that this upper s shell
provides a dominating contribution to the positron binding.
As a result the positron is bound relative to the threshold of
the channel (A + e+) for all atoms. The situation is different
for atoms in Table III where atoms with an open p shell are
presented. Here only In and Tl have positron binding on their
ground state configuration relative to the channel (A + e+).
However, In and Tl are still unstable against Ps formation, see
Table V. All other atoms in Table III have no bound states
with the positron. These results are also consistent with the
magnitude of the strength parameter S which is S � 2.5 in
Table II and S � 2.0 in Table III.

Atoms in Table IV are different from the rest of the
Periodic Table. First of all, they have very simple electronic
configurations, one s electron above closed subshells, so they
are the second simplest systems from the computational point
of view after the closed-shell atoms in Table I. Two particles
(an electron plus a positron) above closed shells can be treated
using a sophisticated atomic many-body theory. Some best
calculations are presented in the last column of the table. On
the other hand, the Ps formation channel is open for alkali
metals (the first set of atoms in Table IV) since I < 6.80 eV
for them. Therefore, these systems are better described as
positronium orbiting the positive ion A+ [44] (a molecular
type of bonding). Such systems are hard to describe in our
present approach where a single-center basis with the origin
on the atomic nucleus is used. To achieve a convergence, a
very large number of partial waves lmax must be included to
describe the total wave function. The fact that we could not get
any convergent values for the positron binding energies to Rb,
Fr, and Cs supports this argument. Comparison of our result
for Li with the accurate variational calculation of Mitroy [18]
shows that our method underestimates the positron binding
energies for alkali-metal atoms. However, we obtained good
agreements with the previous accurate calculations for Cu,
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FIG. 1. Positron-Li binding energies relative to the channel e+ +
A calculated using the SD equations (black dots) and with addition
of the third-order correction (black squares) up to lmax = 10. The
dashed straight lines mark the extrapolated values on the energy axis
for lmax → ∞.

Ag, and Au (see Table IV). Therefore, accurate description
for alkali-metal atoms requires higher values of the maximum
angular momentum lmax. The value lmax = 10 has been fixed
in our computation for all atoms. Hence it is reasonable
to estimate the extrapolated positron binding energies for
alkali-metals in the limit of lmax → ∞. This is done by using
the asymptotic formula

εb = εb(lmax) − A

(lmax + 1/2)3
, (14)
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FIG. 2. Recommended positron binding energies from Table V
relative to the dissociation threshold e+ + A. The results based on
current study are shown with the + sign. The © shows the results
of the previous best calculations based on configuration interaction
(CI) or stochastic variational methods (SVM). � shows the previous
result of the relativistic method MBPT + CI for Cu, Ag, and Au in
our group. The binding energies of Rb, Cs, and Fr are obtained by
linear extrapolation of the values of Li, Na, and K with respect to the
ion (A+) radius, which are marked by a square �.
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TABLE VI. Recommended values of excited bound states ε < 0 or resonance energies (ε > 0) in eV for the measurement of the positron-
atom binding energies through resonant annihilation or scattering for atoms which have ionization potential (I ) bigger than 6.8 eV (the ground
state energy of Ps).

Ground I Eex
a εb

Z Atom configuration (eV) Excited states (eV) (eV) ε = Eex − εb

26 Fe 3d64s2 7.902 5D3 0.052 0.370 −0.318
5D2 0.087 0.370 −0.283
5D1 0.110 0.370 −0.26
5D0 0.121 0.370 −0.249

27 Co 3d74s2 7.881 4F7/2 0.101 0.294 −0.193
4F5/2 0.174 0.294 −0.120
4F3/2 0.224 0.294 −0.070

28 Ni 3d84s2 7.635 3F3 0.165 0.222 −0.057
3F2 0.275 0.222 0.053

44 Ru 4d75s 7.36 5F4 0.148 0.291 −0.143
5F3 0.259 0.291 −0.032
5F2 0.336 0.291 0.045
5F1 0.385 0.291 0.094
3F4 0.811 0.291 0.520

45 Rh 4d85s 7.46 4F7/2 0.190 0.227 −0.037
4F5/2 0.322 0.227 0.095
4F3/2 0.430 0.227 0.203
2F7/2 0.706 0.227 0.479

72 Hf 5d26s2 6.825 3F3 0.292 0.375 −0.083
73 Ta 5d36s2 7.549 4F5/2 0.249 0.313 −0.064

4F7/2 0.491 0.313 0.178
4F9/2 0.697 0.313 0.384
4P1/2 0.750 0.313 0.437
4P3/2 0.752 0.313 0.439

74 W 5d46s2 7.864 5D1 0.207 0.249 −0.042
5D2 0.412 0.249 0.163
5D3 0.599 0.249 0.350
5D4 0.771 0.249 0.522

3P 20 1.181 0.249 0.932
76 Os 5d66s2 8.438 5D3 0.516 0.145 0.371

5D2 0.340 0.145 0.195
5D1 0.715 0.145 0.570
5D0 0.755 0.145 0.610
3H5 1.778 0.145 1.633

77 Ir 5d76s2 8.967 4F3/2 0.506 0.101 0.405
4F5/2 0.717 0.101 0.616
4F7/2 0.784 0.101 0.683

2G9/2 1.728 0.101 1.627
2G7/2 2.204 0.101 2.103
4P5/2 1.997 0.101 1.896

aAtomic excitation energy relative to the ground state from Ref. [42].

