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A fully relativistic multipole scheme is formulated to study two-photon emission processes in hydrogenlike
ions with an infinitely heavy, pointlike, and spinless nucleus of charge up to 100. By making use of the
Sturmian expansion of the Dirac-Coulomb Green function of the first order constructed by Szmytkowski, closed-
form expressions are derived for arbitrary multipole channels. In the nonrelativistic limit, well-known formulas
established previously are retrieved. For the sake of assessing the effectiveness of our approach, numerical
applications are then carried out for two-photon decay rates of the selected 2s1/2 and 2p1/2 atomic states. To this
end, radial integrals, the most crucial quantities involved in the matrix elements, are treated with great care by
means of two suitable techniques that agree with each other quite closely so that very accurate values are obtained
regardless of the choice of parameters, such as radial quantum numbers and orders of spherical Bessel functions
of the first kind. In addition, the convergence and stability of computations are checked in connection with the
intermediate-state summation, which appears within the second-order perturbation theory. As expected, the gauge
invariance of our fully relativistic multipole numbers is confirmed. Relativistic effects, and the influence of the
negative spectrum of the complete set of Dirac-Coulomb Sturmians of first order and retardation truncations in the
transition operator are examined. Finally, a comparison is undertaken of our two-photon relativistic calculations
with refined predictions of other authors based on finite basis-set methods widely employed over the past decades.
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I. INTRODUCTION

Two-photon transitions in atomic systems, e.g., two-photon
decay and absorption [1–3], Raman and Rayleigh scattering
[4,5], and so on, have been under investigation both experi-
mentally [6–9] and theoretically since the advent of quantum
mechanics. To be specific, they have become a useful and
even a standard tool for experimental studies of various spec-
troscopic characteristics in atoms [10,11], excitation levels of
various systems [12], composition and structure of materials,
as well as many other applications such as the determination
of physical constants [13–15], measurement of the Lamb
shift [8,14], parity-violation phenomena [16,17], and test of
Bell’s inequality and hidden-variable theories [18,19]. Two-
photon transitions are also of interest in astrophysics [20,21],
molecular spectroscopy [22], tissue imaging [23], and protein
structure analysis [24]. In connection with experimental
studies, these processes have been the subject of a large number
of theoretical papers. Since the seminal works of Kramers
and Heisenberg [25], Waller [26], and Goeppert-Mayer [27],
there has been continuing interest in accurate calculations of
two-photon decay in hydrogenlike ions. The first application
of the mathematical formalism found in Goppert-Mayer’s
doctoral thesis [27] to the case of the 2s → 1s transition in
atomic hydrogen was performed by Breit and Teller [28]. Their
rough evaluation confirmed that among the two competitive
processes, namely, the emission of two electric dipole photons
(2E1) and the emission of a single-photon magnetic dipole
(M1), the two-photon branch dominates by far in the radiative
decay of the 2s metastable state and is therefore the principal
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cause of the mechanism of decay of interstellar 2s hydrogen
atoms. Within the framework of nonrelativistic approximation,
other subsequent detailed calculations including the shape
of the emitted spectrum were done, so that more accurate
estimates were obtained progressively by a number of authors,
for instance, Spitzer and Greenstein [29], Shapiro and Breit
[30], Zon et al. [31], and Klarsfeld [32]. In the nonrelativistic
dipole approximation, Tung et al. [33] and Florescu [34]
calculated two-photon emission rates from higher shells
ns = 3s − 6s and 3s, 3d, respectively, in hydrogenic atoms.
Labzowsky et al. evaluated the E1M1 and E1E2 emission
probabilities for the 2p → 1s transition [35,36]. The problem
of the choice of gauge in two-photon transitions has been
discussed as well by many authors [37–39]. In heavy ions and
atoms, relativistic and quantum electrodynamic (QED) effects
become of paramount importance and, as a result, they may
strongly affect the properties of two-photon emission. The first
fully relativistic calculation of two-photon decay rates was
done by Johnson [40]. Other investigations based on the Dirac
equation and including all relativistic and retardation effects
and all combinations of photon multipoles have been carried
out for total decay rates and spectral distributions [41–47], as
well as for the angular and polarization correlations [48–50].

It is well known that a two-photon process proceeds via
intermediate states. In practice, the main difficulty encountered
in the computation of amplitudes of second order comes from
summations over the complete spectrum of the system under
consideration. Several adequate approximation techniques
have been developed over the past decades to evaluate
these sums consistently. Among others, one can cite the
implicit technique introduced by Dalgarno and Lewis [51] and
generalized by Gontier and Trahin [52] to the cases where the
number of photons involved in the process is greater than two.
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It involves, however, elaborate numerical methods, especially
for higher-order calculations. Bebb and Gold [53] defined an
average frequency thereby replacing the infinite summation
by an average term and using the closure property of the
wave functions to remove the intermediate-state transitions
from the problem. Another approach, which has proven to
be of remarkable efficiency, is the discrete-basis-set method
[39,41,42,44,54–56]. If it is successful, its advantage lies in the
replacement of the infinite sums by a finite sum over tractable
and square-integrable pseudostates. In many applications, the
so-called pseudostate summation technique has required only
a very small number of terms to achieve high accuracy. An
alternative accurate method advocated during the past decades
is based on the Coulomb Green function (CGF). Various
representations of that object of fundamental importance have
been reported in the literature, starting with the pioneering
nonrelativistic works of Schwinger [57] and Hostler [58].
The CGF method was first applied by Zon et al. [31] and
Klarsfeld [32] in hydrogen and hydrogenlike ions for deriving
the general expression for two-photon decay probabilities. In
addition, the Schrödinger-Coulomb Green function expressed
in the Sturmian representation and introduced by Hostler [59]
has emerged as a very useful and powerful tool of attack for
studying low-Z ions. It is known analytically and yields, in a
natural and straightforward calculation, analytical expressions
of the desired amplitudes [60,61], with summation of rapidly
convergent series. The advantages of this representation have
been recognized by a number of authors, who used it also in the
computation of higher-order atomic processes [35,62]. Note
that the CGF may be built up from the Schrödinger-Coulomb
Sturmians [63]. These functions were originally introduced by
Holøien [64] and Shull and Löwdin into quantum chemistry
[65]. The term “Sturmian” has no historical significance and
was a whim of Rotenberg [66] in order to emphasize their
connection with Sturm-Liouville theory. These Sturmians,
which are well adapted to numerical tasks, are nowadays
one of the most commonly used functional basis sets. They
have been successfully employed in many atomic physics
studies [67–69]. Thus the fact that the Schrödinger-Coulomb
Sturmians and Schrödinger-Coulomb Green functions proved
to be a valuable tool led to the construction of their relativistic
counterparts for applications in relativistic atomic and molec-
ular physics. It is in this context that Drake and Goldman
[70] and Quiney and Grant [71] derived bispinor bases, which
played a major role in developing techniques for solving
Dirac-Fock(-Breit) equations for atoms and molecules, and
related problems in quantum electrodynamics.

Later, Szmytkowski [72,73] claimed that the relativistic
bases of these authors should not be considered a Sturmian
set, and he generalized their ideas to derive complete sets
of Dirac-Coulomb Sturmians and the series expansion of
the Dirac-Coulomb Green function associated directly with
first-order Sturm-Liouville problems. However, it is worth
mentioning that Grant and Quiney [74] pointed out that
Szmytkowski’s description of their work, based on a limited
published material, was misleading. In a remarkable series
of papers, Szmytkowski illustrated the applicability, utility,
and efficiency of these Sturmian expansions by computing the
static electric dipole polarizability [72,75], the dynamic dipole
polarizability tensor [76], the magnetizability [77], and the

Stark-induced magnetic anapole moment [78] of relativistic
hydrogenlike ions in the ground state. Further examples of
the utility of the first-order Sturmian expansion of the Dirac-
Coulomb Green function have been presented by this author in
two recent papers [79,80]. The motivation of this work stems
from that point. Accordingly, it is the purpose of the present
contribution to explore the usefulness and effectiveness, in a
different sort of problem, of the Dirac-Coulomb Sturmians and
Coulomb Green function reported by Szmytkowski. It follows
the calculations in the previous one [81] and is devoted to
a reevaluation of two-photon spontaneous-emission rates of
the nonresonant 2p1/2 and 2s1/2 states for hydrogenic atoms
[45], with an infinitely heavy, pointlike, and spinless nucleus
of charge Z ranging from 1 to 100.

We organize the material as follows. Section II describes the
essentials of the general theory of two-photon spontaneous-
emission rates. We analytically provide, in closed form,
relevant relativistic expressions in the length and velocity
gauges, with application to some transition probabilities. These
transitions have been selected in connection with Sec. III
in which the nonrelativistic treatment is presented and the
fact that there are misprints in the corresponding formulas
in Ref. [35]. Details on matrix elements and radial integrals
for emission and absorption are included in Appendices A
and B. Section IV is devoted to the presentation and dis-
cussion of our numerical results. Finally, in Sec. V, we
make some concluding remarks. Notice that atomic units
(a.u. : � = m = e = 1, c = 1/α) and relativistic atomic units
(r.a.u. : � = m = c = 1, e2 = α) are used throughout, and α

stands for the fine-structure constant. The values of these
fundamental constants used for conversion in the tables are
given in Ref. [82]. Note also that the units of time in
atomic and relativistic atomic units are τ

(NR)
0 = a0/(αc) and

τ
(R)
0 = α2τ

(NR)
0 = αa0/c, respectively, where a0 is the Bohr

radius.

