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We develop an open-system dynamical theory of the Casimir interaction between coherent atomic waves and
a material surface. The system, the external atomic waves, disturbs the environment, the electromagnetic field
and the atomic dipole degrees of freedom, in a nonlocal manner by leaving footprints on distinct paths of the
atom interferometer. This induces a nonlocal dynamical phase depending simultaneously on two distinct paths,
beyond usual atom-optics methods and comparable to the local dynamical phase corrections. Nonlocal and local
atomic phase coherences are thus equally important to capture the interplay between the external atomic motion
and the Casimir interaction. Such dynamical phases are obtained for finite-width wave packets by developing a
diagrammatic expansion of the disturbed environment quantum state.
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I. INTRODUCTION

The interplay between the internal atomic dynamics and
the electromagnetic (EM) field retardation, brought to light
by the pioneering work of Casimir and Polder [1], is crucial
to understand the atom-surface dispersive interaction in the
long-distance limit (see [2] for a recent review). In contrast,
the effect of the external atomic motion on the dispersive
interaction is almost always discarded. Notable exceptions are
the quantum friction effects resulting from the shear relative
motion between two material surfaces [3] and between an atom
and a surface [4,5].

Since the usual atomic velocities are strongly nonrelativis-
tic, one might expect the dynamical corrections to the disper-
sive atom-surface interaction to be very small. Because of their
high sensitivity, atom interferometers [6,7] are ideal systems
for probing such small corrections. There is growing interest
in developing atom interferometers able to probe surface
interactions. Measurements of the van der Waals atom-surface
interaction with standard atom interferometry have already
been achieved [8–10], while optical-lattice atom interferom-
etry offers even more promising perspectives to measure the
Casimir-Polder interaction in the long-distance regime [11].

From a fundamental point of view, the coherent atomic
waves evolving in the vicinity of a material surface constitute
a particularly rich open quantum system: the external atomic
waves, playing the role of the system, interact with an
environment involving both long-lived (atomic dipole) and
short-lived (EM field) degrees of freedom (dofs). In this paper,
we develop an open-system theory of atom interferometers in
the vicinity of a material surface. We show that the atomic
motion relative to the surface along the interferometer paths
gives rise to a nonlocal dynamical phase correction associated
with pairs of paths rather than with individual ones as in
regular interferometers. In contrast to the local dynamical
phase contributions, the nonlocal dynamical phases may be
distinguished from other quasistatic phase contributions in
a multiple-path atom interferometer [12] since they violate
additivity [13].

Preliminary results for extremely narrow wave packets
were derived in a previous paper [14] from the influence
functional [15] capturing the net effect of the environment on
the atomic center-of-mass (external) dynamics [16,17]. The
atomic phases were then calculated in terms of closed-time
path integrals [18].

Here we use instead standard perturbation theory to
investigate the more realistic case of finite-width wave packets,
allowing us to connect with the van der Waals interferometer
experiments [9]. We explicitly calculate the disturbance of the
environment [19] produced by the interaction with the external
dofs in the atom interferometer. Since the perturbation is of
second order, the changes of the environment state involves
two atomic “footprints”, which can be left either on the same
path or on distinct paths. Provided that the dipole memory
time is longer than the time it takes for light to propagate
between the two arms, the diagrams for which the atomic
waves have one foot on each path yield cross nonlocal phase
contributions. For atoms flying parallel to the plate, these
cross contributions cancel each other exactly. Otherwise, the
differential atomic motion between the two interferometer
arms brings into play an asymmetry between the cross-talk
diagrams, thanks to the finite velocity of light and the breaking
of the translational invariance by the surface. The resulting
nonlocal phase contribution is of the same order of magnitude
as the dynamical local corrections. Nonlocal phase coherences
are thus required in a consistent description of dynamical
effects in Casimir atom interferometry.

Our formalism also allows for the analysis of the deco-
herence effect in interferometers [20–23] in the presence of a
conducting plane [24,25]. The analysis of the path-dependent
disturbance of the environment provides a clear-cut approach
to the derivation of decoherence [19], which was employed
in the derivation of the dynamical Casimir decoherence for
neutral macroscopic bodies [26]. Alternatively, the decoher-
ence effect can be obtained from the modulus of the complex
influence functional [27], which depends on the imaginary
part of the environment-induced phase shift. However, here
we focus on the real part of the Casimir phase shift, which
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has been measured experimentally for neutral atoms [9], in
contrast to the loss of contrast in the fringe pattern, which
has been probed only in the case of charged particles [25].
Environment-induced phase shifts were also considered in the
context of geometrical phases for spin-one-half systems [28].

We shall proceed as follows. In Sec. II, we develop
a local dynamical theory of Casimir atom interferometers,
inspired by the atom-optical ABCD formalism [29], and show
its consistency with the standard phase obtained from the
dispersive potential in the quasistatic limit. In the following
sections, we go beyond this heuristic treatment by considering
the disturbance of the environment quantum state by the
interaction with the external atomic waves, first in the simpler
case of pointlike wave packets in Sec. III and then for
finite-width wave packets in Sec. IV. This treatment reveals the
appearance of dynamical nonlocal atomic phase coherences in
addition to the local contributions already obtained in Sec. II.
Explicit results for the case of a perfectly reflecting plane
surface are derived in Sec. V, and concluding remarks are
presented in Sec. VI.

II. LOCAL DYNAMICAL THEORY OF CASIMIR PHASES

In this section, we develop a local theory of a Mach-Zehnder
atom interferometer interacting with a material surface (see
Fig. 1 for a typical example). In contrast to the idealized
pointlike model discussed in Ref. [14], the derivation below
fully captures the influence of the finite width of the wave
packet, making our discussion relevant for atom interferome-
ters with large wave packets, such as those employed in the
recent experiments reported in Refs. [9].

In the usual closed-system approach, the atom-surface
interaction phase is given by the integration of an external
dispersive potential taken at the instantaneous atomic position.
Obviously, this standard approach is completely quasistatic:
the potential seen by the atoms depends only on their
instantaneous position distribution, not on their velocity. Here,
we perform instead a first-principles derivation of this phase
based on the interaction energy stored within the quantum
dipole and EM field dofs. While capturing nontrivial local
relativistic corrections, this treatment yields predictions in
agreement with the standard dispersive potential approach
when considering the quasistatic limit.

The atomic wave function is initially a coherent superposi-
tion |ψE(0)〉 = 1√

2
(|ψ1

E(0)〉 + |ψ2
E(0)〉) of two wave packets

with the same central position but with different initial

k = 2

k = 1

t = 0 t = T

z0

FIG. 1. (Color online) Atom interferometer interacting with a
conducting plate at z = 0 during the time T , with arm k = 1 parallel
to the plate (distance z0) and arm k = 2 flying away with a normal
velocity v⊥.

momenta. These wave packets will follow two distinct paths
k = 1,2, as illustrated in Fig. 1. The relative phase between
these two wave packets, which determines the local atomic
probability function p(r,t) = |ψE(r,t)|2, contains contribu-
tions from the atom-surface interaction as well as additional
ones independent of the surface.

As in Ref. [14], we extend the atom-optical ABCD

formalism [29–31] by including the symmetrized [32] in-
teraction energy U int

k (t) between the atomic dipole and
the EM field within the action phase associated with the
external atomic propagation along path k. The atom-surface
interaction, assumed to be weak enough to leave unaltered
the shape of the atomic wave packets during the propagation,
results merely in atomic phase shifts.

We evaluate U int
k (t) using linear response theory [33], i.e.,

to lowest order in perturbation theory, and then obtain the local
Casimir phase ϕloc

k = − 1
�

∫ T

0 dtU
int,S
k (t) along a given path k

by picking the surface-dependent contribution U
int,S
k (t) to the

total interaction energy. The key ingredient in our derivation
is the introduction of an “on-atom field” operator Ê(r̂a), for
which the field argument is the atomic position operator r̂a

instead of a classical position rk(t) taken along the central
atomic path k.

In the Heisenberg picture, the dipole and the on-atom
electric-field operators can be expressed as the sum of
an unperturbed free-evolving part, defined as Ôf (t) =
exp(iĤ0t/�)Ô(0) exp(−iĤ0t/�), with the free Hamiltonian
Ĥ0 = ĤE + ĤD + ĤF including the external (ĤE), internal
(ĤD), and EM field (ĤF ) dofs, and of a contribution Ôin(t)
induced by the atom-field coupling ĤAF = −d̂ · Ê(r̂a). To
describe the mutual influence between the atomic dipole
and the “on-atom” EM field [33], we introduce temporal
correlation functions for the corresponding operators. We also
introduce four-point correlation functions for the quantized
electric field as discussed below.