derived in Ref. [45] in the framework of the perturbation
theory. Here εb(lmax) is the binding energy for lmax and A

is a constant which is different in different atoms. When the
convergence is achieved for a given lmax, all εb(l > lmax) must
lie on a straight line with respect to 1/(lmax + 1/2)3. For
instance, Fig. 1 shows that the positron binding energy for
Li has not been convergent yet at lmax = 10. However, we
can estimate the extrapolated positron energy by assuming the
straight line obtained from the last two points (for lmax = 9 and
lmax = 10). We see that our extrapolated binding energies for Li
and Na are still smaller than the previous accurate calculations
shown in Table IV.

Now we will try to improve our predictions of the positron
binding energies for all atoms based on comparison of our
calculations and available accurate calculations for Be, Li,
and Cu. Be is the simplest closed-shell atom that can bind
a positron (see Table I), Li is the simplest alkaline atom
that can bind a positron, and Cu has one electron above the
closed-shell core (see Table IV). Each of them belongs to a
different type of group in the Periodic Table. We assume that
atoms in the same group or in a nearby similar group interact
with the positron in the same way. The previous presumably
accurate calculations of the positron binding to these three
atoms (Be, Li, Cu) can be used to estimate the errors in the
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TABLE VII. Recommended energies of the excited positron-atom bound states ε < 0 below Ps formation threshold (ε < I − 6.8 eV) for
atoms which have ionization potential (I ) less than 6.8 eV (the ground state energy of Ps).

Ground I Eex
a εb

Z Atom configuration (eV) Excited states (eV) (eV) ε = Eex − εb

21 Sc 3d4s2 6.561 2D5/2 0.021 0.909 −0.888
22 Ti 3d24s2 6.828 3F3 0.021 0.768 −0.747

3F4 0.048 0.768 −0.720
23 V 3d34s2 6.746 4F5/2 0.017 0.647 −0.63

4F7/2 0.040 0.647 −0.607
4F9/2 0.068 0.647 −0.579

39 Y 4d5s2 6.217 2D5/2 0.066 0.974 −0.908
40 Zr 4d25s2 6.634 3F3 0.071 0.811 −0.74

3F4 0.154 0.811 −0.657
3P2 0.519 0.811 −0.292
3P0 0.520 0.811 −0.291
3P1 0.542 0.811 −0.269
1D2 0.632 0.811 −0.179

41 Nb 4d45s 6.759 6D3/2 0.019 0.571 −0.552
6D5/2 0.049 0.571 −0.522
6D7/2 0.086 0.571 −0.485
6D9/2 0.130 0.571 −0.441

57 La 5d6s2 5.577 2D5/2 0.130 1.419 −1.289
58 Ce 4f 5d6s2 5.538 3F o

2 0.028 1.314 −1.286
59 Pr 4f 36s2 5.473 4I o

11/2 0.171 1.767 −1.596
4I o

13/2 0.353 1.767 −1.414
60 Nd 4f 46s2 5.525 5I5 0.140 1.718 −1.578

5I6 0.293 1.718 −1.425
61 Pm 4f 56s2 5.582 6Ho

7/2 0.100 1.666 −1.566
6Ho

9/2 0.217 1.666 −1.449
6Ho

11/2 0.347 1.666 −1.319
62 Sm 4f 66s2 5.644 7F1 0.036 1.615 −1.579

7F2 0.101 1.615 −1.514
7F3 0.185 1.615 −1.430
7F4 0.282 1.615 −1.333
7F5 0.388 1.615 −1.227

64 Gd 4f 75d6s2 6.149 9Do
3 0.027 0.972 −0.945

9Do
4 0.066 0.972 −0.906

9Do
5 0.124 0.972 −0.848

9Do
6 0.213 0.972 −0.759

65 Tb 4f 96s2 5.864 6Ho
13/2 0.344 1.476 −1.132

66 Dy 4f 106s2 5.939 5I7 0.513 1.438 −0.925
68 Er 4f 126s2 6.107 3F4 0.624 1.346 −0.722

aAtomic excitation energy relative to the ground state from Ref. [42].

present calculations. Our method overestimates the binding
energy for Be [10], underestimates it for Li [18], and is in
good agreement with previous calculation for Cu [7]. Using
these differences between our results and the most accurate
results of other calculations, we derive recommended values
for the positron-atom binding energies for the whole Periodic
Table in Table V. The recommended binding energies for
the atoms with closed shells or open f , d, or p shells are
obtained by subtracting 128 meV from our results presented in
Tables I–III. This is done to eliminate the difference between
our value of 214 meV and the accurate result 86 meV [10]
for the Be atom. The recommended positron binding energy
to Mg has been taken from Ref. [8]. We use our previous
accurate results for Cu, Ag, and Au obtained by the relativistic
CI + MBPT method [7,13] as recommended values for these

systems (170, 123, and −87 eV, respectively). The previous
result for Cu is very close to the current calculation (166 eV)
anyway.