II. GENERAL THEORY OF RELATIVISTIC
TWO-PHOTON DECAY RATES

In this section, we obtain, in a computationally convenient
form, exact analytical formulas of two-photon decay rates for
hydrogenlike ions using the Sturmian expansion of the Dirac-
Coulomb Green (DCG) function of the first order derived by
Szmytkowski [72].

A. General formalism

Following the treatment presented in our previous work
within the framework of quantum electrodynamics [81], the
basic expression for the S-matrix element corresponding to the
emission of two photons can be written in the form

Sf i = 2πiδ(Ei − Ef − ω1 − ω2)Uf i, Uf i = U
(1)
f i + U

(2)
f i ,

(1)

U
(1)
f i =

∫
d3r1d

3r2�
†
f (r2)V (r2,k2)GE(r2,r1)

×V (r1,k1)�i(r1), (2)
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U
(2)
f i =

∫
d3r1d

3r2�
†
f (r2)V (r2,k1)GE(r2,r1)

×V (r1,k2)�i(r1), (3)

where the indices i and f denote the initial and final unper-
turbed Dirac hydrogenic bound states, respectively. The dagger
means the Hermitian conjugate. GE(r2,r1) represents the first-
order Dirac-Coulomb Green function in the three-dimensional
space, with energy parameter E of the intermediate states.
The necessary formulas for bispinor wave functions and DCG
functions are given in Appendix A in a form which is very
useful for actual calculations. The transition operators V (r,kj )
with j = 1, 2 describe the interaction of the electron with
the electromagnetic field [41]. kj is the wave vector for the
emitted j th photon of frequency ωj . The δ-function factor
expresses the energy-conservation law Ei − Ef = ω1 + ω2,
from which it appears that the emission spectrum is continuous.

Considering the well-known transition probability averaged
over mi and summed over mf ion magnetic sublevels,

d6W (R) = 2π

2ji + 1

⎛
⎝∑

mi,mf

|Uf i |2
⎞
⎠

× δ(Ei − Ef − ω1 − ω2)
d3k1

(2π )3

d3k2

(2π )3
, (4)

and integrating, over the frequency ω2, the elements of solid
angle d2 k̂1, d2 k̂2, and summing over the polarization vectors,
leads to the total average decay rate in relativistic atomic units,

dW (R)

dω1
= α2ω1ω2

(2π )3 (2ji + 1)

∑
λ1,L1M1,λ2,L2M2,mi ,mf

∣∣Dλ1L1M1
λ2L2M2

× (E,ω1,ω2) + D
λ2L2M2
λ1L1M1

(E,ω2,ω1)
∣∣2, (5)

where

D
λ1L1M1
λ2L2M2

(E,ω1,ω2) =
∫

d3r1d
3r2�

†
f (r2)Q(λ2)∗

L2M2
(r2,ω2)

×GE(r2,r1)Q(λ1)∗
L1M1

(r1,ω1)�i(r1), (6)

Q
(λj )∗

Lj Mj
(rj ,ωj )

=
{

α · A(0)∗
Lj Mj

(rj ,ωj ), λj = 0,

α · A(1)∗
Lj Mj

(rj ,ωj ) − G	∗
Lj Mj

(rj ,ωj ), λj = 1.
(7)

It is understood that here and thereafter, ω2 = Ei − Ef −
ω1. L, M stand for the photon angular momentum and
its projection. α are Dirac matrices and G is an arbitrary
gauge parameter. 	LM (r) is the scalar potential and A(0)

LM (r),
A(1)

LM (r) are the magnetic and electric vector potentials.
Each of these multipoles can be expressed in terms of the
spherical Bessel functions jL(ωr) and the vector spherical
harmonics YL,
,M (r̂) , 
 = L,L ± 1 as defined by Akhiezer
and Berestetskii [83],

	LM (r,ω) = iL4πjL(ωr)YLM (r̂) ,
(8)

A(0)
LM (r,ω) = iL4πjL(ωr)YL,L,M (r̂) ,

A(1)
LM (r,ω) = Ã

(1)
LM (r,ω) + G Ã

(−1)
LM (r,ω), (9)

Ã
(1)
LM (r,ω) = iL+14π

{√
L

2L + 1
jL+1(ωr)YL,L+1,M (r̂)

−
√

L + 1

2L + 1
jL−1(ωr)YL,L−1,M (r̂)

}
, (10)

Ã
(−1)
LM (r,ω) = −iL+14π

{√
L + 1

2L + 1
jL+1(ωr)YL,L+1,M (r̂)

+
√

L

2L + 1
jL−1(ωr)YL,L−1,M (r̂)

}
. (11)

In the above equations, r̂ is the unit vector along the three-
dimensional space vector r .

Let us focus our attention on the calculation of the D

coefficients in Eqs. (6). Using the analytical expressions of the
aforementioned bispinors and Dirac-Coulomb Green function,
one easily obtains

D
λ1L1M1
λ2L2M2

(E,ω1,ω2)

=
∑
n,κ,m

〈f |Q(λ1)∗
L1M1

(ω1)|n,κ,m〉 ˜〈n,κ,m|Q(λ2)∗
L2M2

(ω2)|i〉, (12)

where we set

〈r|i〉 ≡ �i(r) = 1

r

(
Pniκi

(r)�κimi
(r̂)

iQniκi
(r)�−κimi

(r̂)

)
,

(13)

〈r|f 〉 ≡ �f (r) = 1

r

(
Pnf κf

(r)�κf mf
(r̂)

iQnf κf
(r)�−κf mf

(r̂)

)
,

〈r|n,κ,m〉 = 1

r

(
Snκ (2λr)�κm(r̂)

iTnκ (2λr)�−κm(r̂)

)
,

(14)

〈r|ñ,κ,m〉 = 1

r

(
θ̃nκSnκ (2λr)�κm(r̂)

iα̃nκTnκ (2λr)�−κm(r̂)

)
.

It should be noted that κ = ε (j + 1/2) , j = l − ε/2 =
l̄ + ε/2, ε = ±1. �±κm(r̂) ≡ �jl(l̄)m(r̂) are spherical spinor

harmonics [84] normalized according to
∫

do �
†
κ ′m′�κm =

δκ ′κ δm′m, and the plus and minus signs refer to l and
l̄, respectively. The radial components Snκ (2λr), Tnκ (2λr),
Pnκ (r), and Qnκ (r) and the quantities λ, θ̃nκ , and α̃nκ are
defined and given in Appendix A. These functions form a
basis for the irreducible representation Dj of SO(3) for both
signs of the Dirac quantum number κ . The sums over n, κ,m

occurring in the Green function run over all possible values of
these indices, i.e., all the accessible intermediate states labeled
by these quantum numbers. The reduction to radial integrals
of the matrix elements in Eq. (12) is outlined in Appendix B.
Thus, using these general results, Eq. (5) takes the form

dW (R)

dω1
= 2α2ω1ω2

π (2ji + 1)

∑
λ1,L1,λ2,L2

⎧⎨
⎩
∑

j

⎡
⎣|Bj (2,1)|2 + |Bj (1,2)|2

+ 2Bj (2,1)
∑
j ′

Kjj ′ (2,1)B∗
j ′ (1,2)

⎤
⎦
⎫⎬
⎭ , (15)

022514-3



BONA, TETCHOU NGANSO, EKOGO, AND KWATO NJOCK PHYSICAL REVIEW A 89, 022514 (2014)

where

Bj (2,1) = �j (2,1)
∞∑

n=−∞
M̆

(λ2,L2)
f,n (E,ω2)M̂ (λ1,L1)

n,i (E,ω1),

(16)
Bj (1,2) = Bj (2,1; 1 ↔ 2).

Denoting [a,b, . . .] = (2a + 1)(2b + 1) . . ., coefficients
�j and Kjj ′ have a simple form via 3j and 6j symbols,

�j (2,1) = [ji,j,jf ]1/2

(
jf L2 j

1/2 0 −1/2

)

×
(

j L1 ji

1/2 0 −1/2

)
, (17)

Kjj ′ (2,1) = (−1)L1+L2+1[j,j ′]1/2

{
jf j ′ L1

ji j L2

}
. (18)

Hereafter, the electric and magnetic radial integrals may be
written in closed form as follows:

M̆
(1,L)
f,n (E,ω) = Ff,n − G(Lf,n + Hf,n),

(19)
M̂

(1,L)
n,i (E,ω) = Fn,i − G(Ln,i + Hn,i),

M̆
(0,L)
f,n (E,ω) = iTf,n, M̂

(0,L)
n,i (E,ω) = iTn,i . (20)

It should be noted that in Ref. [45], there is a misprint
in Eq. (34), i.e., the corresponding direct term. The factor
1/[4π (2jn + 1)] should be replaced with 1/

√
2jn + 1.

The issue of gauge invariance of matrix elements in
multipole expansions has been discussed in great detail by
Grant [85]. He showed that there are two values of G which are
of particular interest, namely, that they lead to the well-known
length and momentum forms of the transition operators in the
nonrelativistic limit. In the length gauge, G = −√

(L + 1)/L,
so that the radial integrals reduce to the following expressions:

M̆
(1,L)
f,n (E,ω) =

√
2L + 1

L(L + 1)
[(L + 1)J̌L + (κf − κ)Ǐ+

L+1

+ (L + 1)Ǐ−
L+1], (21)

M̂
(1,L)
n,i (E,ω) =

√
2L + 1

L(L + 1)
[(L + 1)ĴL + (κ − κi)Î

+
L+1

+ (L + 1)Î−
L+1]. (22)

After some algebraic manipulations, Eqs. (21) and (22)
can be conveniently cast into another form suitable for
computations,

M̆
(1,L)
f,n =

√
2L + 1

L(L + 1)
{(L + 1)[K5(L,ω) + K6(L,ω)]

+ (κf − κ + L + 1)K3(L + 1,ω)

+ (κf − κ − L − 1)K4(L + 1,ω)}, (23)

M̂
(1,L)
n,i (E,ω).