Precisely, the dipole and field fluctuations are captured
by symmetric correlation functions (also referred to as the
Hadamard Green’s functions) of the free-evolving operators
Ôf = d̂f (t),Ê(r̂a)f (t),Êf (r,t) ({· · · } denotes the anticommu-
tator):

GH

Ô, ij
(x; x ′) = 1

�

〈{
Ô

f

i (x),Ôf

j (x ′)
}〉

. (1)

For the dipole and on-atom field operators Ô = d̂,Ê(r̂a)
the arguments in (1) are two instants, (x; x ′) ≡ (t,t ′). For
the electric-field operator Ô = Ê, these arguments are two
four-vectors, (x; x ′) ≡ (r,t ; r′,t ′).

The linear susceptibilities (polarizability for the dipole),
generically written as retarded Green’s functions, describe
the linear response of the field and dipole to dipole and field
perturbations, respectively:

GR

Ô, ij
(x; x ′) = i

�
θ (t − t ′)

〈[
Ô

f

i (x),Ôf

j (x ′)
]〉
, (2)

with θ (t − t ′) denoting the Heaviside step function.
Note that the on-atom field Green’s functions as defined

by (1) and (2) are still quantum operators in the Hilbert
space corresponding to the atomic external dofs since the
average is taken over the EM field dofs only. We now take

022516-2



DYNAMICAL LOCAL AND NONLOCAL CASIMIR ATOMIC . . . PHYSICAL REVIEW A 89, 022516 (2014)

the average 〈GR,H

Ê(r̂a )
(t,t ′)〉k over the external quantum state

|ψk
E〉 corresponding to the single atomic wave packet k. We

express result in terms of the atomic wave functions ψk
E(r,t) =

〈r|e− i
�

ĤEt |ψk
E(0)〉, of the external atomic propagator

K(r,t ; r′,t ′) = 〈r|e− i
�

ĤE (t−t ′)|r′〉, (3)

and of the electric-field Green’s functions. For this purpose, we
switch to the Schrödinger picture with respect to the external
atomic dofs: Ê(r̂a)(t) = e

i
�

ĤEt Ê(r̂a(0),t)e− i
�

ĤEt , with r̂a(0)
being the initial atomic position operator and Ê(r,t) being
the quantized electric field (Heisenberg evolved with respect
to the Hamiltonian ĤF ) at the classical position r and time
t . Using closure relations for the external atomic dofs, one
obtains〈
GR(H )

Ê(r̂a )
(t ′,t)

〉
k

=
∫∫

d3rd3r′ψk∗
E (r,t)K(r,t ; r′,t ′)ψk

E(r′,t ′)

×GR(H )
Ê

(r,t ; r′,t ′) . (4)

It is necessary to identify the physically relevant con-
tributions of the field response (and fluctuations) as far
as the atom-surface interaction is concerned. By isotropy
of the atomic dipole, only the trace of the electric-field
Green’s functions GR(H )

Ê
(x; x ′) ≡ ∑

i G
R(H )
Ê ii

(x; x ′) (with the
sum performed on the Cartesian index i = 1,2,3) is needed
to obtain the interaction energy. GR(H )

Ê
(x; x ′) is the sum of

free-space and scattering contributions:

GR(H )
Ê

(x; x ′) = GR(H ),0
Ê

(x; x ′) + GR(H ),S
Ê

(x; x ′). (5)

By symmetry the free-space contributions GR(H ),0
Ê

(r,t ; r′,t ′)
depend only on |r − r′| and t − t ′ [34], whereas the scattering
contribution GR(H ),S

Ê
(r,t ; r′,t ′) can be written in terms of

the image of the source point r′ in the particular case of
the planar perfectly reflecting surface discussed in Sec. IV.
More specifically, the free-space retarded Green’s function
GR,0

Ê
(r,t ; r′,t ′) represents the direct propagation from r′ to r

and does not depend on the distance to the material surface,
whereas the scattering contributionGR,S

Ê
(r,t ; r′,t ′) corresponds

to the propagation with one reflection at the surface.
When substituting (5) in (4), the average on-atom field

Green’s functions also split into free-space and scattering
contributions, and only the latter contributes to the atom-
surface interaction energy U

int,S
k (t) and hence to the local

Casimir phase ϕloc
k . The latter is derived by following steps

similar to those employed for pointlike wave packets and using
expression (4) with the field Green’s function replaced by the
scattering contribution GR(H ),S

Ê
(r,t ; r′,t ′):

ϕloc
k

= 1

4

∫∫ T

0
dtdt ′

∫∫
d3rd3r′ψk∗

E (r,t)K(r,t ; r′,t ′)ψk
E(r′,t ′)

× [
gH

d̂
(t,t ′)GR,S

Ê
(r,t ; r′,t ′) + gR

d̂
(t,t ′) GH,S

Ê
(r,t ; r′,t ′)

]
,

(6)

with g
R(H )
d̂

(t,t ′) representing any diagonal component of the

isotropic atomic dipole Green’s function G
R(H )
d̂, ii

(t,t ′). The

two contributions appearing in (6) correspond to the separate
physical effects responsible for the atom-surface dispersive
interaction: radiation reaction and field fluctuations [35,36].
The former, proportional to the field retarded Green’s function,
dominates in the van der Waals unretarded short-distance limit
and is of particular relevance in the following sections. Physi-
cally, it represents the self-interaction between the fluctuating
dipole at time t and position r with its own electric field,
produced at an earlier time t ′ and position r′, after bouncing off
the material surface. This interpretation provides an indication
that a cross nonlocal interaction might also exist, with the
field produced at one wave-packet component propagating to
a different wave-packet component, as discussed in detail in
the following sections.

As a first check of (6), we consider the limit of very
narrow wave packets in order to compare with Ref. [14].
We assume that the wave-packet width is much shorter than
the relevant EM field wavelengths and then approximate the
position arguments of the Green’s functions G(R)H,S

Ê
(r,t ; r′,t ′)

by the central atomic positions rk(t) and rk(t ′) taken along
the trajectory k at the respective times t,t ′. In this case,
we can isolate the atomic propagation integral ψk

E(r,t) =∫
d3r′K(r,t ; r′,t ′)ψk

E(r′,t ′) in (6) and find

ϕloc
k ≈ 1

4

∫∫ T

0
dtdt ′

[
gH

d̂
(t,t ′)GR,S

Ê
(rk(t),rk(t ′))

+ gR

d̂
(t,t ′) GH,S

Ê
(rk(t),rk(t ′))

]
, (7)

in agreement with Ref. [14].
The second, more important limiting case of Eq. (6)

corresponds to its quasistatic limit. We also assume thermal
equilibrium for the dipole and EM field dofs and consider
long interaction times (stationary regime). In this case, the
dipole and electric-field Green’s functions depend only on the
time difference τ = t − t ′ and not on the individual times.
The retarded Green’s function GR,S

Ê
(r,τ ; r′,0) is nonzero only

for a time delay τ equal to the time it takes for a photon to travel
from the source position r′ to position r after one reflection
at the surface. These durations are, in usual experimental
conditions, much shorter than the time scales associated with
the external atomic motion. In the quasistatic limit, we treat
the external atomic motion as completely “frozen” during the
time delay τ = t − t ′. In other words, we take t ′ := t in the
external atomic propagator and wave functions. In this limit,
the former simplifies to K(r,t ; r′,t) = δ(r − r′). The resulting
expression can be directly compared with the formula for the
dispersive atom-surface potential VCas(r) [33] as detailed in the
Appendix. We then find that the local phase becomes a time
integral of the dispersive potential taken at the instantaneous
atomic position weighted by the external probability density:

ϕloc
k ≈ −1

�

∫ T

0
dt

∫
d3r

∣∣ψk
E(r,t)

∣∣2
VCas(r). (8)

The quasistatic expression (8) was employed as the theo-
retical model for comparison with experiments [8–10]. On the
other hand, our more general result (6) allows for nonequi-
librium [17,37] and nonstationary regimes which cannot be
described by the more standard expression (8). Explicit results
for the dynamical corrections to order ṙk(t)/c were derived in
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Ref. [13] in the case of very narrow atomic packets flying close
to a perfectly reflecting planar surface. Note, however, that we
also find nonlocal atomic phase corrections to order ṙk(t)/c.
Thus, a full quantum open-system approach, to be developed
in the following sections, is required to assess the first-order
dynamical correction in a consistent way.