The binding energies for Rb, Cs, and Fr are estimated by
the linear extrapolation of the values for Li, Na, and K with
respect to the ion (A+) radius which is inversely proportional to
the ion ionization potential (r+ ∼ 1/I+). In this estimation we
have used the literature results for Li and Na and the corrected
result 2400 meV for K atom (our raw number 2072 meV is
assumed to be underestimated similar to Li and Na). Note that
all positron binding energies for Li, Na, and K lie on a straight
line with respect to 1/I+. Using values of 1/I+ for the Rb+,
Cs+, and Fr+ ions we obtain the extrapolated positron binding
energies for them by putting them on the same line (a linear
extrapolation). We conclude that positron systems with K, Rb,
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TABLE VIII. Positron-atom binding energies (ε∗
b in meV) for

the excited states of configurations different from the ground state
configurations which are obtained using the SD equations (SD) with
the third-order correction (E3). Eex is the excitation energy relative
to the ground state.

Valence I Eex
a This work (meV)

Z Atom configuration (eV) (eV) SD E3 Total

21 Sc 3d24s 6.561 1.428 849 109 958
22 Ti 3d34s 6.828 0.813 727 97 825
23 V 3d44s 6.746 0.262 602 86 689
24 Cr 3d44s2 6.766 0.961 590 86 676
25 Mn 3d64s 7.435 2.114 382 68 450
26 Fe 3d74s 7.902 0.859 315 61 376
27 Co 3d84s 7.881 0.432 243 53 297
28 Ni 3d94s 7.635 0.025 173 46 220
29 Cu 3d94s2 7.726 1.389 240 49 289
39 Y 4d25s 6.217 1.356 683 258 942
40 Zr 4d35s 6.634 0.604 623 208 831
41 Nb 4d35s2 6.759 0.141 658 178 836
42 Mo 4d45s2 7.092 1.359 583 155 739
43 Tc 4d65s 7.119 0.518 355 124 479
44 Ru 4d65s2 7.36 0.927 461 121 583
46 Pd 4d95s 8.34 0.814 205 83 288

4d85s2 3.112 361 97 459
56 Ba 6s5d 5.212 1.120 1345 389 1734
57 La 5d26s 5.577 0.331 1237 324 1561
59 Pr 4f 25d6s2 5.473 0.549 1120 286 1406
60 Nd 4f 35d6s2 5.525 0.838 1060 285 1345
64 Gd 4f 75d26s 6.149 0.790 544 288 832
65 Tb 4f 85d6s2 5.864 0.035 749 284 1033
66 Dy 4f 95d6s2 5.939 0.938 672 283 955
72 Hf 5d36s 6.825 1.747 349 190 539
73 Ta 5d46s 7.549 1.210 126 147 273
74 W 5d56s 7.864 0.366 83 118 201
75 Re 5d66s 7.834 1.457 51 96 147
76 Os 5d76s 8.438 0.638 25 79 105
77 Ir 5d86s 8.967 0.351 5 67 72
78 Pt 5d86s2 8.959 0.102 111 80 191

5d10 0.761 20 23 44

aExcitation energies relative to the ground states from Ref. [42].

Cs, and Fr atoms are unstable due to decay to positronium and
positive ion (see Table V).

We also present in Table V the positron-atom binding
energies relative to the Ps-formation threshold, A+ + Ps. The
closest decay channel is emphasized by the bold number in the
Table V. We also present the results of the Table V in graphical
form in Fig. 2.

Therefore, more than half of the atoms in the Periodic Table
may bind the positron.

C. Excited states

In our calculations we do not distinguish between different
electron states of the same configuration. If the positron is
bound to an atom in a particular configuration, it is bound
to all states of this configuration with approximately the
same binding energy. Therefore, the energy splitting inside
the ground state configuration is assumed to be the same for

TABLE IX. Recommended positron-atom binding energies (ε∗
b

in meV) for excited states of all atoms in Table VIII. The negative ε∗
b

relative to any threshold shows that positron is not bound. Binding
energies relative to the lowest dissociation threshold are shown in
bold. Ionization potentials I and electron excitation energies Eex are
presented in Table VIII.

Valence ε∗
b (meV) to thresholds

Z Atom configuration e+ + A∗ Ps + A+

21 Sc 3d24s 830 −837
22 Ti 3d34s 697 −88
23 V 3d44s 561 245
24 Cr 3d44s2 548 −447
25 Mn 3d64s 322 −1157
26 Fe 3d74s 248 491
27 Co 3d84s 169 818
28 Ni 3d94s 92 902
29 Cu 3d94s2 161 −302
39 Y 4d25s 814 −1125
40 Zr 4d35s 703 −67
41 Nb 4d35s2 708 526
42 Mo 4d45s2 611 −456
43 Tc 4d65s 351 152
44 Ru 4d65s2 455 88
46 Pd 4d95s 160 886