=
√

2L + 1

L(L + 1)
{θ̃nκ [(L + 1)K7(L,ω) + (κ − κi

+L + 1)K1(L + 1,ω)] + α̃nκ [(L + 1)K8(L,ω)

+ (κ − κi − L − 1)K2(L + 1,ω)]}. (24)

The following notations are used in Eqs. (23) and (24):

K1(L,ω) =
∫ ∞

0
dr Qniκi

(r) jL(ωr) Snκ (2λr), (25)

K2(L,ω) =
∫ ∞

0
dr Pniκi

(r) jL(ωr) Tnκ (2λr), (26)

K3(L,ω) =
∫ ∞

0
dr Pnf κf

(r) jL(ωr) Tnκ (2λr), (27)

K4(L,ω) =
∫ ∞

0
dr Qnf κf

(r) jL(ωr) Snκ (2λr), (28)

K5(L,ω) =
∫ ∞

0
dr Pnf κf

(r) jL(ωr) Snκ (2λr), (29)

K6(L,ω) =
∫ ∞

0
dr Qnf κf

(r) jL(ωr) Tnκ (2λr), (30)

K7(L,ω) =
∫ ∞

0
dr Pniκi

(r) jL(ωr) Snκ (2λr), (31)

K8(L,ω) =
∫ ∞

0
dr Qniκi

(r) jL(ωr) Tnκ (2λr), (32)

where jL(x) is the spherical Bessel function of the first kind.
The second choice, i.e., the velocity gauge G = 0, leads to
relations

M̆
(1,L)
f,n (E,ω) = 1√

L(L + 1)(2L + 1)
{L[(κf − κ)Ǐ+

L+1 + (L + 1)Ǐ−
L−1] − (L + 1)[(κf − κ)Ǐ+

L−1 − LǏ−
L−1]}, (33)

M̂
(1,L)
n,i (E,ω) = 1√

L(L + 1)(2L + 1)
{L[(κ − κi)Î

+
L+1 + (L + 1)Î−

L−1] − (L + 1)[(κ − κi)Î
+
L−1 − LÎ−

L−1]}, (34)

which may be rewritten in the form

M̆
(1,L)
f,n (E,ω) = 1√

L(L + 1)(2L + 1)
{L[(κf − κ + L + 1)K3(L + 1,ω) + (κf − κ − L − 1)K4(L + 1,ω)]

− (L + 1)[(κf − κ − L)K3(L − 1,ω) + (κf − κ + L)K4(L − 1,ω)]}, (35)
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M̂
(1,L)
n,i (E,ω) = 1√

L(L + 1)(2L + 1)
{θ̃nκ [L(κ − κi + L + 1)K1(L + 1,ω) − (L + 1)(κ − κi − L)K1(L − 1,ω)]

+ α̃nκ [L(κ − κi − L − 1)K2(L + 1,ω) − (L + 1)(κ − κi + L)K2(L − 1,ω)]}. (36)

We also have, for magnetic-type multipoles,

M̆
(0,L)
f,n (E,ω) = i

√
2L + 1

L(L + 1)
(κf + κ)Ǐ+

L , M̂
(0,L)
n,i (E,ω) = i

√
2L + 1

L(L + 1)
(κ + κi)Î

+
L , (37)

i.e.,

M̆
(0,L)
f,n (E,ω) = i

√
2L + 1

L(L + 1)
(κf + κ)[K3(L,ω) + K4(L,ω)], (38)

M̂
(0,L)
n,i (E,ω) = i

√
2L + 1

L(L + 1)
(κ + κi)[θ̃nκK1(L,ω) + α̃nκK2(L,ω)]. (39)

The K’s appearing in Eqs. (25)–(32) are Laplace-like integrals over products of spherical Bessel functions and generalized
Laguerre polynomials and can be evaluated analytically. For the sake of brevity, we give here only the result for K1 since the
others can be treated analogously to it. By inserting Snκ (2λr) and Qnκ (r) given by Eqs. (A5) and (A12), respectively, we get

K1(L,ω) =
√

π (xi/2)LF1

2�(L + 3/2)

{
AnκC̃ni

ṼL(λ, λi, γ, γi, n − 1, ni − 1, 2γ, 2γi, xi) − AnκD̃ni
ṼL(λ, λi, γ, γi, n − 1, ni, 2γ, 2γi, xi)

+BnκC̃ni
ṼL(λ, λi, γ, γi, n, ni − 1, 2γ, 2γi, xi) − BnκD̃ni

ṼL(λ, λi, γ, γi, n, ni, 2γ, 2γi, xi)
}
, (40)

where we set

ṼL (λ, λi, γ, γi,m, n, α, β, xi) = Yγ Yγi

i �(m + α + 1)�(n + β + 1)
m∑

p=0

(−Y)p

�(p + 1) �(p + α + 1) �(m − p + 1)

×
n∑

q=0

(−Yi)q�(si) 2F1
(
si/2, (si + 1)/2; L + 3/2; −x2

i

)
�(q + 1)�(q + β + 1)�(n − q + 1)

, (41)

Yi = 2λiFi , Y = 2λFi , Fi = 1/(λ + λi), si = γ + γi + p + q + L + 1, xi = ωFi .

Another method of calculation of K1 is based on the
insertion of the expansion of the spherical Bessel function
in the Taylor series [86],

jL(ωr) =
∞∑

ν=0

(−1)ν

2ν ν! (2L + 2ν + 1)!!
(ωr)2ν+L, (42)

into the integral (25). As should be expected intuitively,
the analytic expression obtained matches Eq. (40) in which
Gauss hypergeometric functions 2F1(a,b; c; x) have been
expanded in Eq. (41). This is indeed the case, considering,
for instance, successively the first ν = 0 and the second ν = 1
contributions in the latter summation that lead exactly to
Eqs. (40) and (41) in which 2F1(a,b; c; x) is substituted by
1 and (ab/c)x, respectively. Since the truncation of Eq. (42)
is so much simpler than the fully relativistic calculation, it
is of interest to determine its limits of validity. We will
address this problem of retardation in the transition operator in
Sec. IV.

B. Application to some transition probabilities
for 2s1/2 and 2 p1/2 states

In connection with the next section, it is interesting to give,
in what follows, closed forms of Eq. (15) for the two-photon

processes 2s1/2 → 1s1/2 + 2γ (E1), 2s1/2 → 1s1/2 + 2γ (E2),
and 2p1/2 → 1s1/2 + γ (E1) + γ (E2). In the nonrelativistic
limit, they recover the expressions derived in the next section.
In order to present the spectral frequency, Eq. (15) may be
rewritten in the form

dW (R)

dy
= α2y(1 − y)ω3

0

π
Q, ω1 = ω0y,

(43)
ω2 = ω0(1 − y), ω0 = Ei − Ef , 0 < y < 1,

where y is the fraction of energy carried by one of the two
photons, and ω0 is the energy of the two-photon transition.
The Dirac energies Ei and Ef of the initial and final states are
given by Eq. (A15). After somewhat lengthy calculations, we
find, for the 2E1 decay,

Q(2E1) = 2{[A(2E1)(2,1; p1/2)]2 + [A(2E1)(1,2; p1/2)]2}
+ 4{[A(2E1)(2,1; p3/2)]2 + [A(2E1)(1,2; p3/2)]2}
+ 4

3 [−A(2E1)(2,1; p1/2)A(2E1)(1,2; p1/2)

+ 4A(2E1)(2,1; p1/2)A(2E1)(1,2; p3/2)

+ 4A(2E1)(2,1; p3/2)A(2E1)(1,2; p1/2)

+ 2A(2E1)(2,1; p3/2)A(2E1)(1,2; p3/2)], (44)
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where

A(2E1)(2,1; p1/2)

= 2
∞∑

n=−∞
{K5(1,ω2) + K6(1,ω2) − 2K4(2,ω2)}

× {θ̃nκ [K7(1,ω1) + 2K1(2,ω1)] + α̃nκK8(1,ω1)}, (45)

A(2E1)(2,1; p3/2)

= 1

2

∞∑
n=−∞

{2(K5(1,ω2) + K6(1,ω2)) + 3K3(2,ω2)

−K4(2,ω2)}{θ̃nκ [2K7(1,ω1) + K1(2,ω1)]

+ α̃nκ [2K8(1,ω1) − 3K2(2,ω1)]}, (46)

A(2E1)(1,2; p1/2) = A(2E1)(2,1; p1/2; ω2 ↔ ω1), (47)

A(2E1)(1,2; p3/2) = A(2E1)(2,1; p3/2; ω2 ↔ ω1). (48)

In a similar manner, we have the desired relations for the
two other decay channels,

Q(2E2) = 4{[A(2E2)(2,1; d3/2)]2 + [A(2E2)(1,2; d3/2)]2}
+ 6{[A(2E2)(2,1; d5/2)]2 + [A(2E2)(1,2; d5/2)]2}
+ 4

5 [−2A(2E2)(2,1; d3/2)A(2E2)(1,2; d3/2)

+ 12A(2E2)(2,1; d3/2)A(2E2)(1,2; d5/2)

+ 12A(2E2)(2,1; d5/2)A(2E2)(1,2; d3/2)

+ 3A(2E2)(2,1; d5/2)A(2E2)(1,2; d5/2)], (49)

with

A(2E2)(2,1; d3/2)

= 3

2

∞∑
n=−∞

{K5(2,ω2) + K6(2,ω2) − 2K4(3,ω2)}

× {θ̃nκ [K7(2,ω1) + 2K1(3,ω1)] + α̃nκK8(2,ω1)}, (50)