III. NONLOCAL DYNAMICAL CASIMIR ATOMIC PHASES

From now on, we no longer model the effect of surface
interactions as a local phase shift imprinted on each external
atomic wave packet. We consider instead the evolution of
the full quantum state describing the external atomic waves,
atomic dipole, and EM field. In the discussion that follows, we
will refer to the dipole and EM field dofs as the “environment”
and to the external atomic waves as the “system.” We consider
the case of pointlike wave packets in this section in order to
introduce our method in a simpler setting, thus paving the way
for the discussion of finite-width wave packets in the following
sections.

We describe here how the quantum state of the environment
is affected by the propagation of the external atomic waves.
Because it involves the center-of-mass position operator r̂a ,
the dipolar Hamiltonian ĤAF = −d̂ · Ê(r̂a) operates on the
environment in a manner which depends on the path followed
by the atoms. Thus, such a Hamiltonian acts as a “which-path”
marker, leaving an atomic “footprint” on the dipole and
EM-field quantum states. The phase contribution is of second
order in the dipolar interaction Hamiltonian. A Feynman-
diagram expansion shows that these footprints actually contain
cross terms, involving the two coherent components of the
external atomic state propagating on two distinct arms of
the interferometer (see Fig. 2). As discussed in detail below,
such terms reflect a nonlocal disturbance of the environment
operated at different times by the system. In addition to a loss
of contrast in the fringe pattern, such perturbation also induces
a nonlocal double-path atomic phase coherence. We derive
here both the local and nonlocal phases resulting from the
influence of the environment. The local phase shifts obtained
below correspond exactly to the atom-surface interaction phase
(7) derived before for pointlike wave packets, whereas the
nonlocal phases cannot be derived from the interaction energy
along the different paths taken separately.

In Ref. [14], we have briefly outlined an alternative
approach based on the influence functional which captures
the effect of the environment on very narrow atomic waves as
a complex phase [17] which can also be recast as a stochastic

AF

AF

FIG. 2. (Color online) Double-path footprint left on the environ-
ment (dipole + EM field) by the external atomic state through the
dipolar interaction ĤAF .

phase. This method leads to the same final results we derive
in this section. The equivalence between the two points of
view illustrates an important property of open systems [19]:
their evolution is equally well described by considering the
accumulation of a stochastic phase or by analyzing the trace
left by the system on the quantum state of the environment.

A. Atomic interferences in the presence of an environment

Inspired by Ref. [19], we calculate the time evo-
lution of the full quantum state, which is ini-
tially given by |ψ(0)〉 = 1√

2
(|ψ1

E(0)〉 + |ψ2
E(0)〉) ⊗ |�DF (0)〉,

where |�DF (0)〉 = |ψD(0)〉 ⊗ |ψF (0)〉 denotes the initial en-
vironment (internal dipole and EM field) quantum state.
We discard the influence of the atom-surface interaction on
the external atomic motion (prescribed atomic trajectories),
which is a very good approximation in usual experimental
conditions [9]. In this section, we assume, for simplicity,
that the wave-packet width is much smaller than the relevant
field wavelengths (more general results are derived in the
following sections). Thus, the interaction is described by
the Hamiltonians ĤAF (rk(t)) = −d̂ · Ê(rk(t)) parametrized
by the central wave-packet trajectories represented by the
four-vectors rk(t) ≡ (rk(t),t), with k = 1,2, and acting only
on the dipole and EM-field Hilbert spaces [38]. We work in
the interaction picture, and the transformed time-dependent
interaction Hamiltonian reads
ˆ̃

HAF (rk(t)) = e
i
�

(ĤD+ĤF )t (−d̂ · Ê(rk(t)))e− i
�

(ĤD+ĤF )t . (9)

At time t = T , the full quantum state reads

|ψ(T )〉 = 1√
2

∣∣ψ1
E(T )

〉 ⊗ T e− i
�

∫ T

0 dt
ˆ̃
H

AF
(r1(t))|�DF (0)〉

+ 1√
2

∣∣ψ2
E(T )

〉 ⊗ T e− i
�

∫ T

0 dt ′ ˆ̃
H

AF
(r2(t))|�DF (0)〉,

(10)

where T denotes the time-ordering operator.
Since the dipole and EM-field states are not measured in

the experiment, we calculate the external reduced density
operator ρ = TrDF (|ψ(T )〉〈ψ(T )|). When substituting (10)
in this equation, the cross (interference) term represents the
external atomic coherence, which we evaluate in the position
representation:

ρ12(r,r′; T ) = 1
2

〈
r
∣∣ψ1

E(T )
〉〈
�2

DF (T )
∣∣�1

DF (T )
〉〈
ψ2

E(T )
∣∣r′〉.

(11)

Thus, the interference term ρ
(0)
12 = 1

2ψ2
E(r′,T )∗ ψ1

E(r,T ) is now
multiplied by the scalar product of the disturbed environment
states 〈

�2
DF (T )

∣∣�1
DF (T )

〉 ≡ ei	12 . (12)

The complex phase 	12 captures the environment effect on
the external interference term accumulated over the interaction
time T :

ei	12 = 〈�DF (0)|T̃ e
i
�

∫ T

0 dt
ˆ̃
H

AF
(r2(t))

× T e− i
�

∫ T

0 dt
ˆ̃
H

AF
(r1(t))|�DF (0)〉, (13)

with T̃ denoting the anti-time-ordering operator (earlier-time
operators on the left).
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In general, the final environmental quantum states have
a scalar product smaller than unity |〈�2

DF (T )|�1
DF (T )〉| =

e−Im	E
12 < 1, leading to an attenuation of the interferometer

fringe pattern. In this case, the full quantum state |ψ(T )〉 given
by (10) is entangled, indicating the transfer of which-path
information on the atomic motion to the environment. The
resulting decoherence has been theoretically studied [24] and
measured [25] for charged particles close to a material surface.
Here we focus on the complementary effect that is also present
in the general formula (13) for the complex phase 	12. In
addition to the loss of fringe visibility, the coupling with the
dipole and EM field dofs also leads to a displacement of the in-
terference fringes, corresponding to the real part Re 	12, which
we analyze in more detail in the remaining part of this paper.

B. Diagrammatic expansion of the environment-induced phase

As in the previous section, we follow a linear response
approach and treat the dipolar coupling as a small perturbation.
Thus, we perform a diagrammatic expansion of the time-
ordered (and anti-time-ordered) exponentials appearing in
formula (13) for the environment-induced complex phase
	12. We focus on the lowest-order diagrams yielding a finite
phase. Special care is required since the dipolar coupling

Hamiltonians ˆ̃
HAF (rk(t)) (9) taken at different times do not

commute. We calculate 	12 to first order in the atomic
polarizability, allowing us to approximate ei	12 � 1 + i	12.

This is a valid approximation as long as the distance between
the atom and the plate is much larger than the atomic size (this
assumption also justifies the electric dipole approximation).

It follows from (13) that first-order diagrams are pro-
portional to (〈· · · 〉0 denotes the average over the initial
environment state |�DF (0)〉)

± i

�

∫ T

0
dt 〈d̂(t) · Ê(rk(t))〉0 (14)

and, as a consequence, vanish since the atom has no permanent
dipole moment.

Thus, we focus on second-order diagrams, which are
quadratic in the EM-field and dipole operators. There are
two different ways to build second-order diagrams from
Eq. (13): one can either take two interactions pertaining to
the same time-ordered (or anti-time-ordered) exponential, or
one may take one interaction from each exponential. Diagrams
of the first kind correspond to a sequence of interactions
along the same path and are referred to as single-path (SP)
diagrams. Diagrams of the second kind simultaneously involve
two distinct paths and are thus called double-path (DP)
diagrams. The two contributions sum up to give the complex
environment-induced phase 	12 = 	SP

12 + 	DP
12 .