4d85s2 331 −1241
56 Ba 6s5d 1606 −1102
57 La 5d26s 1433 −121
59 Pr 4f 25d6s2 1278 −598
60 Nd 4f 35d6s2 1217 −896
64 Gd 4f 75d26s 704 −737
65 Tb 4f 85d6s2 905 −66
66 Dy 4f 95d6s2 827 −972
72 Hf 5d36s 411 −1311
73 Ta 5d46s 145 −316
74 W 5d56s 73 771
75 Re 5d66s 19 −404
76 Os 5d76s −23 977
77 Ir 5d86s −56 1760
78 Pt 5d86s2 63 2120

5d10 −84 1314

atoms with or without a positron. This assumption is supported
by similar features of atomic scalar polarizabilities. The scalar
polarizabilities have very close values for the different states of
the same ground state configuration of many-electron atoms
[46]. The values of the scalar polarizabilities determine the
strength of the attractive polarization potential −α/2r4 acting
on the positron. Therefore, it is natural to expect that if the
polarizabilities are equal the positron binding energies will
also be equal.

Since the energy splitting within a configuration is assumed
to be the same for the atom with or without a positron, the
energies of the excited states of the positron-atom system can
be obtained as

ε = Eex − εb, (15)

where Eex is the experimental value of the atomic excitation
energy relative to the ground state and εb is the positron binding

022517-11



C. HARABATI, V. A. DZUBA, AND V. V. FLAMBAUM PHYSICAL REVIEW A 89, 022517 (2014)

TABLE X. Recommended positron-atom resonances ε > 0 and excited bound states ε < 0 below Ps formation threshold (ε < I − 6.8 eV)
for atoms which can attach positron in its excited configuration from Table IX. The ground state ionization potentials I are also presented.

Valence I Eex
a ε∗

b

Z Atom configuration (eV) Excited states (eV) (eV) ε = Eex − ε∗
b

4 Be 1s22s2p 9.322 3P o 2.725 2.49b

23 V 3d44s 6.746 6D1/2 0.262 0.561 −0.299
6D3/2 0.267 0.561 −0.294
6D5/2 0.275 0.561 −0.286
6D7/2 0.286 0.561 −0.275
6D9/2 0.301 0.561 −0.260

26 Fe 3d74s 7.902 5F5 0.859 0.248 0.611
5F4 0.915 0.248 0.667
5F3 0.958 0.248 0.710
5F2 0.990 0.248 0.742
5F1 1.011 0.248 0.763

27 Co 3d84s 7.881 4F9/2 0.432 0.169 0.263
4F7/2 0.513 0.169 0.344
4F5/2 0.581 0.169 0.412
4F3/2 0.629 0.169 0.46
2F7/2 0.922 0.169 0.753
2F5/2 1.049 0.169 0.88

28 Ni 3d94s 7.635 3D3 0.025 0.092 −0.067
3D2 0.109 0.092 0.017
3D1 0.212 0.092 0.12
1D2 0.422 0.092 0.33

41 Nb 4d35s2 6.759 4F3/2 0.141 0.708 −0.567
4F5/2 0.196 0.708 −0.512
4F7/2 0.267 0.708 −0.441
4F9/2 0.347 0.708 −0.361
4P1/2 0.619 0.708 −0.089
4P3/2 0.656 0.708 −0.052

43 Tc 4d65s 7.119 6D1/2 0.518 0.351 0.167
6D3/2 0.496 0.351 0.145
6D5/2 0.458 0.351 0.107
6D7/2 0.403 0.351 0.052
6D9/2 0.318 0.351 −0.033

44 Ru 4d65s2 7.36 5D4 0.927 0.455 0.472
46 Pd 4d95s 8.34 2[5/2]3 0.813 0.160 0.653

2[5/2]2 0.961 0.160 0.801
2[3/2]1 1.251 0.160 1.091
2[3/2]2 1.453 0.160 1.293

74 W 5d56s 7.864 7S3 0.365 0.073 0.292
78 Pt 5d86s2 8.959 3F4 0.102 0.063 0.039

3F3 1.254 0.063 1.191
3F2 1.921 0.063 1.858
3P2 0.814 0.063 0.751

aAtomic excitation energy relative to the ground state from Ref. [42].
bThe recent calculation of a resonant level from Ref. [11].

energy to the ground state. These excited states are also bound
as long as ε < 0. Positive values of ε correspond to resonances
in continuum. To close the positronium formation channel we
also need the condition

ε < I − 6.80 eV, (16)

where I is the atomic ionization potential and 6.80 eV is the
binding energy of the Ps ground state.

Using the condition for the excitation energy Eex < εb +
I − 6.80 eV (stability against the positron emission) and the
recommended positron binding energies εb from Table V we

found the resonance and bound state energies for 26 atoms.
Table VI shows resonances and bound states for the atoms
with ionization potential larger than 6.8 eV, while Table VII
is for atoms with I < 6.8 eV. Due to the limited accuracy of
our calculations (∼100 meV) the weakly bound positron states
shown in Table VI may turn out to be low-lying resonances
and vice versa.