A(2E2)(2,1; d5/2)

= 1

6

∞∑
n=−∞

{3[K5(2,ω2) + K6(2,ω2)] + 5K3(3,ω2)

−K4(3,ω2)}{θ̃nκ [3K7(2,ω1) + K1(3,ω1)]

+ α̃nκ [3K8(2,ω1) − 5K2(3,ω1)]}, (51)

A(2E2)(1,2; d3/2) = A(2E2)(2,1; d3/2; ω2 ↔ ω1), (52)

A(2E2)(1,2; d5/2) = A(2E2)(2,1; d5/2; ω2 ↔ ω1), (53)

and

Q(E1E2) = [A(E2,E1)(2,1; d3/2) + A(E1,E2)(1,2; p3/2)]2

+ [A(E1,E2)(2,1; p3/2) + A(E2,E1)(1,2; d3/2)]2,

(54)

A(E2,E1)(2,1; d3/2)

=
√

3
∞∑

n=−∞
{K5(2,ω2) + K6(2,ω2) − 2K4(3,ω2)}

× {θ̃nκ [3K1(2,ω1) + 2K7(1,ω1)]

+ α̃nκ [2K8(1,ω1) − K2(2,ω1)]}, (55)

A(E1,E2)(1,2; p3/2) =
√

3
∞∑

n=−∞
{2(K5(1,ω1) + K6(1,ω1))

+ 3K3(2,ω1) − K4(2,ω1)}{θ̃nκK7(2,ω2)

+ α̃nκ [K8(2,ω2) − 2K2(3,ω2)]}, (56)

A(E2,E1)(1,2; d3/2) = A(E2,E1)(2,1; d3/2; ω2 ↔ ω1), (57)

A(E1,E2)(2,1; p3/2) = A(E1,E2)(1,2; p3/2; ω1 ↔ ω2). (58)

III. NONRELATIVISTIC TREATMENT

First of all, it should be pointed out that some formulas given
in Ref. [35] for two electric-photon transitions in hydrogen are
incorrect, such as Eqs. (26), (31), (37), (39), (41), (44), and
(45). However, it should also be emphasized that some of
them have been corrected by Solovyev et al. [36]. Hence, in
this section, we derive corresponding relations which, as may
be verified, are the nonrelativistic limits of the results obtained
in the above relativistic formalism. For a nonrelativistic
hydrogenic system, the following two electric-photon decay
rate in a.u. needs to be evaluated:

d2W (NR) = 2πα2

2li + 1

⎛
⎝ ∑

L1M1,L2M2,mi ,mf

∣∣U (1)
f i + U (2)

f i

∣∣2
⎞
⎠

× δ(ξi − ξf − ω1 − ω2)
Rdω2

π

Rdω1

π
, (59)

U (1)
f i =

∫
d3r1d

3r2ψ
∗
f (r2)ṼL2M2 (r2,ω2)

×Gξ (r2,r1)ṼL1M1 (r1,ω1)ψi(r1), (60)

U (2)
f i =

∫
d3r1d

3r2ψ
∗
f (r2)ṼL1M1 (r2,ω1)

×Gξ (r2,r1)ṼL2M2 (r1,ω2)ψi(r1), (61)

where R is the radius of the normalizing sphere. ξi and ξf

are the nonrelativistic binding energies of the initial and final
states, respectively, as defined in Eq. (A19) in Appendix A.
Notice that on one hand, the emission of the electric photon
EL is described by the potentials [83]

ṼLM (r,ω) = (−i)L
(

4πω

R

)1/2
√

L+ 1

L

(αω)L

(2L+ 1)!!
rLY ∗

lm(r̂),

(62)

and, on the other hand, the Green function is given
in Appendix A. After performing the angular reduction in
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Eqs. (60) and (61), we find

U (1)
f i = 1

R

αL1+L2ω
L1+1/2
1 ω

L2+1/2
2

(2L1 + 1)!! (2L2 + 1)!!

√
(L1 + 1)(L2 + 1)[L1,L2]

L1L2
Q(2,1), (63)

Q(2,1) =
∑

l

ql(2,1)θl(2,1), ql(2,1) = �l(2,1)Il(ξ ; 2,1), (64)

Il(ξ ; 2,1) =
∫ ∞

0
dr2dr1 r

L2
2 r

L1
1 Pf (r2) gl(ξ ; r2,r1) Pi(r1), (65)

�l(2,1) = [lf ,l,li]
1/2

(
lf L1 l

0 0 0

)(
l L2 li
0 0 0

)
�(lf ,l,li ,L1,L2), (66)

θl(2,1) = [l]1/2
∑
m

(−1)m+mi

(
lf L2 l

−mf −M2 m

)(
l L1 li

−m −M1 mi

)
, (67)

with �(lf ,l,li ,L1,L2) = 1 if lf + l + L1 and li + l + L2 are even numbers, and �(lf ,l,li ,L1,L2) = 0 otherwise. Note also that

U (2)
f i = U (1)

f i (2 ↔ 1). (68)

Further, on substituting the relations (63)–(68) into Eq. (59) and integrating over ω2, we have

dW (NR)

dω1
= 2π

2li + 1

∑
L1,L2

α2(L1+L2+1)ζL1,L2ω
L1+1/2
1 ω

L2+1/2
2

⎧⎨
⎩

∑
M1,M2,mi ,mf

|Q(2,1) + Q(1,2)|2
⎫⎬
⎭ , (69)

ζL1,L2 = (L1 + 1)(L2 + 1) [L1,L2]

L1L2 [(2L1 + 1)!! (2L2 + 1)!!]2
, (70)

and now ω2 = ξi − ξf − ω1. Hence, applying the same method as in the relativistic case, i.e., using the well-known sum rules
for θl , finally yields

dW (NR)

dω1
= 2

π (2li + 1)

∑
L1,L2

α2(L1+L2+1)ζ (L1,L2)ω2L1+1
1 ω

2L2+1
2

∑
l

[
|ql(2,1)|2 + |ql(1,2)|2 + 2ql(2,1)

∑
l′

Kll′(2,1)ql′ (1,2)

]
,

(71)

Kll′ (2,1) = (−1)L1+L2+1[l,l′]1/2

{
lf l′ L1

li l L2

}
. (72)

The radial integral in Eq. (65) can be evaluated analytically by using the formula

Dl(m; p,q,; λ) = Zm

∫ ∞

0
dr2dr1 e−Z(r2+(r1/2)) r

p

2 r
q

1 gl(ξ ; r2,r1)

= 23l+q+4νp+q+3

(ν + 1)l+p+2(ν + 2)l+q+2Zp+q−m+3

(l + p + 1)! (l + q + 1)!

[(2l + 1)!]2

×
∞∑

n=0

(n + 2l + 1)!

(n + l + 1 − ν) n!
2F1

(
−n,l + p + 2; 2l + 2;

2

ν + 1

)
2F1

(
−n,l + q + 2; 2l + 2;

4

ν + 2

)
,

ν = λ/Z, λ = √−2E. (73)

Application of the above formulas to the 2s → 1s + 2γ (E1), 2s → 1s + 2γ (E2), and 2p → 1s + γ (E1) + γ (E2) transitions
gives, respectively, the following.

(i) 2E1 frequency distribution for the 2s state.

dW (NR)

dy
= 2934

π
(αZ)6y3(1 − y)3[Ĩ1(ν) + Ĩ1(ν ′)]2, (74)

Ĩ1(ν) = ν7

(ν + 1)5(ν + 2)5

∞∑
n=0

(n + 3)!

n! (n + 2 − ν)
2F1

(
−n,5; 4;

2

ν + 1

)[
2F1

(
−n,5; 4;

4

ν + 2

)
− 5ν

ν + 2
2F1

(
−n,6; 4;

4

ν + 2

)]
,

(75)
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ν = 2√
1 + 3y

, ν ′ = 2√
4 − 3y

, ω0 = ξi − ξf , ω1 = yω0, ω2 = (1 − y)ω0, 0 < y < 1. (76)

Performing an integration over y, the emission probability reads W (NR)(2E1) = 1.318 222 666 9 × 10−3 (αZ)6 a.u.
(ii) 2E2 frequency distribution for the 2s state.

dW (NR)

dy
= 313

2353π
(αZ)10y5(1 − y)5[Ĩ2(ν) + Ĩ2(ν ′)]2, (77)

Ĩ2(ν) = ν9

(ν + 1)7(ν + 2)7

∞∑
n=0

(n + 5)!

(n + 3 − ν) n!
2F1

(
−n,7; 6;

2

ν + 1

)[
2F1

(
−n,7; 6;

4

ν + 2

)
− 7ν

ν + 2
2F1

(
−n,8; 6;

4

ν + 2

)]
,

(78)

and W (NR)(2E2) = 2.772 078 993 3 × 10−7 (αZ)10 a.u.
(iii) E1E2 frequency distribution for the 2p state.

dW (NR)

dy
= 2437

52π
(αZ)8y3(1 − y)3{(1 − y)2[Î1(ν ′) + Î2(ν)]2 + y2[Î1(ν) + Î2(ν ′)]2}, (79)

Î1(ν) = 10ν9

(ν + 1)7(ν + 2)7

∞∑
n=0

(n + 3)!

(n + 2 − ν) n!
2F1

(
−n,5; 4;

2

ν + 1

)
2F1

(
−n,7; 4;

4

ν + 2

)
, (80)

Î2(ν) = 3ν9

(ν + 1)7(ν + 2)7

∞∑
n=0

(n + 5)!