1. Phase contribution of local single-path diagrams

We consider first the two possible SP diagrams, beginning
with the diagram arising from the time-ordered exponential
evaluated along path 1 on the right-hand side of (13), whose
contribution reads

	SP
1 = i

�2

∫ T

0
dt

∫ t

0
dt ′

∑
i,j

〈d̂i(t)d̂j (t ′)Êi(r1(t))Êj (r1(t ′))〉0,

(15)

where we sum over the Cartesian indices i,j = 1,2,3. In order
to express the phase 	SP

1 in terms of dipole and electric-field
Green’s function (1) and (2), we write the product of dipole (or
electric field) operators at distinct times (or space-time points)
as the half sum of their commutator and anticommutator. As
in Sec. II, these contributions can be expressed in terms of
the scalar dipole g

R(H )
d̂

(t,t ′) and the trace of the electric-field

Green’s function GR(H )
Ê

(x; x ′). For the latter we take only the

scattering contributionGR(H ),S
Ê

(x; x ′) [see Eq. (5)] and then find

that Re 	SP
1 = ϕloc

1 is precisely the local phase (7) obtained in
Sec. II for pointlike wave packets.

An analogous SP diagram comes from the anti-time-
ordered exponential along path 2 on the right-hand side of
(13), yielding a similar contribution 	SP

2 to the complex phase.
The reversed time ordering leads to an additional minus sign
in front of each retarded dipole and electric-field Green’s
functions appearing in the expression for the complex phase.
Since Re 	SP

2 contains an odd number of retarded Green’s
functions, we find Re 	SP

2 = −ϕloc
2 with the local phase ϕloc

2
given again by (7). Thus, the total contribution of single-path
diagrams has a real part

Re 	SP
12 = ϕloc

1 − ϕloc
2 . (16)

Since Re 	12 represents the phase coherence of path 1 with
respect to path 2, it must be antisymmetric with respect to
the interchange of the two paths. This property is clearly
satisfied by the local contribution (16) and will also hold
for the nonlocal double-path contribution discussed in the
following. On the other hand, the imaginary part Im 	12,

representing decoherence, must be symmetric with respect
to the interchange, with both local path contributions being
positive and thus leading to an attenuation of the fringe pattern.
This property is also satisfied by the result derived from (13)
since Im 	12 contains an even number of retarded Green’s
functions.

In short, the local approach developed in Sec. II provides
the correct expressions for the real part of the single-path
contributions to the complex phase 	12. However, it is unable
to yield even the single-path contributions to the imaginary
part of 	12, which represents the decoherence effect. More
importantly, the local theory also misses all double-path phase
contributions, which we discuss in the remaining part of this
section.

2. Phase contribution of the nonlocal double-path diagram

We investigate here the double-path diagram, which in-
volves a product of linear terms issued from both the time-
ordered and anti-time-ordered exponentials on the right-hand
side of (13):

i	DP
12 =

〈 ∑
i,j

(
i

�

∫ T

0
dt ′d̂i(t

′)Êi(r2(t ′))
)

×
(−i

�

∫ T

0
dtd̂j (t)Êj (r1(t))

)〉
0

. (17)

As before, we express the product of two dipole and EM-
field operators as the half sum of their commutators and
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anticommutators. After summing over the Cartesian indices
i,j and discarding the contributions from the free-space
electric-field Green’s functions, we find for the real part
φDP

12 ≡ Re 	DP
12

φDP
12 = 1

4

∫∫ T

0
dt ′dt

[
gH

d̂
(t,t ′)

(
GR,S

Ê
(r1(t),r2(t ′))

−GR,S

Ê
(r2(t),r1(t ′))

) + gR

d̂
(t,t ′)

(
GH,S

Ê
(r1(t),r2(t ′))

−GH,S

Ê
(r2(t),r1(t ′))

)]
. (18)

As required for consistency, the right-hand side of (18) is
antisymmetrical under the interchange of the two paths since
φDP

12 represents a contribution to the relative phase of path
1 with respect to path 2. Remarkably, this relative phase
contribution depends simultaneously on the two distinct paths
of the atom interferometer and cannot be split into separate
contributions from paths 1 and 2.

The non-negligible contribution to the nonlocal phase
φDP

12 actually comes entirely from the term proportional to
gH

d̂
(t,t ′) in Eq. (18), which accounts for the long-lived atomic

dipole fluctuations. Equation (18) shows that the nonlocal
phase results from the asymmetry between the cross self-
interactions involving different wave packets: the fluctuating
dipole interacting with the electric field sourced by itself at a
different location [14].

IV. DYNAMICAL CASIMIR PHASES
FOR FINITE-SIZE WAVE PACKETS

The previous derivation of the dynamical Casimir phases for
pointlike atomic wave packets highlighted the basic physical
mechanisms behind the appearance of a nonlocal double-path
Casimir phase. However, the usual experimental conditions in
Casimir interferometry [8–10] do not match this assumption
since the widths of the atomic wave packets are of the same
order as the atom-surface distances. In this section, we present
a derivation of the dynamical local and nonlocal Casimir
phases for finite-width wave packets.

As in the previous section, we consider the interaction
picture. However, we no longer consider the interaction
Hamiltonian as parametrized by well-defined atomic trajec-
tories. Instead, we now evolve the interaction Hamiltonian
with respect to the external atomic dofs associated with
the Hamiltonian ĤE ; that is, the time-dependent interaction
Hamiltonian can be expressed as a function of the free-
evolving dipole d̂(t), free-evolving electric field Ê(r,t), and

initial time position operator r̂a(0) as ˆ̃
HAF (t) = e

i
�

ĤEt [−d̂(t) ·
Ê(r̂a(0),t)]e− i

�
ĤEt . Again, we consider the coherence of the

reduced density matrix (11) ρ12(r,r′; t) between the two wave
packets ψ1

E(r,t) and ψ2
E(r′,t), related to the free-evolving

density matrix coherence ρ0
12(r,r′; T ) = 1

2ψ1
E(r,t)ψ2∗

E (r′,t) by
ρ12(r,r′; T ) = ρ0

12(r,r′; T )eiφ12(r,r′;T ). For a small interaction
phase φ12(r,r′; T ), a first-order Taylor expansion yields
φ12(r,r′; T ) � (−i)δρ12(r,r′; T )/ρ0

12(r,r′; t). We have intro-
duced the difference between the free and interacting density
matrix coherences δρ12(r,r′; T ) = ρ12(r,r′; T ) − ρ0

12(r,r′; T ),
determined below in terms of second-order dipolar interaction
diagrams. We also define the average interaction phase coher-

ence φ12(T ) ≡ ∫∫
d3rd3r′|ψ1

E(r,T )|2|ψ2
E(r′,T )|2φ12(r,r′; T ),

equivalently expressed as

φ12(T ) = −2i

∫
d3r

∫
d3r′ψ1∗

E (r,T )ψ2
E(r′,T ) δρ12(r,r′; T ).

(19)

At time T , the reduced density matrix can be formally
expressed as

ρ12(r,r′; T ) = 1

2
〈ψDF (0)| ⊗ 〈

ψ2
E(0)

∣∣T̃ [
e

i
�

∫ T

0 dt
ˆ̃
H

AF
(t)

]
× (

e
i
�

ĤET |r′〉〈r|e− i
�

ĤET ⊗ 1DF

)
× T

[
e− i

�

∫ T

0 dt ′ ˆ̃
H

AF
(t ′)]∣∣ψ1

E(0)
〉 ⊗ |ψDF (0)〉.

(20)

Let us first investigate the SP terms, which correspond
to contributions to δρ12(r,r′; T ) arising from quadratic
terms issued from the same time-ordered (or anti-time-
ordered) exponential. One considers without loss of generality
the SP phase associated with path 1, which yields the
contribution

δρSP1
12 (r1,r2; T )

= i

2�2
ψ2∗

E (r2,T )
3∑

i,j=1

∫ T

0
dt

∫ t

0
dt ′

×
∫

d3r
∫

d3r′K(r1,T ; r,t)K(r,t ; r′,t ′)ψ1
E(r′,t ′)

×〈ψ̃DF (0)|d̂i(t)Êi(r,t)d̂j (t ′)Êj (r′,t ′)|ψ̃DF (0)〉.
When taking the average (19) of δρSP1

12 , one recognizes an
integral involving the external atomic propagator (3), leading
to the Casimir phase (6) obtained previously with the local
theory.