The resonances and bound states in Tables VI and VII have
been obtained for the positron binding to the excited states of
the ground configurations. However, the positron may bind to a
different electron configuration. It is known that helium excited
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state 1s2s 3S can bind a positron even though its ground state
1s2 1S cannot. It has recently been calculated that the positron
can attach to the 1s2s2p 4P o excited state of Li [47]. Table VIII
shows our calculations for excited state configurations that can
bind a positron relative to the e+ + A∗ threshold, where A∗ is
the lowest excited state for a given configuration. We have
found that 10 atoms in Table IX have excited bound states that
are stable against both thresholds, e+ + A∗ and A+ + Ps. The
smaller binding energies are presented in bold in Table IX.
Note that the positron does not bind to the ground states of Pd
and Pt but both atoms bind in the excited states, see Table IX.

The energies of the positron resonances (ε > 0) and excited
bound states (ε < 0) can be determined from the recommended
positron binding energy ε∗

b for a particular configuration and
excitation energies Eex of the electronic states. Here Eex

should also satisfy the condition that Eex < ε∗
b + I − 6.80 eV

(to stay below Ps formation threshold). The recommended
energies of the positron bound states and resonances for
excited configurations are presented in Table X. The results
of the present work confirm the claim of Ref. [31] that many
open-shell atoms do bind the positron not only in the ground
state but also in excited states.

IV. CONCLUSION

The linearized coupled-cluster single-double approach with
the third-order correction is used to calculate the positron
binding energy for every atom in the Periodic Table. The
fractional occupation number approximation is used to per-
form the calculations for open-shell atoms. To obtain the
recommended values of the positron binding energies we
introduce corrections which bring our results in line with
the best available calculations which exist for 11 atoms only.
We find that 49 atoms can bind the positron in the ground

state. The recommended values of the binding energies are
presented in Table V.

A number of atoms also have excited positron bound states
and low energy positron resonances which may be used to
measure the positron binding energy in the processes of the
positron annihilation and scattering. The recommended values
of these excited bound states and resonances are presented in
Tables VI, VII, and X.

An order-of-magnitude estimate of the accuracy of our
predictions is ∼100 meV. Due to the limited accuracy some of
the calculated weakly bound states may be actually unbound
and vice versa.

Finally, there are two problems for a future study. If the
initial atomic angular momentum JA is not zero the positron
bound states form the doublets with the total angular momenta
J = JA + 1/2 and J = JA − 1/2. The energy splitting is
∼1 meV.

If JA > 1/2 the atom has an electric quadrupole moment Q

and produces a long-range potential eQ(3 cos2 θ − 1)/(4r3),
which decays slower than the polarization potential −e2α/r4.
The quadrupole moment is large in atoms with several
electrons in an open shell. The quadrupole potential may
produce new features in the positron bound states such as
localization of the positron wave function in the equatorial or
polar areas depending on the sign of eQ. A similar effect may
exist for an electron in a negative ion.

ACKNOWLEDGMENTS

This work was funded in part by the Australian Research
Council. V.V.F. is grateful to the Humboldt Foundation for
support and to the Frankfurt Institute for Advanced Studies
for hospitality. Authors are grateful to G. F. Gribakin, M. G.
Kozlov, and D. Budker for helpful discussions.

[1] W. J. Cody, J. Lawson, H. S. W. Massey, and K. Smith, Proc. R.
Soc. London Ser. A 278, 479 (1964).

[2] M. Ya. Amusia, N. A. Cherepkov, L. V. Chernysheva, and S. G.
Shapiro, J. Phys. B 9, L531 (1976).

[3] V. A. Dzuba, V. V. Flambaum, W. A. King, B. N. Miller, and
O. P. Sushkov, Phys. Scr. T 46, 248 (1993).

[4] V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and W. A. King,
Phys. Rev. A 52, 4541 (1995).

[5] G. G. Ryzhikh and J. Mitroy, Phys. Rev. Lett. 79, 4124 (1997).
[6] K. Strasburger and H. Chojnacki, J. Chem. Phys. 108, 3218

(1998).
[7] V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati,

Phys. Rev. A 60, 3641 (1999).
[8] M. W. J. Bromley and J. Mitroy, Phys. Rev. A 73, 032507

(2006).
[9] M. W. J. Bromley and J. Mitroy, Phys. Rev. A 81, 052708 (2010).

[10] J. Mitroy, J. At. Mol. Sci. 1, 275 (2010).
[11] S. Bubin and O. V. Prezhdo, Phys. Rev. Lett. 111, 193401 (2013).
[12] J. Mitroy, J. Y. Zhang, M. W. J. Bromley, and S. I. Young, Phys.

Rev. A 78, 012715 (2008).
[13] V. A. Dzuba, V. V. Flambaum, and C. Harabati, Phys. Rev. A

62, 042504 (2000).

[14] G. G. Ryzhikh and J. Mitroy, J. Phys. B 31, 5013 (1998).
[15] G. G. Ryzhikh and J. Mitroy, J. Phys. B 31, 4459 (1998).
[16] J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, in New

Directions in Antimatter Chemistry and Physics, edited by
G. M. Surko and F. A. Gianturco (Kluwer, Dordrecht, 2001).

[17] G. G. Ryzhikh, J. Mitroy, and K. Varga, J. Phys. B 31, 3965
(1998).