(n + 3 − ν) n!
2F1

(
−n,7; 6;

2

ν + 1

)
2F1

(
−n,7; 6;

4

ν + 2

)
, (81)

and W (NR)(E1E2) = 1.988 964 910 4 × 10−5 (αZ)8 a.u.

It may be shown without difficulty that relations (74)–(81)
agree with the corresponding nonrelativistic limits of expres-
sions (43)–(58) derived previously in the relativistic theory.
Indeed, note that only K5 and K7 containing upper components
Pnκ (r) of radial Dirac bispinors and Snκ (2λr) of the radial
Sturmians must be considered together with non-negative
values (n � 0) of the radial quantum number.

IV. NUMERICAL RESULTS AND DISCUSSION

For the sake of assessing the effectiveness of our DCGF
approach, we apply in this section the formulas derived above
to a large selection of hydrogenic ions with nuclear charge
Z up to 100. Before presenting below the main numerical
results and a comparison with other refined computations,
some introductory statements are in order. First of all, we
introduce the standard spectral distribution as suggested by
Spitzer and Greenstein [29],

dW

dy
= 9

210
Zqψ(Z,y), Z = αZ. (82)

Here, α is the fine-structure constant. In the scaling factor,
we have q = 8 for E1M1 and E1E2; q = 12 for M1M2 in
the 2p1/2 → 1s1/2 transition, while q = 6 for 2E1; q = 10 for
E1M2, 2M1, and 2E2; and q = 14 for 2M2 and E2M1 in
the 2s1/2 → 1s1/2 transition. By integrating Eq. (82), we get
the total rate [35,36,45]

W = 1

2

∫ 1

0

(
dW

dy

)
dy, W = Zqφ(Z). (83)

Then, having derived our formulas in relativistic atomic units
(r.a.u.) and atomic units (a.u.), it is worth noting the following

conversion relationships:

W (R)(s−1) = W (R)(r.a.u.)/τ (R)
0 , τ

(R)
0 = αa0/c, (84)

W (NR)(s−1) = W (NR)(a.u.)/τ (NR)
0 , τ

(NR)
0 = a0/(αc), (85)

W (R)(r.a.u.) = α2 W (R)(a.u.),
(86)

W (R)(s−1) = W (R)(a.u.)/τ (NR)
0 ,

where, as mentioned previously, τ
(NR)
0 and τ

(R)
0 are the atomic

and relativistic atomic units of time, respectively. Using values
of physical constants given in Ref. [82], one obtains τ

(R)
0 =

1.288 088 668 × 10−21 s, τ
(NR)
0 = 24.188 843 26 × 10−18 s,

with α−1 = 137.035 999 11.
In the sums over the radial quantum number n occurring

in equations of Secs. II and III, a finite expansion length
nmax has been considered to obtain converged values, so that
the integrated two-photon decay rates W (R), W

(R)
+ , W

(R)
− , and

TABLE I. Virtual states allowed in the multipole contributions
included in calculations of two-photon decay rates for the 2s1/2 →
1s1/2 and 2p1/2 → 1s1/2 transitions.

2s1/2 → 1s1/2 2p1/2 → 1s1/2

Multipoles Virtual states Multipoles Virtual states

2E1 p1/2, p3/2 E1E2 p3/2, d3/2

E1M2 p3/2 E1M1 s1/2, p1/2, p3/2, d3/2

2M1 s1/2, d3/2 M1M2 s1/2, d3/2

2E2 d3/2, d5/2

2M2 p3/2, f5/2

E2M1 d3/2
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TABLE II. Predicted partial sums of the integrated decay rates W (R) (r.a.u.) of the E1E2 multipole contribution for the transition
2p1/2 → 1s1/2 at nuclear charges Z = 1, 30, 50, and 100. nmax denotes the highest radial quantum number considered in the Sturmian basis.
The numbers in parentheses indicate the powers of 10 by which the values are to be multiplied.

Z

nmax 1 30 50 100

1 9.3861914602(−27) 5.9512415506(−15) 3.3240368982(−13) 5.8151021591(−11)
5 8.5165466456(−27) 5.4133587740(−15) 3.0378665646(−13) 5.4659701315(−11)
8 8.5165816233(−27) 5.4133544536(−15) 3.0378324501(−13) 5.4655745883(−11)
10 8.5165816161(−27) 5.4133548047(−15) 3.0378331550(−13) 5.4655757211(−11)
20 8.5165816161(−27) 5.4133551830(−15) 3.0378334029(−13) 5.4655758861(−11)
30 8.5165816161(−27) 5.4133551830(−15) 3.0378334029(−13) 5.4655758863(−11)

W (NR) generate fully relativistic results, contributions of the
non-negative and negative parts of the Sturmians spectrum,
and nonrelativistic numbers, respectively. Notice that they
have been computed from Eq. (83) by using a Gauss-Legendre
quadrature.

Finally, let

d(%) = 100 × |W (R) − W (app)|
W (R)

(87)

be a measure of the difference between our fully relativistic
results W (R) considered as reference numbers and other
theoretical data W (app) ≡ W

(R)
+ , W

(R)
− , W (NR) [this work,

Eqs. (74)–(81)], W (GD) (Ref. [41]), W (L) (Ref. [45]), W (S)

(Ref. [44]), W (A) (Ref. [47]), and W (PJ ) (Ref. [43]). Now we
are ready to apply these expressions for studying two-photon
decay rates of the two selected 2s1/2 and 2p1/2 atomic states.

In Table I, we present the list of multipoles included in our
calculations and, in each case, the allowed virtual states in the
summation of Eq. (15). Notice that the term f5/2 has not been
taken into account in Ref. [41]. In Tables II and III, the con-
vergence of the summation over n is shown for two multipole
decay channels E1E2 and 2E1, respectively. It clearly appears
at inspection that the convergence of the series expansion is
somewhat slow when the nuclear charge increases, and no
more than about 30 terms are needed to reach the stability
and accuracy to eight digits. It is important to underline at
this point that unless great care is exercised, the evaluation of
radial integrals (25)–(32) involved in matrix elements can lead
to erroneous conclusions. Once these most crucial quantities
are determined, the task of obtaining differential as well
as total transition rates becomes fairly straightforward. We
have proceeded efficiently, on one hand, by making use of
a Gauss-Laguerre quadrature well adapted to Eqs. (25)–(32)

and, on the other hand, by employing for Eq. (41) the
computer-algebra code MAPLE to avoid roundoff errors. We
have checked that both estimates are in exact agreement up
to at least eight significant digits, and obtained very accurate
numerical values of radial integrals. The basis parameter used
in the calculation of our results in this paper is nmax = 30.
Moreover, we have also studied the gauge invariance of our
decay-rate numbers, except multipoles with only magnetic
components which are only defined in the velocity gauge. As
expected from the well-known general requirement of gauge
invariance, they are practically independent of G, namely, the
relativistic counterparts of the length and velocity forms yield
almost identical results (i.e., with a relative difference less than
10−10) for all multipole decay channels.

We display in Tables IV–VII the Z dependence of de-
tailed calculations for the 2p1/2 → 1s1/2 and 2s1/2 → 1s1/2

transitions. The breakdown of integrated decay rates into
contributions from different combinations of multipoles is
shown. Our results are compared with predictions of other
authors. In order to illustrate how closely our computations
agree with these values and to be more informative, we
have plotted in Figs. 1–4 the percentage difference d as a
function of the nuclear charge. When cross examining these
figures together with the tables, a few relevant features become
apparent, including the following.

(a) The magnitude of d lies between 0.1–1.4% for
WL (E1M1, E1E2) values, computed for the first time by
Labzowsky et al. [45], and, apart from E2M1, under 0.03%
for WGD [41] and WPJ (2E1) [43]. Notice that the percent-
age difference for WL(2E1), which is about 0.1%, is not
represented in Fig. 2. Thus, the results from Goldman and
Drake [41] are closer to those of this work, with, however,
a marked divergence (26–43%) for multipoles with only

TABLE III. Same as Table II for the 2E1 multipole contribution of the transition 2s1/2 → 1s1/2.

Z

nmax 1 30 50 100

1 1.0821906345(−20) 7.6265691549(−12) 1.5433574477(−10) 7.4379370598(−9)
5 1.0599509837(−20) 7.4979889968(−12) 1.5285087794(−10) 7.7046978633(−9)
8 1.0599760340(−20) 7.4981326509(−12) 1.5285262701(−10) 7.7046053190(−9)
10 1.0599760295(−20) 7.4981327091(−12) 1.5285263188(−10) 7.7046041375(−9)
20 1.0599760295(−20) 7.4981331007(−12) 1.5285263991(−10) 7.7046041295(−9)
30 1.0599760295(−20) 7.4981331007(−12) 1.5285263991(−10) 7.7046041186(−9)
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TABLE IV. Contributions from different combinations of mul-
tipoles to the integrated two-photon decay rates W (s−1) for the
transition 2p1/2 → 1s1/2 as a function of the nuclear charge. First
entry: W (R); second entry: W

(R)
+ ; third entry: W

(R)
− ; fourth entry:

W (So) (Solovyev et al. [36], Labzowsky et al. [35]); fifth entry: W (NR)

[Eqs. (79)–(81)]; sixth entry: W (L) (Labzowsky et al. [45]). Powers
of ten are given in parentheses.