On the other hand, one derives the DP phase from
Eq. (20) by considering the diagrams composed of linear
terms issued from both the time-ordered and anti-time-ordered
exponentials:

δρDP
12 (r,r′; T )

= 1

2

3∑
i,j=1

∫
d3r

∫
d3r′〈ψDF (0)|

×
[

i

�

∫ T

0
dt ′ψ2∗

E (r′,t ′)K(r′,t ′; r2,T )d̂i(t
′)Êi(r′,t ′)

]
×

[
− i

�

∫ T

0
dtd̂j (t)Êj (r,t)K(r1,T ; r,t)ψ1

E(r,t)
]

× |ψDF (0)〉.
The averaging procedure (19) yields a double-path phase
which depends simultaneously on the histories of the two
wave functions corresponding to each interferometer arm. As
in Sec. III, we express the bilinear averages of the dipole and
field operators in terms of Hadamard and retarded Green’s
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functions:

φDP
12 (T ) = 1

4

∫∫ T

0
dtdt ′

∫∫
d3rd3r′∣∣ψ1

E(r,t)
∣∣2∣∣ψ2

E(r′,t ′)
∣∣2

× [
gH

d̂
(t,t ′)

(
GR,S

Ê
(r,t ; r′,t ′) − GR,S

Ê
(r′,t ′; r,t)

)
+ gR

d̂
(t,t ′)

(
GH,S

Ê
(r,t ; r′,t ′) − GH,S

Ê
(r′,t ; r,t ′)

)]
.

(21)

If one considers that the electric-field Green’s functions are
uniform over the width of atomic wave packets, one obviously
retrieves the nonlocal DP phase (18) of Sec. III obtained in

the narrow atomic wave-packet limit. In order to highlight
the dependence of the DP phase on the dynamical atomic
motion, we Taylor expand the advanced-time wave function
|ψk

E(r,t)|2 � |ψk
E(r,t ′)|2 + ∂

∂t
|ψk

E(r,t ′)|2τ in Eq. (21). This
is an excellent approximation since the time τ = |r − r′|/c
corresponds to the light propagation between the dipole and its
image and is thus extremely short compared to the typical time
scale of the external atomic motion. As before, we assume a
stationary regime and write g

R,H

d̂
(τ ) ≡ g

R,H

d̂
(t ′ + τ,t ′). Using

the conservation of the atomic probability, one can express
the DP phase (21) in terms of the probability current jk(r,t) =
Re[ψk∗

E (r,t) �

im
∇ψk

E(r,t)]:

φDP
12 (T ) = 1

4

3∑
i=1

∫ T

0
dt ′

∫ T −t ′

0
dτ

∫∫
d3rd3r′(j 1

i (r,t ′)
∣∣ψ2

E(r′,t ′)
∣∣2 − j 2

i (r,t ′)
∣∣ψ1

E(r′,t ′)
∣∣2)

τ

×
(

gH

d̂
(τ )

∂GR,S

Ê
(r,t ′ + τ ; r′,t ′)

∂ri

+ gR

d̂
(τ )

∂GH,S

Ê
(r,t ′ + τ ; r′,t ′)

∂ri

)
. (22)

The nonlocal DP phase is thus a dynamical phase correc-
tion, with the current density giving the probability density
evolution during the very short electromagnetic propagation
time τ. In the next section, we investigate in greater detail the
phases acquired by wide wave packets flying close to a planar
perfectly reflecting surface.

V. NONLOCAL DYNAMICAL CORRECTIONS TO THE
VAN DER WAALS PHASE FOR A PLANE SURFACE

In this section, we derive explicit results for the nonlocal
dynamical contributions to the Casimir phase, working at the
leading order in v/c (v denotes the magnitude of the atomic
center-of-mass velocity). Starting from the general results
of Sec. IV, we describe such corrections for wide atomic
packets interacting with a perfectly reflecting planar surface,
located at z = 0. Moreover, we shall consider specifically
the short-distance van der Waals (vdW) regime probed by
the experiments [8–10], which corresponds to a stronger
atom-surface interaction (thus yielding larger dynamical phase
corrections) than the long-distance Casimir-Polder limit. As
discussed in Sec. II, at these distances the dominant dynamical
vdW phase contributions come from the electric-field response
to dipole fluctuations. The experiments were performed for
wide atomic wave packets filling in the gap between the central
trajectory and the conducting plate [8–10]. In this case, we
show here that the nonlocal DP phase is enhanced with respect
to the result for pointlike packets [14] by a logarithmic factor.

We take a Mach-Zehnder atom interferometer in the half
space z > 0 close to the material surface at z = 0, as illustrated
by Fig. 1. The two central atomic trajectories share the same
velocity component parallel to the plate but have arbitrary
normal velocities:

rk(t) = r0//(t) + zk(t) ẑ, k = 1,2. (23)

The results that follow can be extended to discuss dynamical
vdW phase corrections resulting from atomic interactions with
a grating as in Refs. [8–10].

A. Electric-field and dipole Green’s functions

It is necessary, at this stage, to have at hand explicit
expressions for the dipole and electric-field Green’s functions.
As discussed in Sec. II, the electric-field Green’s functions is
decomposed as the sum of free and scattering contributions.
Only the latter is relevant for the derivation of the Casimir
phases induced by the surface. We first derive the field
Green’s functions in Fourier space by writing the electric-field
operator as a sum over normal modes, taking into account
the perfectly reflecting surface at z = 0. We then derive both
the known result for the free-space Green’s function [34]
and the scattering contribution

GR,S

Ê
(x,x ′) = θ (τ )

2πε0

∂2

∂z∂z′

(
δ(τ − |r − r′

I|/c)

|r − r′
I|

)
. (24)

As expected GR,S

Ê
(x,x ′) depends on the time difference τ =

t − t ′ only and not on the individual times. It is written in
terms of the propagation distance |r − r′

I| between point r
and image r′

I = (x ′,y ′,−z′) of the source point r′ = (x ′,y ′,z′)
with respect to the plane surface. Assuming the EM field is
in thermal equilibrium, the electric-field Hadamard Green’s
function GH,S

Ê
(x,x ′) can be obtained from the retarded one

thanks to the fluctuation-dissipation theorem.
In order to obtain the dipole Green’s functions, we model

the internal atomic degrees of freedom as a harmonic oscillator
with a transition frequency ω0 (and wavelength λ0) and assume
the atom to be in its ground state. The Hadamard dipole Green’s
function is then proportional to the static atomic polarizability
α(0):

gH

d̂
(t,t ′) = α(0) ω0 cos[ω0(t − t ′)]. (25)

B. Nonlocal dynamical phases

We consider the limit of wide atomic packets with a
well-defined momentum, which is well suited to describe the
dispersion effects associated with the finite width of the atomic
packets propagating near the plate. In this limit, one may take

022516-7



IMPENS, TTIRA, BEHUNIN, AND NETO PHYSICAL REVIEW A 89, 022516 (2014)

the probability current involved in the DP path phase (22)
as jk(r,t) � |ψk

E(r,t)|2vk(t), where vk(t) = ṙk(t) is a classical
velocity [39]. Since the DP phase depends sharply on the
distance between the atoms and the conductor and not on their
lateral position above this surface, the extension of the atomic
wave packets in the direction Oz normal to the conducting
surface is much more critical than the extension of the atomic
packets along the directions Ox,Oy parallel to the conductor.
Thus, one can safely use one-dimensional atomic wave packets
ψ

1,2
E (z,t) in order to model dispersion effects in the nonlocal

DP phase acquired by wide atomic beams.
We model the atomic wave functions by a stepwise

distribution centered on the classical atomic trajectories of
time-independent width; that is, we take |ψE

k (z,t)|2 = 1/w

for zk(t) − w/2 < z < zk(t) + w/2 and zero for |z − zk(t)| �
w/2, with a width w such that w � 2z0, where z0 = z1(0) =
z2(0) is the initial distance between the atomic wave-packet
centers and the plate. Naturally, such a description is a
simple approximation, and modeling in terms of Gaussian
wave packets would be more accurate. Nevertheless, this
approach should yield the correct qualitative picture and has
the advantage of giving analytical expressions regarding the
dependence of the DP phase towards the wave-packet width.

We calculate the DP phase in the short-distances vdW
regime and take gH

d (τ ) ≈ gH
d (0) = ω0α(0) [see (25)]. We

consider the linear trajectories (23) and assume that the
distance between the central trajectory end points is much
larger than the initial altitude z0, yielding the saturation limit
of the DP phase [14]. Using the step wave functions in Eq. (22),
one obtains an expression for the DP phase taking into account
the finite atomic packet extension:

φDP
12 (z0,w) = −3π

λ0

α(0)

4πε0

1

w2
ln

(
1 − w2

4z2
0

)
. (26)

When taking the limit w  z0 in this expression, one retrieves
the DP phase obtained in [14] for classical trajectories.
On the other hand, the phase φDP

12 (z0,w) diverges when the
wave-packet width w approaches 2z0, i.e., when the edge of
the atomic wave-function becomes close to the plate. This
suggests that greater care is needed to evaluate this phase when
considering atomic wave functions which do not vanish at the
plate boundary, where the vdW potential becomes infinite.