[18] J. Mitroy, Phys. Rev. A 70, 024502 (2004).
[19] X. Cheng, D. Babikov, and D. M. Schrader, Phys. Rev. A 83,

032504 (2011).
[20] V. A. Dzuba, V. V. Flambaum, G. F. Gribakin, and C. Harabati,

Phys. Rev. A 86, 032503 (2012).
[21] G. F. Gribakin, J. A. Young, and C. M. Surko, Rev. Mod. Phys.

82, 2557 (2010).
[22] G. F. Gribakin, Phys. Rev. A 61, 022720 (2000).
[23] G. F. Gribakin, in New Directions in Antimatter Chemistry and

Physics, edited by C. M. Surko and F. A. Gianturco (Kluwer
Academic, Dordrecht, 2001), p. 413.

[24] S. J. Gilbert, L. D. Barnes, J. P. Sullivan, and C. M. Surko, Phys.
Rev. Lett. 88, 043201 (2002).

[25] L. D. Barnes, S. J. Gilbert, and C. M. Surko, Phys. Rev. A 67,
032706 (2003).

022517-13

http://dx.doi.org/10.1098/rspa.1964.0077
http://dx.doi.org/10.1098/rspa.1964.0077
http://dx.doi.org/10.1098/rspa.1964.0077
http://dx.doi.org/10.1098/rspa.1964.0077
http://dx.doi.org/10.1088/0022-3700/9/17/005
http://dx.doi.org/10.1088/0022-3700/9/17/005
http://dx.doi.org/10.1088/0022-3700/9/17/005
http://dx.doi.org/10.1088/0022-3700/9/17/005
http://dx.doi.org/10.1088/0031-8949/1993/T46/039
http://dx.doi.org/10.1088/0031-8949/1993/T46/039
http://dx.doi.org/10.1088/0031-8949/1993/T46/039
http://dx.doi.org/10.1088/0031-8949/1993/T46/039
http://dx.doi.org/10.1103/PhysRevA.52.4541
http://dx.doi.org/10.1103/PhysRevA.52.4541
http://dx.doi.org/10.1103/PhysRevA.52.4541
http://dx.doi.org/10.1103/PhysRevA.52.4541
http://dx.doi.org/10.1103/PhysRevLett.79.4124
http://dx.doi.org/10.1103/PhysRevLett.79.4124
http://dx.doi.org/10.1103/PhysRevLett.79.4124
http://dx.doi.org/10.1103/PhysRevLett.79.4124
http://dx.doi.org/10.1063/1.475717
http://dx.doi.org/10.1063/1.475717
http://dx.doi.org/10.1063/1.475717
http://dx.doi.org/10.1063/1.475717
http://dx.doi.org/10.1103/PhysRevA.60.3641
http://dx.doi.org/10.1103/PhysRevA.60.3641
http://dx.doi.org/10.1103/PhysRevA.60.3641
http://dx.doi.org/10.1103/PhysRevA.60.3641
http://dx.doi.org/10.1103/PhysRevA.73.032507
http://dx.doi.org/10.1103/PhysRevA.73.032507
http://dx.doi.org/10.1103/PhysRevA.73.032507
http://dx.doi.org/10.1103/PhysRevA.73.032507
http://dx.doi.org/10.1103/PhysRevA.81.052708
http://dx.doi.org/10.1103/PhysRevA.81.052708
http://dx.doi.org/10.1103/PhysRevA.81.052708
http://dx.doi.org/10.1103/PhysRevA.81.052708
http://dx.doi.org/10.1103/PhysRevLett.111.193401
http://dx.doi.org/10.1103/PhysRevLett.111.193401
http://dx.doi.org/10.1103/PhysRevLett.111.193401
http://dx.doi.org/10.1103/PhysRevLett.111.193401
http://dx.doi.org/10.1103/PhysRevA.78.012715
http://dx.doi.org/10.1103/PhysRevA.78.012715
http://dx.doi.org/10.1103/PhysRevA.78.012715
http://dx.doi.org/10.1103/PhysRevA.78.012715
http://dx.doi.org/10.1103/PhysRevA.62.042504
http://dx.doi.org/10.1103/PhysRevA.62.042504
http://dx.doi.org/10.1103/PhysRevA.62.042504
http://dx.doi.org/10.1103/PhysRevA.62.042504
http://dx.doi.org/10.1088/0953-4075/31/22/012
http://dx.doi.org/10.1088/0953-4075/31/22/012
http://dx.doi.org/10.1088/0953-4075/31/22/012
http://dx.doi.org/10.1088/0953-4075/31/22/012
http://dx.doi.org/10.1088/0953-4075/31/19/028
http://dx.doi.org/10.1088/0953-4075/31/19/028
http://dx.doi.org/10.1088/0953-4075/31/19/028
http://dx.doi.org/10.1088/0953-4075/31/19/028
http://dx.doi.org/10.1088/0953-4075/31/17/019
http://dx.doi.org/10.1088/0953-4075/31/17/019
http://dx.doi.org/10.1088/0953-4075/31/17/019
http://dx.doi.org/10.1088/0953-4075/31/17/019
http://dx.doi.org/10.1103/PhysRevA.70.024502
http://dx.doi.org/10.1103/PhysRevA.70.024502
http://dx.doi.org/10.1103/PhysRevA.70.024502
http://dx.doi.org/10.1103/PhysRevA.70.024502
http://dx.doi.org/10.1103/PhysRevA.83.032504
http://dx.doi.org/10.1103/PhysRevA.83.032504
http://dx.doi.org/10.1103/PhysRevA.83.032504
http://dx.doi.org/10.1103/PhysRevA.83.032504
http://dx.doi.org/10.1103/PhysRevA.86.032503
http://dx.doi.org/10.1103/PhysRevA.86.032503
http://dx.doi.org/10.1103/PhysRevA.86.032503
http://dx.doi.org/10.1103/PhysRevA.86.032503
http://dx.doi.org/10.1103/RevModPhys.82.2557
http://dx.doi.org/10.1103/RevModPhys.82.2557
http://dx.doi.org/10.1103/RevModPhys.82.2557
http://dx.doi.org/10.1103/RevModPhys.82.2557
http://dx.doi.org/10.1103/PhysRevA.61.022720
http://dx.doi.org/10.1103/PhysRevA.61.022720
http://dx.doi.org/10.1103/PhysRevA.61.022720
http://dx.doi.org/10.1103/PhysRevA.61.022720
http://dx.doi.org/10.1103/PhysRevLett.88.043201
http://dx.doi.org/10.1103/PhysRevLett.88.043201
http://dx.doi.org/10.1103/PhysRevLett.88.043201
http://dx.doi.org/10.1103/PhysRevLett.88.043201
http://dx.doi.org/10.1103/PhysRevA.67.032706
http://dx.doi.org/10.1103/PhysRevA.67.032706
http://dx.doi.org/10.1103/PhysRevA.67.032706
http://dx.doi.org/10.1103/PhysRevA.67.032706