Z W (E1M1) W (E1E2) W (M1M2)

1 9.676656(−6) 6.611798(−6) 3.827879(−17)
1.630764(−5) 6.611777(−6) 3.159442(−17)
1.002436(−6) 1.826741(−17) 6.835281(−18)
9.67696(−6) 6.61201(−6)

6.612027(−6)
9.667(−6) 6.604(−6)

10 9.646776(2) 6.589077(2) 3.790688(−5)
1.624728(3) 6.586974(2) 3.124388(−5)
9.993125(1) 1.828967(−5) 6.850695(−6)
9.67696(2) 6.61201(2)

6.612027(2)
9.637(2) 6.582(2)

20 2.446386(5) 1.669178(5) 1.510057(−1)
4.112301(5) 1.667031(5) 1.239768(−1)
2.533893(4) 7.519083(−2) 2.825470(−2)
2.47730(5) 1.69267(5)

1.692679(5)
2.443(5) 1.667(5)

30 6.171112(6) 4.202626(6) 1.876852(1)
1.033754(7) 4.190309(6) 1.531755(1)
6.389113(5) 9.815447(0) 3.709259(0)
6.34905(6) 4.33814(6)

4.338151(6)
6.164(6) 4.198(6)

40 6.027546(7) 4.092510(7) 5.603699(2)
1.004201(8) 4.070804(7) 4.538585(2)
6.233007(6) 3.125000(2) 1.191049(2)
6.34189(7) 4.33325(7)

4.333258(7)
6.021(7) 4.088(7)

50 3.490198(8) 2.358404(8) 7.626644(3)
5.766927(8) 2.338399(8) 6.121721(3)
3.598843(7) 4.596473(3) 1.773218(3)
3.78006(8) 2.58282(8)

2.582823(8)
3.486(8) 2.355(8)

60 1.448849(9) 9.713598(8) 6.295649(4)
2.364553(9) 9.591454(8) 5.002899(4)
1.484800(8) 4.151041(4) 1.628368(4)
1.62536(9) 1.11056(9)

1.110567(9)

70 4.775562(9) 3.159314(9) 3.670109(5)
7.650156(9) 3.103292(9) 2.885631(5)
4.834404(8) 2.678235(5) 1.074857(5)
5.57857(9) 3.81169(9)

3.811702(9)
4.767(9) 3.152(9)

80 1.330702(10) 8.600491(9) 1.653622(6)
2.072144(10) 8.392647(9) 1.286627(6)
1.315901(9) 1.350922(6) 5.592928(5)

TABLE IV. (Continued.)

Z W (E1M1) W (E1E2) W (M1M2)

1.62352(10) 1.10931(10)
1.109314(10)

1.328(10) 8.569(9)

90 3.275569(10) 2.030312(10) 6.096777(6)
4.882438(10) 1.964975(10) 4.702271(6)
3.100586(9) 5.642668(6) 2.438090(6)
4.16561(10) 2.84625(10)

2.846261(10)
3.262(10) 2.016(10)

100 7.391723(10) 4.243167(10) 1.908566(7)
1.029402(11) 4.063967(10) 1.466435(7)
6.453893(9) 2.027560(7) 9.299941(6)
9.67696(10) 6.61201(10)

6.612027(10)
7.330(10) 4.187(10)

magnetic components, i.e., 2M2 and 2M1. In Table V are
also compiled a few numerical values from Amaro et al. [47].
They agree well with our calculations.

(b) One question of interest concerns the role of negative
spectrum (n < 0) of the Dirac-Coulomb Sturmians of first
order in relativistic two-photon calculations. We see the effects
arising from the summation over the non-negative (n � 0) and
negative parts of the spectrum. In Fig. 3, W

(R)
+ contributions

in the available domain experience, at the most, a 8.5%
divergence with increasing Z. Instead, in Fig. 4, the inverse
tendency is observed with the multipole E1M1 for which, at
low Z, the relative error is about 68% and decreases with
the growth of the nuclear charge. As for W

(R)
− , it lies, in

general, between 80% and 100% and is almost constant,
regardless of the multipole considered, except M1M2 for
which it decreases when Z increases. A perusal of the different

TABLE V. Contributions from different combinations of mul-
tipoles to the integrated two-photon decay rates W (s−1) for the
transition 2p1/2 → 1s1/2 as a function of the nuclear charge. First
entry: W (R); second entry: W (A) (Amaro et al. [47]); third entry: W (L)

(Labzowsky et al. [45]); fourth entry: W (So) (Solovyev et al. [36],
Labzowsky et al. [35]). Powers of ten are given in parentheses.

Z W (E1M1) W (E1E2) W (M1M2)

1 9.676656(−6) 6.611798(−6) 3.827879(−17)
9.676654(−6) 6.61179(−6) 3.827877(−17)
9.667(−6) 6.605(−6)
9.677(−6) 6.673(−6)

40 6.027546(7) 4.092510(7) 5.603699(2)
6.027323(7) 4.092020(7) 5.602320(2)
6.020(7) 4.088(7)
6.341(7) 4.374(7)

92 3.876927(10) 2.374811(10) 7.753755(6)
3.863302(10) 2.358404(10) 7.689142(6)
3.859(10) 2.357(10)
4.966(10) 3.425(10)

022514-10



TWO-PHOTON DECAY RATES OF HYDROGENLIKE IONS . . . PHYSICAL REVIEW A 89, 022514 (2014)

TABLE VI. Contributions from different combinations of multipoles to the integrated two-photon decay rates W (s−1) for the transition
2s1/2 → 1s1/2 as a function of the nuclear charge. First entry: W (R); second entry: W

(R)
+ ; third entry: W

(R)
− ; fourth entry: W (L) (Labzowsky

et al. [45]); fifth entry: W (NR) [Eqs. (74)–(78)]; sixth entry: W (PJ ) (Parpia and Johnson [43]); seventh entry: W (GD) (Goldman and Drake [41]).
Powers of ten are given in parentheses.

Z W (2E1) W (E1M2) W (2M1) W (2E2) W (2M2) W (E2M1)

1 8.229061 2.537181(−10) 1.380358(−11) 4.907230(−12) 3.069352(−22) 1.639357(−23)
8.229040 2.055791(−10) 2.862986(−11) 4.907198(−12) 2.122096(−22) 1.701738(−13)
1.530988(−11) 3.241807(−12) 2.867209(−12) 5.184052(−23) 1.538559(−23) 1.701705(−13)
8.2207
8.229352 4.907313(−12)
8.2291
8.2291 2.5371(−10) 1.3804(−11) 4.9072(−12) 4.089(−22) 1.638(−23)

10 8.200647(6) 2.528056(0) 1.386428(−1) 4.898993(−2) 3.068670(−8) 1.661757(−9)
8.198545(6) 2.046950(0) 2.870806(−1) 4.895813(−2) 2.119324(−8) 1.700698(−3)
1.539192(−1) 3.241873(−2) 2.872111(−2) 5.198844(−9) 1.542755(−9) 1.697410(−3)
8.1922(6)
8.229352(6) 4.907313(−2)

20 5.195137(8) 2.562369(3) 1.439270(2) 4.990921(1) 5.024838(−4) 2.837239(−5)
5.189731(8) 2.070584(3) 2.964618(2) 4.977879(1) 3.458898(−4) 1.738546(0)
1.601902(2) 3.319877(1) 2.956499(1) 8.591912(−5) 2.548792(−5) 1.724818(0)
5.1899(8)
5.266785(8) 5.025089(1)
5.1965(8)
5.1956(8) 2.5629(3) 1.4383(2) 4.9909(1) 6.714(−4) 2.838(−5)

30 5.821131(9) 1.454723(5) 8.502323(3) 2.853190(3) 1.465996(−1) 8.875376(−3)
5.807171(9) 1.171943(5) 1.734783(4) 2.836231(3) 1.003567(−1) 1.000196(2)
9.491238(3) 1.914590(3) 1.720215(3) 2.544985(−2) 7.546683(−3) 9.818067(1)
5.8152(9)
5.999198(9) 2.897719(3)

40 3.198673(10) 2.532719(6) 1.566111(5) 5.004195(4) 8.226284(0) 5.491783(−1)
3.184582(10) 2.032494(6) 3.148449(5) 4.950494(4) 5.587471(0) 1.772345(3)
1.750945(5) 3.400288(4) 3.094818(4) 1.458049(0) 4.322669(−1) 1.711625(3)
3.1953(10)
3.370743(10) 5.145691(4)
3.1996(10)
3.1988(10) 2.5329(6) 1.5496(5) 5.0042(4) 1.109(1) 5.492(−1)

50 1.186662(11) 2.305484(7) 1.536359(6) 4.584559(5) 1.872267(2) 1.417839(1)
1.178150(11) 1.841803(7) 3.022465(6) 4.506120(5) 1.258711(2) 1.649652(4)
1.713218(6) 3.167169(5) 2.933682(5) 3.405592(1) 1.010030(1) 1.555979(4)
1.1854(11)
1.285836(11) 4.792298(5)

60 3.426718(11) 1.392205(8) 1.021430(7) 2.779868(6) 2.411130(3) 2.131864(2)
3.389519(11) 1.106667(8) 1.949330(7) 2.709622(6) 1.600265(3) 1.024470(5)
1.127393(7) 1.961221(6) 1.858948(6) 4.521682(2) 1.343099(2) 9.346472(4)
3.4230(11)
3.839486(11) 2.967265(6)
3.4270(11)
3.4267(11) 1.3922(8) 9.6776(6) 2.7799(6) 3.304(3) 2.132(2)

70 8.307144(11) 6.334205(8) 5.248247(7) 1.265224(7) 2.099927(4) 2.233543(3)
8.177038(11) 5.008344(8) 9.611343(7) 1.220338(7) 1.371925(4) 4.832255(5)
5.664943(7) 9.162123(6) 8.946377(6) 4.075960(3) 1.214996(3) 4.208112(5)
8.2975(11)
9.681750(11) 1.386194(7)

80 1.767607(12) 2.343214(9) 2.261100(8) 4.656789(7) 1.377013(5) 1.818633(4)
1.728932(12) 1.842535(9) 3.921825(8) 4.432792(7) 8.826223(4) 1.875808(6)
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TABLE VI. (Continued.)