Indeed, the divergence above is a consequence of our
perturbative approach, jointly with the the small phase approx-
imation eiφDP

12 � 1 + iφDP
12 , which obviously breaks down close

to the plate (dispersion interaction models in general are valid
only for distances much larger than the atomic length scale).
Fortunately, this divergence can be easily cured since such
contributions lead to quickly oscillating complex exponentials
which, in fact, barely affect the average vdW phase [8,10].
To make our argument more precise, we reintroduce these
exponentials in our derivation of the average dynamical phase
	DP

12 (T ):

|A|ei	DP
12 (T ) =

∫
dz0

1dz0
2

∣∣ψ1
E

(
z0

1,0
)∣∣2∣∣ψ2

E

(
z0

2,0
)∣∣2

eiφDP
12 (z0

1,z
0
2;T ),

(27)

with the phase

φDP
12

(
z0

1,z
0
2; T

)
= 1

4

∫ T

0
dt ′

∫ T −t ′

0
dτgH

d̂
(τ )τ [v1 z(t

′) − v2 z(t
′)]

× ∂

∂z
GR

E (z1(t ′)ẑ,t ′ + τ ; z2(t ′)ẑ,t ′)

and zk(t ′) = z0
k + ∫ t ′

0 dt ′′vk z(t ′′). We have omitted the com-
mon displacement of the atomic wave packets parallel to the
plate on both trajectories thanks to the translational invariance
of the field Green’s function along this direction. Using the
vdW regime and the saturation limit and following Ref. [14],
one finds

φDP
12

(
z0

1,z
0
2; T

) = 3π

λ0

(
α(0)

4πε0

)(
z0

1 + z0
2

)−2
. (28)

Equations (27) and (28) are the starting point of the
derivation to follow. We consider initial atomic wave functions
filling in the gap between the central atomic position and the
material surface, taking again a step wave-function approach
with this time w = 2z0.

Under the above approximations and following the averag-
ing procedure of Refs. [8,10], one derives the average DP phase
tan φDP

12 (w) = Is/Ic, with Is = (w2
c /2w2)

∫ +∞
w2

c /w
2 dφφ−2 sin(φ)

and Ic = (w2
c /2w2)

∫ +∞
w2

c /w
2 dφφ−2 cos(φ). We have introduced

a critical length scale associated with the DP phase wc =
{ 3π

λ0
[α(0)/(4πε0)]}1/2. The distance rα = [α(0)/(4πε0)]1/3

represents the atomic length scale and is of the order of an
angstrom. Thus, the length wc = √

3πrα(rα/λ0)1/2 is always
several orders of magnitude smaller than any experimentally
achievable atomic packet width w. One may then keep only
the lowest-order quadratic terms in the small parameter wc/w,
taking Ic � 1 and

φDP
12 (w) = 3π

λ0

(
α(0)

4πε0

)
1

w2
ln

(
w

wc

)
+ O

(
w4

c

w4

)
. (29)

A comparison with the results for pointlike packets following
identical central trajectories [14] shows that wide atomic
beams experience an enhancement of the DP phase by a factor
ln( w

wc
). Considering 87Rb atoms and a wave-packet width

w = 40 nm (and thus z0 = w0/2 = 20 nm) compatible with
the parameters used in the Casimir experiments [8–10], one
obtains a DP phase φDP

12 w � 3 × 10−6 rad, corresponding to an
enhancement of roughly one order of magnitude.

VI. CONCLUSION

Using standard perturbation theory, we have addressed
dynamical corrections, arising from the external motion, to
the Casimir phase acquired by neutral atoms interacting with
a material surface. A careful description of retardation effects,
combined with the atomic motion, reveals the appearance of
a nonlocal atomic phase coherence, which simultaneously
involves a pair of atomic paths instead of a single atomic
trajectory as usual in atom optics.
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By construction, the nonlocal phase for a given pair of paths
must be antisymmetric with respect to the interchange of the
two paths in the pair. In fact, it results from the difference
between the EM propagation distances from one path to the
other one after one reflection at the surface. Thus, it vanishes
when the two path motions with respect to the plate are
symmetrical (for instance, in the case of trajectories parallel to
plate). In other words, the symmetry between the two paths is
broken by the velocity components normal to the surface, and
the nonlocal phase is proportional to the difference between
the two velocity components of a given pair.

In a previous work [14], we had obtained a preliminary
estimation of the nonlocal double-path phase for pointlike
atomic wave packets using an independent and less intuitive
method based on the influence functional. Here we have
obtained these dynamical Casimir phases by keeping track
of the quantum state of the environment: the EM-field and the
atomic dipole degrees of freedom. This treatment provides
us with an interesting open-system interpretation of this
double-path atomic phase coherence: it results from a nonlocal
disturbance of the environment by a coherent superposition of
external atomic waves propagating across two distinct atomic
paths. The approach developed here also corresponds to more
realistic experimental conditions since it takes into account
the atomic dispersion in position around the central path,
which is relevant for the estimation of the vdW phase [9].
The corresponding general expressions, written in terms of
Green’s functions for the field and atomic internal dofs and
of the atomic probability current and wave functions, are, in
principle, valid for arbitrary geometries and nonequilibrium
conditions. We have also derived explicit analytical results for a
perfectly reflecting planar surface in the short-distance regime.
In this regime, our treatment reveals a significant enhancement
of the nonlocal DP phase acquired by wide atomic packets with
respect to our previous estimation based simply on classical
atomic trajectories.

Both the local and nonlocal dynamical atomic Casimir
phases are first-order relativistic corrections arising from the
external atomic motion and thus are of similar magnitude. This
shows that the relativistic corrections to the Casimir phase are
intrinsically nonlocal.
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APPENDIX: QUASISTATIC LIMIT
OF THE LOCAL ATOMIC PHASE

Here, we assume that the field is in thermal equilibrium,
and we consider the regime of long atom-surface interaction
times; namely, we take an atomic time of flight T above
the conductor much larger than the atomic dipole or field
correlation time scales. In this regime, we show that the
nonrelativistic contribution to the local Casimir phase of
Sec. II reduces to the standard phase arising from a dispersive
(Casimir) potential. Taking the quasistatic limit of Eq. (6), one

obtains

ϕloc
k ≈ 1

4

∫ T

0
dt ′

∫
d3r

∣∣ψk
E(r,t)

∣∣2

×
∫ t

0
dτ

[
gH

d̂
(τ )GR,S

Ê
(r,r; τ ) + gR

d̂
(τ ) GH,S

Ê
(r,r; τ )

]
.

(A1)

We have assumed that the dipole and field fluctuations are
stationary in order to write g

R(H )
d̂

(τ ) ≡ g
R(H )
d̂

(t + τ,t) and

GR(H ),S
Ê

(r,r; τ ) ≡ GR(H ),S
Ê

(r,t + τ ; r,t).
In the equation above, we focus on the integral over the

delay τ , whose bounds can be extended to infinity in the regime
of large atom-surface interaction times. Using the Parseval-
Plancherel relation, we express the local phase in the Fourier
domain as follows:

ϕloc
k ≈ 1

8π

∫ T

0
dt

∫
d3r

∣∣ψk
E(r,t)

∣∣2

×
∫

dω
(
gR

d̂
(ω) GH,S∗

Ê
(r,r; ω) + GR,S

Ê
(r,r; ω)gH∗

d̂
(ω)

)
.

(A2)

The Fourier transform of the Green’s function is defined as

g
R(H )
d̂

(ω) =
∫ +∞

−∞
dτg

R(H )
d̂

(τ )eiωτ

and likewise for GR(H ),S
Ê

(r,r; ω).
Our next step is to express the dispersive potential as a

similar frequency integral. We assume that the electric-field
and dipole dofs are at thermal equilibrium at temperature �.

One starts with the general expression derived in Ref. [33]:

VCas(r) = − �

2π

∫ +∞

0
dω coth

(
�ω

2kB�

)
× Im

[
gR

d̂
(ω)GR,S

Ê
(r,r; ω)

]
, (A3)

where kB is the Boltzmann constant. In order to cast (A3) in the
form of Eq. (A2), we use the fluctuation-dissipation theorem
(FDT):

gH

d̂
(ω) = 2 coth

(
�ω

2kB�

)
Im

[
gR

d̂
(ω)

]
,

(A4)

G
H,S

Ê
(r,r; ω) = 2 coth

(
�ω

2kB�

)
Im

[
G

R,S

Ê
(r,r; ω)

]
.