C. HARABATI, V. A. DZUBA, AND V. V. FLAMBAUM PHYSICAL REVIEW A 89, 022517 (2014)

[26] J. R. Danielson, J. A. Young, and C. M. Surko, J. Phys. B 42,
235203 (2009).

[27] J. R. Danielson, J. J. Gosselin, and C. M. Surko, Phys. Rev. Lett.
104, 233201 (2010).

[28] A. C. L. Jones, J. R. Danielson, J. J. Gosselin, M. R. Natisin,
and C. M. Surko, New J. Phys. 14, 015006 (2012).

[29] J. R. Danielson, A. C. L. Jones, J. J. Gosselin, M. R. Natisin,
and C. M. Surko, Phys. Rev. A 85, 022709 (2012).

[30] S. J. Gilbert, C. Kurz, R. G. Greaves, and C. M. Surko, Appl.
Phys. Lett. 70, 1944 (1997); C. Kurz, S. J. Gilbert, R. G. Greaves,
and C. Surko, Nucl. Instrum. Methods Phys. Res. B 143, 188
(1998).

[31] V. A. Dzuba, V. V. Flambaum, and G. F. Gribakin, Phys. Rev.
Lett. 105, 203401 (2010).

[32] C. M. Surko, J. R. Danielson, G. F. Gribakin, and R. E.
Continetty, New J. Phys. 14, 065004 (2012).

[33] G. F. Gribakin and J. Ludlow, Phys. Rev. A 70, 032720
(2004).

[34] J. Ludlow, Ph.D. Thesis, Queen’s University, Belfast,
2003.

[35] J. A. Ludlow and G. F. Gribakin, Int. Rev. At. Mol. Phys. 1, 73
(2010); arXiv:1002.3125.

[36] S. A. Blundell, W. R. Johnson, Z. W. Liu, and J. Sapirstein,
Phys. Rev. A 40, 2233 (1989).

[37] S. A. Blundell, W. R. Johnson, and J. Sapirstein, Phys. Rev. A
43, 3407 (1991).

[38] M. S. Safronova, A. Derevianko, and W. R. Johnson Phys. Rev.
A 58, 1016 (1998).

[39] M. S. Safronova, W. R. Johnson, and A. Derevianko, Phys. Rev.
A 60, 4476 (1999).

[40] V. A. Dzuba and W. R. Johnson, Phys. Rev. A 76, 062510 (2007).
[41] W. R. Johnson and J. Sapirstein, Phys. Rev. Lett. 57, 1126 (1986).
[42] Yu. Ralchenko, A. E. Kramida, J. Reader, and NIST ASD Team

(2011). NIST Atomic Spectra Database (ver. 4.1.0) [Online].
Available: http://physics.nist.gov/asd [2012, February 21]. Na-
tional Institute of Standards and Technology, Gaithersburg, MD.

[43] T. M. Miller, in Handbook of Chemistry and Physics, edited by
D. R. Lide (CRC, Boca Raton, 2000).

[44] J. Mitroy, M. W. J. Bromley, and G. G. Ryzhikh, J. Phys. B 32,
2203 (1999).

[45] G. F. Gribakin and J. Ludlow, J. Phys. B 35, 339 (2002).
[46] A. Kozlov, V. A. Dzuba, and V. V. Flambaum, Phys. Rev. A 88,

032509 (2013).
[47] D. Bressanini, Phys. Rev. Lett. 109, 223401 (2012).