Z W (2E1) W (E1M2) W (2M1) W (2E2) W (2M2) W (E2M1)

2.345555(8) 3.481952(7) 3.532552(7) 2.774577(4) 8.327096(3) 1.530759(6)
1.7655(12)
2.157275(12) 5.269187(7)
1.7675(12)
1.7679(12) 2.3431(9) 1.9045(8) 4.6568(7) 1.932(5) 1.819(4)

90 3.393951(12) 7.403744(9) 8.641852(8) 1.452950(8) 7.295258(5) 1.238932(5)
3.292413(12) 5.789315(9) 1.398025(9) 1.360439(8) 4.569426(5) 6.338603(6)
8.409672(8) 1.129956(8) 1.204652(8) 1.528426(5) 4.642472(4) 4.721585(6)
3.3899(12)
4.373415(12) 1.711074(8)

100 5.981423(12) 2.066445(10) 3.061347(9) 3.962382(8) 3.283020(6) 7.468695(5)
5.739900(12) 1.606952(10) 4.539131(9) 3.633584(8) 1.999435(6) 1.951263(7)
2.702869(9) 3.235652(8) 3.682911(8) 7.148751(5) 2.216097(5) 1.276734(7)
5.9783(12)
8.229352(12) 4.907313(8)

curves in Figs. 5 and 6 reveals that the contribution of the
negative part of the Sturmian basis to the spectral distribution
is also negligible for the leading multipole 2E1 as well as
2E2 and E1E2 channels, but becomes rather pronounced for
the higher ones, M1M2 and E2M1. From what precedes, it
is apparent that the exclusion of the negative spectrum from
the intermediate-state summation leads to either a reduction
or an increase of the fully relativistic decay rate. Likewise,
interferences between the non-negative and negative parts
of the complete set of relativistic Sturmian functions of the
first order manifest themselves, particularly in the case of the
E2M1 channel for which W

(R)
+ and W

(R)
− are each about ten

orders of magnitude higher than W (R) if decay of medium-
and high-Z ions is considered. Their combination obviously
yields the cancellation observed.

As pointed out in Sec. II, it is important to examine the
influence of retardation terms in Eq. (42) and compare with
preserving the full spherical Bessel functions in the radial
integrals. Switching our attention to Figs. 7 and 8, which show
the same tendencies, we can check the numerical accuracy
of this truncation scheme in the calculation of radial integrals
and, therefore, of the emission probabilities. Retaining only the
first retardation term in the series expansion of the spherical
Bessel functions leads, beyond Z = 25, to a big deviation from
the fully relativistic spectral distribution. Therefore, the range
of validity of this term is narrower. In contrast, considering
the leading two terms, one finds almost identical results with
a relative error of less than 10−7 for all multipole decay
channels. This agreement explains why numbers of the latter
case are not given in the tables. It then becomes evident in

TABLE VII. Contributions from different combinations of multipoles to the integrated two-photon decay rates W (s−1) for the transition
2s1/2 → 1s1/2 as a function of the nuclear charge. First entry: W (R); second entry: W (Sa) (Santos et al. [44]); third entry: W (GD) (Goldman and
Drake [41]); fourth entry: W (PJ ) (Parpia and Johnson [43]); fifth entry: W (A) (Amaro et al. [55]); sixth entry: W (L) (Labzowsky et al. [45]);
seventh entry: W (G) (Goldman [87]). Powers of ten are given in parentheses.

Z W (2E1) W (E1M2) W (2M1) W (2E2) W (2M2) W (E2M1)

1 8.229061 2.537181(−10) 1.380358(−11) 4.907230(−12) 3.069352(−22) 1.639357(−23)
8.229063 2.537183(−10) 1.380359(−11) 4.907232(−12) 3.069354(−22) 1.637802(−23)
8.2291 2.5371(−10) 1.3804(−11) 4.9072(−12) 4.089(−22) 1.638(−23)
8.2291
8.2290591586 2.5371807735(−10) 1.3803580496(−11) 4.9072289232(−12) 3.0693510074(−22) 1.6393565197(−23)
8.2207
8.22906 2.53718(−10) 1.38036(−11) 4.90723(−12) 3.06935(−22) 1.63936(−23)

54 1.859308(11) 4.928837(7) 3.403959(6) 9.820835(5) 5.504194(2) 4.419184(1)
1.859221(11) 4.927784(7) 3.402664(6) 9.817756(5) 5.502043(2) 4.416201(1)

92 3.825895(12) 9.173468(9) 1.118273(9) 1.793657(8) 9.971596(5) 1.789081(5)
3.825552(12) 9.138566(9) 1.109270(9) 1.785817(8) 9.906518(5) 1.766901(5)
3.8259(12) 9.1734(9) 8.2664(8) 1.7936(8) 1.425(6) 1.790(5)
3.8257(12)
3.825839(12)
3.8216(12)
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FIG. 1. An illustration of the behavior of the percentage differ-
ence d between WR (this work) and WL (Ref. [45]) total two-photon
decay rates for the transitions 2p1/2 → 1s1/2 (E1M1; E1E2) vs the
nuclear charge Z. Curves are drawn to guide the eye.

this semirelativistic approach that Eq. (41), with the first two
terms in Gauss hypergeometric functions, is a simple formula
leading to a fast procedure for the computation of two-photon
decay rates.

We now focus our attention on Fig. 9, where the normalized
integrated decay rate for the E1E2, 2E1, and 2E2 multipoles
are plotted as a function of the nuclear charge. The horizontal
dotted line represents the nonrelativistic result as described in
Sec. III. As expected and previously pointed out in Ref. [88],
corrections arising from relativity are evident, namely, that the
magnitude of φ(Z) is significantly lowered with the growth of
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FIG. 2. An illustration of the behavior of the percentage dif-
ference d between WR (this work), WGD (Ref. [41]), and W (PJ )

(Ref. [43]) total two-photon decay rates for the transitions 2s1/2 →
1s1/2 (2E1; E1M2; 2E2; E2M1) vs the nuclear charge Z. Curves
are drawn to guide the eye.
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FIG. 3. An illustration of the behavior of the percentage differ-
ence d between WR (this work) and WR

+ total two-photon decay rates
for the transitions 2p1/2 → 1s1/2 (E1E2) and 2s → 1s (2E1; 2E2)
vs the nuclear charge Z. Curves are drawn to guide the eye.

Z. Also the influence of the negative part of the Dirac-Coulomb
Sturmian basis set is apparent when considering higher Z.

Finally, in Table VIII are compiled full relativistic multipole
values of emission probabilities for the transition 2s1/2 →
1s1/2 computed from our formulation, as well as the contri-
butions calculated by Santos et al. [44] and Goldman and
Drake [41]. Enough multipoles have been included in the
computations. Percentage differences defined previously are
plotted in Fig. 10. As one can see from this figure, they are
within 0.06%. However, results from Ref. [41] are closer to
those of this work for Z � 40.

20 40 60 80 100
10

20

30

40

50

60

70

80

90

100

Z

d
 (

%
)

 

 

E1M1 (non−negative part)
M1M2 (non−negative part)
E1M1 (negative part)
M1M2 (negative part)

FIG. 4. An illustration of the behavior of the percentage differ-
ence d between WR and WR

+ (E1M1: dotted line; M1M2: dashed
dotted line), WR

− (E1M1: solid dark line; M1M2: dashed line)
total two-photon decay rates for the transitions 2p1/2 → 1s1/2 vs the
nuclear charge Z. Curves are drawn to guide the eye.
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FIG. 5. Shape of the spectral dis-
tribution function ψ(Z,y) of the 2E1,
2E2, E1M2, E2M1, 2M1, and 2M2
contributions for the transition 2s1/2 →
1s1/2 at the nuclear charge Z = 100. The
variable y is the fraction of energy car-
ried by one of the two photons. The solid
dark line, dashed line, and dash-dotted
line represent the results using Sturmian
basis sets with the radial quantum num-
ber −nmax � n � nmax, 0 � n � nmax,
and −nmax � n � −1, respectively.
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E1E2, and M1M2 contributions for the
transition 2p1/2 → 1s1/2 at the nuclear
charge Z = 100. The variable y is the
fraction of energy carried by one of
the two photons. The dashed, solid-dark,
and dash-dotted lines represent the re-
sults using Sturmian basis sets, respec-
tively, with the radial quantum number
−nmax � n � nmax, 0 � n � nmax, and
−nmax � n � −1, respectively.
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FIG. 7. Plot of the spectral distri-
bution function ψ(Z,y) of the E1E2
contribution for the transition 2p1/2 →
1s1/2 at the nuclear charges Z = 25,
50, 75, and 100. The variable y is
the fraction of energy carried by one
of the two photons. The solid dark
and solid light gray lines represent
computations by retaining only the first
and the leading two retardation terms,
respectively, in the series expansion of
the spherical Bessel functions in the
transition operator. The dashed line rep-
resents the fully relativistic multipole
calculations.
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FIG. 8. Plot of the spectral distribu-
tion function ψ(Z,y) of the 2E1 contri-
bution for the transition 2s1/2 → 1s1/2

at the nuclear charges Z = 25, 50, 75,
and 100. The variable y is the fraction
of energy carried by one of the two
photons. The solid dark and solid light
gray lines represent computations by
retaining only the first and the leading
two retardation terms, respectively, in
the series expansion of the spherical
Bessel functions in the transition op-
erator. The dashed line represents the
fully relativistic multipole calculations.
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FIG. 9. Plot of the normalized integrated decay rate φ(Z) for the
transitions 2p1/2 → 1s1/2 (E1E2) and 2s1/2 → 1s1/2 (2E1; 2E2) vs
the nuclear charge Z. The dotted line represents the nonrelativistic
results; the solid dark and dashed lines represent the computations
using Sturmian basis sets with the radial quantum number −nmax �
n � nmax and 0 � n � nmax, respectively.