Using these relations, we rewrite (A3) as

VCas(r) = − �

4π

∫ +∞

0
dω

{
GH

d̂
(ω)Re

[
GR,S

Ê
(r,r; ω)

]
+ Re

[
gR

d̂
(ω)

]
GH,S

Ê
(r,r; ω)

}
. (A5)

Then, we use the parity of the Green’s functions with respect
to the frequency ω in order to extend the lower bound of the
integral in (A5) to −∞. Note that g

(R,H )
d̂

(−ω) = g
(R,H )∗
d̂

(ω)

since the Green’s functions g
(R,H )
d̂

(t,t ′) are real. In addition,
the FDT shows that gH

d̂
(ω) is real. Similar relations hold for

the electric-field Green’s functions G(R,H ),S
Ê

(r,r; ω). One then
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derives

VCas(r) = − �

8π

∫
dω

(
gH

d̂
(ω)Re

[
GR,S

Ê
(r,r; ω)

]
+ Re

[
gR

d̂
(ω)

]
GH,S

Ê
(r,r; ω)

)
. (A6)

We can add gH

d̂
(ω)Im[GR,S∗

Ê
(r,r; ω)] and

Im[gR∗
d̂

(ω)]GH,S

Ê
(r,r; ω) to the integrand in (A6) since

they are odd functions of ω:

VCas(r) = −�

8π

∫
dω

(
gH

d̂
(ω)GR,S∗

Ê
(r,r; ω)

+GH,S

Ê
(r,r; ω)gR∗

d̂
(ω)

)
. (A7)

By inspecting Eqs. (A2) and (A7), we conclude that the local
Casimir phase in the quasistatic limit takes the standard form
(8) of an atomic Casimir phase [9].
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A. Aspect, and P. Bouyer, Phys. Rev. A 77, 033630 (2008);
F. Impens, ibid. 80, 063617 (2009).

[32] J. Dalibard, J. Dupont-Roc, and C. Cohen-Tannoudji, J. Phys.
(Paris) 43, 1617 (1982); ,45, 637 (1984).

[33] J. M. Wylie and J. E. Sipe, Phys. Rev. A 30, 1185 (1984); ,32,
2030 (1985).