022517-14

http://dx.doi.org/10.1088/0953-4075/42/23/235203
http://dx.doi.org/10.1088/0953-4075/42/23/235203
http://dx.doi.org/10.1088/0953-4075/42/23/235203
http://dx.doi.org/10.1088/0953-4075/42/23/235203
http://dx.doi.org/10.1103/PhysRevLett.104.233201
http://dx.doi.org/10.1103/PhysRevLett.104.233201
http://dx.doi.org/10.1103/PhysRevLett.104.233201
http://dx.doi.org/10.1103/PhysRevLett.104.233201
http://dx.doi.org/10.1088/1367-2630/14/1/015006
http://dx.doi.org/10.1088/1367-2630/14/1/015006
http://dx.doi.org/10.1088/1367-2630/14/1/015006
http://dx.doi.org/10.1088/1367-2630/14/1/015006
http://dx.doi.org/10.1103/PhysRevA.85.022709
http://dx.doi.org/10.1103/PhysRevA.85.022709
http://dx.doi.org/10.1103/PhysRevA.85.022709
http://dx.doi.org/10.1103/PhysRevA.85.022709
http://dx.doi.org/10.1063/1.118787
http://dx.doi.org/10.1063/1.118787
http://dx.doi.org/10.1063/1.118787
http://dx.doi.org/10.1063/1.118787
http://dx.doi.org/10.1016/S0168-583X(97)00935-X
http://dx.doi.org/10.1016/S0168-583X(97)00935-X
http://dx.doi.org/10.1016/S0168-583X(97)00935-X
http://dx.doi.org/10.1016/S0168-583X(97)00935-X
http://dx.doi.org/10.1103/PhysRevLett.105.203401
http://dx.doi.org/10.1103/PhysRevLett.105.203401
http://dx.doi.org/10.1103/PhysRevLett.105.203401
http://dx.doi.org/10.1103/PhysRevLett.105.203401
http://dx.doi.org/10.1088/1367-2630/14/6/065004
http://dx.doi.org/10.1088/1367-2630/14/6/065004
http://dx.doi.org/10.1088/1367-2630/14/6/065004
http://dx.doi.org/10.1088/1367-2630/14/6/065004
http://dx.doi.org/10.1103/PhysRevA.70.032720
http://dx.doi.org/10.1103/PhysRevA.70.032720
http://dx.doi.org/10.1103/PhysRevA.70.032720
http://dx.doi.org/10.1103/PhysRevA.70.032720
http://arxiv.org/abs/arXiv:1002.3125
http://dx.doi.org/10.1103/PhysRevA.40.2233
http://dx.doi.org/10.1103/PhysRevA.40.2233
http://dx.doi.org/10.1103/PhysRevA.40.2233
http://dx.doi.org/10.1103/PhysRevA.40.2233
http://dx.doi.org/10.1103/PhysRevA.43.3407
http://dx.doi.org/10.1103/PhysRevA.43.3407
http://dx.doi.org/10.1103/PhysRevA.43.3407
http://dx.doi.org/10.1103/PhysRevA.43.3407
http://dx.doi.org/10.1103/PhysRevA.58.1016
http://dx.doi.org/10.1103/PhysRevA.58.1016
http://dx.doi.org/10.1103/PhysRevA.58.1016
http://dx.doi.org/10.1103/PhysRevA.58.1016
http://dx.doi.org/10.1103/PhysRevA.60.4476
http://dx.doi.org/10.1103/PhysRevA.60.4476
http://dx.doi.org/10.1103/PhysRevA.60.4476
http://dx.doi.org/10.1103/PhysRevA.60.4476
http://dx.doi.org/10.1103/PhysRevA.76.062510
http://dx.doi.org/10.1103/PhysRevA.76.062510
http://dx.doi.org/10.1103/PhysRevA.76.062510
http://dx.doi.org/10.1103/PhysRevA.76.062510
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://dx.doi.org/10.1103/PhysRevLett.57.1126
http://physics.nist.gov/asd
http://dx.doi.org/10.1088/0953-4075/32/9/311
http://dx.doi.org/10.1088/0953-4075/32/9/311
http://dx.doi.org/10.1088/0953-4075/32/9/311
http://dx.doi.org/10.1088/0953-4075/32/9/311
http://dx.doi.org/10.1088/0953-4075/35/2/311
http://dx.doi.org/10.1088/0953-4075/35/2/311
http://dx.doi.org/10.1088/0953-4075/35/2/311
http://dx.doi.org/10.1088/0953-4075/35/2/311
http://dx.doi.org/10.1103/PhysRevA.88.032509
http://dx.doi.org/10.1103/PhysRevA.88.032509
http://dx.doi.org/10.1103/PhysRevA.88.032509
http://dx.doi.org/10.1103/PhysRevA.88.032509
http://dx.doi.org/10.1103/PhysRevLett.109.223401
http://dx.doi.org/10.1103/PhysRevLett.109.223401
http://dx.doi.org/10.1103/PhysRevLett.109.223401
http://dx.doi.org/10.1103/PhysRevLett.109.223401