022516-10

http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1098/rspa.1978.0121
http://dx.doi.org/10.1098/rspa.1978.0121
http://dx.doi.org/10.1098/rspa.1978.0121
http://dx.doi.org/10.1098/rspa.1978.0121
http://dx.doi.org/10.1088/0305-4608/11/1/011
http://dx.doi.org/10.1088/0305-4608/11/1/011
http://dx.doi.org/10.1088/0305-4608/11/1/011
http://dx.doi.org/10.1088/0305-4608/11/1/011
http://dx.doi.org/10.1088/0953-8984/9/47/001
http://dx.doi.org/10.1088/0953-8984/9/47/001
http://dx.doi.org/10.1088/0953-8984/9/47/001
http://dx.doi.org/10.1088/0953-8984/9/47/001
http://dx.doi.org/10.1103/PhysRevB.74.205413
http://dx.doi.org/10.1103/PhysRevB.74.205413
http://dx.doi.org/10.1103/PhysRevB.74.205413
http://dx.doi.org/10.1103/PhysRevB.74.205413
http://dx.doi.org/10.1088/1367-2630/11/3/033035
http://dx.doi.org/10.1088/1367-2630/11/3/033035
http://dx.doi.org/10.1088/1367-2630/11/3/033035
http://dx.doi.org/10.1088/1367-2630/11/3/033035
http://dx.doi.org/10.1088/1367-2630/12/3/033028
http://dx.doi.org/10.1088/1367-2630/12/3/033028
http://dx.doi.org/10.1088/1367-2630/12/3/033028
http://dx.doi.org/10.1088/1367-2630/12/3/033028
http://dx.doi.org/10.1103/PhysRevD.84.025011
http://dx.doi.org/10.1103/PhysRevD.84.025011
http://dx.doi.org/10.1103/PhysRevD.84.025011
http://dx.doi.org/10.1103/PhysRevD.84.025011
http://dx.doi.org/10.1088/0953-8984/23/35/355004
http://dx.doi.org/10.1088/0953-8984/23/35/355004
http://dx.doi.org/10.1088/0953-8984/23/35/355004
http://dx.doi.org/10.1088/0953-8984/23/35/355004
http://dx.doi.org/10.1103/PhysRevB.34.6853
http://dx.doi.org/10.1103/PhysRevB.34.6853
http://dx.doi.org/10.1103/PhysRevB.34.6853
http://dx.doi.org/10.1103/PhysRevB.34.6853
http://dx.doi.org/10.1103/PhysRevB.65.115419
http://dx.doi.org/10.1103/PhysRevB.65.115419
http://dx.doi.org/10.1103/PhysRevB.65.115419
http://dx.doi.org/10.1103/PhysRevB.65.115419
http://dx.doi.org/10.1134/1.1507265
http://dx.doi.org/10.1134/1.1507265
http://dx.doi.org/10.1134/1.1507265
http://dx.doi.org/10.1134/1.1507265
http://dx.doi.org/10.1088/1367-2630/12/11/113045
http://dx.doi.org/10.1088/1367-2630/12/11/113045
http://dx.doi.org/10.1088/1367-2630/12/11/113045
http://dx.doi.org/10.1088/1367-2630/12/11/113045
http://arxiv.org/abs/arXiv:1308.0712
http://arxiv.org/abs/arXiv:1309.1490
http://dx.doi.org/10.1103/PhysRevA.80.042902
http://dx.doi.org/10.1103/PhysRevA.80.042902
http://dx.doi.org/10.1103/PhysRevA.80.042902
http://dx.doi.org/10.1103/PhysRevA.80.042902
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/RevModPhys.81.1051
http://dx.doi.org/10.1103/PhysRevA.70.043607
http://dx.doi.org/10.1103/PhysRevA.70.043607
http://dx.doi.org/10.1103/PhysRevA.70.043607
http://dx.doi.org/10.1103/PhysRevA.70.043607
http://dx.doi.org/10.1103/PhysRevLett.95.133201
http://dx.doi.org/10.1103/PhysRevLett.95.133201
http://dx.doi.org/10.1103/PhysRevLett.95.133201
http://dx.doi.org/10.1103/PhysRevLett.95.133201
http://dx.doi.org/10.1103/PhysRevA.73.033610
http://dx.doi.org/10.1103/PhysRevA.73.033610
http://dx.doi.org/10.1103/PhysRevA.73.033610
http://dx.doi.org/10.1103/PhysRevA.73.033610
http://dx.doi.org/10.1209/0295-5075/88/20002
http://dx.doi.org/10.1209/0295-5075/88/20002
http://dx.doi.org/10.1209/0295-5075/88/20002
http://dx.doi.org/10.1209/0295-5075/88/20002
http://dx.doi.org/10.1140/epjd/e2011-10584-7
http://dx.doi.org/10.1140/epjd/e2011-10584-7
http://dx.doi.org/10.1140/epjd/e2011-10584-7
http://dx.doi.org/10.1140/epjd/e2011-10584-7
http://dx.doi.org/10.1103/PhysRevA.75.063608
http://dx.doi.org/10.1103/PhysRevA.75.063608
http://dx.doi.org/10.1103/PhysRevA.75.063608
http://dx.doi.org/10.1103/PhysRevA.75.063608
http://dx.doi.org/10.1103/PhysRevA.86.013614
http://dx.doi.org/10.1103/PhysRevA.86.013614
http://dx.doi.org/10.1103/PhysRevA.86.013614
http://dx.doi.org/10.1103/PhysRevA.86.013614
http://dx.doi.org/10.1103/PhysRevLett.77.2356
http://dx.doi.org/10.1103/PhysRevLett.77.2356
http://dx.doi.org/10.1103/PhysRevLett.77.2356
http://dx.doi.org/10.1103/PhysRevLett.77.2356
http://dx.doi.org/10.1103/PhysRevA.56.2085
http://dx.doi.org/10.1103/PhysRevA.56.2085
http://dx.doi.org/10.1103/PhysRevA.56.2085
http://dx.doi.org/10.1103/PhysRevA.56.2085
http://dx.doi.org/10.1103/PhysRevA.59.2216
http://dx.doi.org/10.1103/PhysRevA.59.2216
http://dx.doi.org/10.1103/PhysRevA.59.2216
http://dx.doi.org/10.1103/PhysRevA.59.2216
http://dx.doi.org/10.1103/PhysRevA.80.031602
http://dx.doi.org/10.1103/PhysRevA.80.031602
http://dx.doi.org/10.1103/PhysRevA.80.031602
http://dx.doi.org/10.1103/PhysRevA.80.031602
http://dx.doi.org/10.1209/0295-5075/89/10002
http://dx.doi.org/10.1209/0295-5075/89/10002
http://dx.doi.org/10.1209/0295-5075/89/10002
http://dx.doi.org/10.1209/0295-5075/89/10002
http://dx.doi.org/10.1088/1367-2630/13/6/065024
http://dx.doi.org/10.1088/1367-2630/13/6/065024
http://dx.doi.org/10.1088/1367-2630/13/6/065024
http://dx.doi.org/10.1088/1367-2630/13/6/065024
http://dx.doi.org/10.1088/0953-4075/46/24/245503
http://dx.doi.org/10.1088/0953-4075/46/24/245503
http://dx.doi.org/10.1088/0953-4075/46/24/245503
http://dx.doi.org/10.1088/0953-4075/46/24/245503
http://dx.doi.org/10.1209/0295-5075/101/60006
http://dx.doi.org/10.1209/0295-5075/101/60006
http://dx.doi.org/10.1209/0295-5075/101/60006
http://dx.doi.org/10.1209/0295-5075/101/60006
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1016/0003-4916(63)90068-X
http://dx.doi.org/10.1088/1751-8113/43/1/012001
http://dx.doi.org/10.1088/1751-8113/43/1/012001
http://dx.doi.org/10.1088/1751-8113/43/1/012001
http://dx.doi.org/10.1088/1751-8113/43/1/012001
http://dx.doi.org/10.1103/PhysRevA.82.022507
http://dx.doi.org/10.1103/PhysRevA.82.022507
http://dx.doi.org/10.1103/PhysRevA.82.022507
http://dx.doi.org/10.1103/PhysRevA.82.022507
http://dx.doi.org/10.1103/PhysRevA.84.012902
http://dx.doi.org/10.1103/PhysRevA.84.012902
http://dx.doi.org/10.1103/PhysRevA.84.012902
http://dx.doi.org/10.1103/PhysRevA.84.012902
http://dx.doi.org/10.1103/PhysRevA.41.3436
http://dx.doi.org/10.1103/PhysRevA.41.3436
http://dx.doi.org/10.1103/PhysRevA.41.3436
http://dx.doi.org/10.1103/PhysRevA.41.3436
http://dx.doi.org/10.1103/PhysRevA.43.57
http://dx.doi.org/10.1103/PhysRevA.43.57
http://dx.doi.org/10.1103/PhysRevA.43.57
http://dx.doi.org/10.1103/PhysRevA.43.57
http://dx.doi.org/10.1038/nature02276
http://dx.doi.org/10.1038/nature02276
http://dx.doi.org/10.1038/nature02276
http://dx.doi.org/10.1038/nature02276
http://dx.doi.org/10.1103/PhysRevA.63.032102
http://dx.doi.org/10.1103/PhysRevA.63.032102
http://dx.doi.org/10.1103/PhysRevA.63.032102
http://dx.doi.org/10.1103/PhysRevA.63.032102
http://dx.doi.org/10.1103/PhysRevLett.96.050405
http://dx.doi.org/10.1103/PhysRevLett.96.050405
http://dx.doi.org/10.1103/PhysRevLett.96.050405
http://dx.doi.org/10.1103/PhysRevLett.96.050405
http://dx.doi.org/10.1103/PhysRevD.47.5571
http://dx.doi.org/10.1103/PhysRevD.47.5571
http://dx.doi.org/10.1103/PhysRevD.47.5571
http://dx.doi.org/10.1103/PhysRevD.47.5571
http://dx.doi.org/10.1103/PhysRevA.85.030101
http://dx.doi.org/10.1103/PhysRevA.85.030101
http://dx.doi.org/10.1103/PhysRevA.85.030101
http://dx.doi.org/10.1103/PhysRevA.85.030101
http://dx.doi.org/10.1103/PhysRevLett.98.200402
http://dx.doi.org/10.1103/PhysRevLett.98.200402
http://dx.doi.org/10.1103/PhysRevLett.98.200402
http://dx.doi.org/10.1103/PhysRevLett.98.200402
http://dx.doi.org/10.1103/PhysRevLett.84.798
http://dx.doi.org/10.1103/PhysRevLett.84.798
http://dx.doi.org/10.1103/PhysRevLett.84.798
http://dx.doi.org/10.1103/PhysRevLett.84.798
http://dx.doi.org/10.1103/PhysRevA.62.042103
http://dx.doi.org/10.1103/PhysRevA.62.042103
http://dx.doi.org/10.1103/PhysRevA.62.042103
http://dx.doi.org/10.1103/PhysRevA.62.042103
http://dx.doi.org/10.1103/PhysRevA.68.062106
http://dx.doi.org/10.1103/PhysRevA.68.062106
http://dx.doi.org/10.1103/PhysRevA.68.062106
http://dx.doi.org/10.1103/PhysRevA.68.062106
http://dx.doi.org/10.1103/PhysRevLett.94.070407
http://dx.doi.org/10.1103/PhysRevLett.94.070407
http://dx.doi.org/10.1103/PhysRevLett.94.070407
http://dx.doi.org/10.1103/PhysRevLett.94.070407
http://dx.doi.org/10.1103/PhysRevA.74.042311
http://dx.doi.org/10.1103/PhysRevA.74.042311
http://dx.doi.org/10.1103/PhysRevA.74.042311
http://dx.doi.org/10.1103/PhysRevA.74.042311
http://dx.doi.org/10.1088/0026-1394/39/5/5
http://dx.doi.org/10.1088/0026-1394/39/5/5
http://dx.doi.org/10.1088/0026-1394/39/5/5
http://dx.doi.org/10.1088/0026-1394/39/5/5
http://dx.doi.org/10.1103/PhysRevA.77.033630
http://dx.doi.org/10.1103/PhysRevA.77.033630
http://dx.doi.org/10.1103/PhysRevA.77.033630
http://dx.doi.org/10.1103/PhysRevA.77.033630
http://dx.doi.org/10.1103/PhysRevA.80.063617
http://dx.doi.org/10.1103/PhysRevA.80.063617
http://dx.doi.org/10.1103/PhysRevA.80.063617
http://dx.doi.org/10.1103/PhysRevA.80.063617
http://dx.doi.org/10.1051/jphys:0198200430110161700
http://dx.doi.org/10.1051/jphys:0198200430110161700
http://dx.doi.org/10.1051/jphys:0198200430110161700
http://dx.doi.org/10.1051/jphys:0198200430110161700
http://dx.doi.org/10.1051/jphys:01984004504063700
http://dx.doi.org/10.1051/jphys:01984004504063700
http://dx.doi.org/10.1051/jphys:01984004504063700
http://dx.doi.org/10.1103/PhysRevA.30.1185
http://dx.doi.org/10.1103/PhysRevA.30.1185
http://dx.doi.org/10.1103/PhysRevA.30.1185
http://dx.doi.org/10.1103/PhysRevA.30.1185
http://dx.doi.org/10.1103/PhysRevA.32.2030
http://dx.doi.org/10.1103/PhysRevA.32.2030
http://dx.doi.org/10.1103/PhysRevA.32.2030


DYNAMICAL LOCAL AND NONLOCAL CASIMIR ATOMIC . . . PHYSICAL REVIEW A 89, 022516 (2014)

[34] W. Heitler, The Quantum Theory of Radiation (Dover,
New York, 1954), Chap. 2; C. Cohen-Tannoudji, J. Dupont-
Roc, and G. Grynberg, Photons and Atoms: Introduction
to Quantum Electrodynamics (Wiley, New York, 1989),
Chap. 3.

[35] D. Meschede, W. Jhe, and E. A. Hinds, Phys. Rev. A 41, 1587
(1990).

[36] T. N. C. Mendes and C. Farina, J. Phys. A 39, 6533
(2006).

[37] M. Antezza, L. P. Pitaevskii, and S. Stringari, Phys. Rev. Lett.
95, 113202 (2005); J. M. Obrecht, R. J. Wild, M. Antezza,
L. P. Pitaevskii, S. Stringari, and E. A. Cornell, ibid. 98, 063201
(2007).

[38] In principle, we also need the Röntgen interaction term
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