V. CONCLUDING REMARKS

In this paper, we have undertaken, through a systematic
study, a comparison of our DCGF approach with other refined
computations of two-photon transitions 2p1/2 → 1s1/2 and
2s1/2 → 1s1/2 in the hydrogen atom and hydrogenlike ions
with an infinitely heavy, pointlike, and spinless nucleus of

TABLE VIII. Total two-photon decay rates W (s−1) of the 2s1/2

state as a function of the nuclear charge. W (R); W (S) (Santos et al.
[44]); W (GD) (Goldman and Drake [41]). Powers of ten are given in
parentheses.

Z W (R) W (S) W (GD)

1 8.229061 8.229063 8.2291
10 8.200650(6) 8.200570(6) 8.2010(6)
20 5.195165(8) 5.194978(8) 5.1956(8)
30 5.821288(9) 5.821062(9) 5.8217(9)
40 3.198947(10) 3.198853(10) 3.1990(10)
50 1.186912(11) 1.186870(11) 1.1869(11)
60 3.428240(11) 3.428003(11) 3.4282(11)
70 8.314130(11) 8.313011(11) 8.3139(11)
80 1.770223(12) 1.769879(12) 1.7701(12)
90 3.402365(12) 3.401841(12) 3.4021(12)
92 3.836367(12) 3.835980(12) 3.8361(12)
100 6.005549(12) 6.008640(12) 6.0045(12)
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FIG. 10. An illustration of the behavior of the percentage differ-
ence d between our WR and the WGD (Ref. [41]) and WS (Ref. [44])
total two-photon decay rates for the transitions 2s1/2 → 1s1/2 (2E1;
E1M2; 2E2; E2M1) vs the nuclear charge Z. Curves are drawn to
guide the eye.

charge ranging from 1 to 100. To this end, we have derived
analytical relativistic formulas for spectral distributions and
total decay rates by using the Sturmian expansion of the com-
plete first-order Dirac-Coulomb Green function constructed
by Szmytkowski. These formulas are quite general and may
be applied to any multipole of the two photons. We have
then checked that for three particular multipole cases, namely,
E1E2, 2E1, and 2E2, they recover those of the nonrelativistic
formulation based on the well-known Schrödinger-Coulomb
Green function expanded over the Coulomb Sturmian basis.
In addition, by making use of two appropriate methods, radial
integrals involved in matrix elements have been treated with
great care, and we have obtained extremely accurate values.
With these formulas, convenient for computer calculations, we
have carried out numerical evaluations of the most significant
multipole contributions to the above-mentioned transitions. In
accordance with Grant’s demonstration, our fully relativistic
multipole results show a perfect agreement between gauges.
On the other hand, the influence of retardation as well as
the effects of the negative spectrum of the Sturmian basis
have been estimated. Concerning the first point, the leading
two retardation terms in the series expansion of spherical
Bessel functions in the transition operator yield very accurate
results. This approximate procedure enables one also to save
some computation time. As for the second point, we have
observed in some multipole channels, e.g., E2M1 and M1M2,
important interferences between the non-negative and negative
parts of the complete set of relativistic Sturmian functions.
However, these effects arise not only for rather heavy ions.
Finally, the percentage differences between our predictions
and theoretical data from Goldman and Drake, Santos et al.,
Amaro et al., and Parpia and Johnson are within 0.08%, except
for multipoles with only magnetic components such as 2M1
and 2M2. The results of these authors are closer to ours than
those of Labzowsky et al. for which the d numbers lie between
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0.1% and 1.4%. In light of what precedes, we strongly believe
that the present DCGF scheme provides a reliable, efficient,
and valuable tool regarding the study of two-photon and even
higher-order atomic processes.
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APPENDIX A: COULOMB STURMIAN REPRESENTATION
OF GREEN AND HYDROGENIC BOUND-STATE

FUNCTIONS

In order to make our text self-contained, we briefly recall
below relativistic and nonrelativistic representations of Green
and hydrogenic bound-state functions expressed in terms of
the Coulomb Sturmian functions.

1. Relativistic representation

The relativistic atomic units (r.a.u.) are used here. In a
remarkable work, Szmytkowski [72] constructed the four-
component Dirac-Coulomb Sturmian basis {	nκm(r,E)} of
the first order,

	nκm(r,E) = 1

r

(
Snκ (x)�κm(r̂)

iTnκ (x)�−κm(r̂)

)
, (A1)

and derived the following Sturmian expansions of the Dirac-Coulomb Green function:

GE(r,r′) =
∑
κm

1

rr ′

(
g(11)

κ �κm(r̂)�†
κm(r̂ ′) −ig(12)

κ �κm(r̂)�†
−κm(r̂ ′)

ig(21)
κ �−κm(r̂)�†

κm(r̂ ′) g(22)
κ �−κm(r̂)�†

−κm(r̂ ′)

)
, (A2)

with

g(11)
κ (E; r,r ′) =

∞∑
n=−∞

θ̃nκSnκ (x)Snκ (x ′),

(A3)

g(12)
κ (E; r,r ′) =

∞∑
n=−∞

α̃nκSnκ (x)Tnκ (x ′),

g(21)
κ (E; r,r ′) =

∞∑
n=−∞

θ̃nκTnκ (x)Snκ (x ′),

(A4)

g(22)
κ (E; r,r ′) =

∞∑
n=−∞

α̃nκTnκ (x)Tnκ (x ′).

The radial Sturmians may be written in terms of the generalized
Laguerre polynomials [86] of the same order 2γ , as

Snκ (x) = xγ e−x/2
[
AnκL

(2γ )
|n|−1(x) + BnκL

(2γ )
|n| (x)

]
, (A5)

Tnκ (x) = εxγ e−x/2
[
AnκL

(2γ )
|n|−1(x) − BnκL

(2γ )
|n| (x)

]
. (A6)

They are normalized according to the following orthonormal-
ity relations:

1

2

∫ ∞

0
dx [εSnκ (x)Sn′κ (x) + ε−1Tnκ (x)Tn′κ (x)] = δnn′ ,

∫ ∞

0
dx

Z
x

[
μnκSnκ (x)Sn′κ (x) − μ−1

nκ Tnκ (x)Tn′κ (x)
] = δnn′ .

Notice that we define L
(β)
−1(x) = 0. For convenience, the

arguments are chosen to be x = 2λr , x ′ = 2λr ′. E and Z

are fixed real parameters such that 0 < Z < 1, 0 < E < 1.

Z = αZ, γ =
√

κ2 − Z2, λ =
√

1 − E2, ε =
√

1 − E

1 + E
,

(A7)

where α is the Sommerfeld fine-structure constant, and

θ̃nκ = μnκ

μnκ − 1
, α̃nκ = θ̃nκ − 1,

(A8)
μnκ = εZ−1 (|n| + γ ± Nnκ ) ,

Anκ =
√

(|n| + 2γ ) |n|!
2εNnκ (Nnκ ∓ κ)�(|n| + 2γ )

,

(A9)

Bnκ = κ ∓ Nnκ

|n| + 2γ
Anκ, Nnκ =

√
(|n| + γ )2 + Z2.

The angular quantum number κ takes all integer values
except zero according to κ = ε (j + 1/2), j = l − ε/2 =
l̄ + ε/2, ε = ±1. l and j are the electron orbital and total
angular momenta. The following sign convention is adopted
in relations (A8) and (A9). The upper sign should be chosen
for n > 0, while the lower one should be chosen for n < 0.
For n = 0, one must choose the upper sign if κ < 0 and the
lower one if κ > 0.

For hydrogenic ions of nuclear charge Z, bispinor bound
states used in this work read

�nκm(r) = 1

r

(
Pnκ (r)�κm(r̂)

iQnκ (r)�−κm(r̂)

)
, (A10)

Pnκ (r) = xγ e−x/2[CnκL
(2γ )
n−1(x) + DnκL

(2γ )
n (x)

]
, (A11)
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Qnκ (r) = xγ e−x/2
[
C̃nκL

(2γ )
n−1(x) − D̃nκL

(2γ )
n (x)

]
, (A12)

where

Cnκ =
√

λnκ (1 + Enκ ) (n + 2γ ) n!

2Nnκ (Nnκ − κ)�(n + 2γ )
,

(A13)

C̃nκ =
√

λnκ (1 − Enκ ) (n + 2γ ) n!

2Nnκ (Nnκ − κ)�(n + 2γ )
,

Dnκ = κ − Nnκ

n + 2γ
Cnκ, D̃nκ = κ − Nnκ

n + 2γ
C̃nκ,

(A14)

λnκ ≡ λ(Enκ ) = Z
Nnκ

,

Enκ = (n + γ )/Nnκ, n = 0,1,2, . . . . (A15)

The above radial functions are related to the radial Sturmi-
ans by Pnκ (r) = λnκ Snκ (2λnκr) and Qnκ (r) = λnκ Tnκ (2λnκr).
They are normalized according to the condition∫ ∞

0
dr

[
P 2

nκ (r) + Q2
nκ (r)

] = 1.

It should also be noted that the radial quantum number n is
relied to the principal quantum number ñ by n = ñ − |κ|.

2. Nonrelativistic representation

The atomic units (a.u.) are used throughout this section. In
this case, the Green function is represented by an infinite sum
over the discrete Sturmian basis functions of the Schrödinger
equation [62,89,90],

Gξ (r,r′) =
∑
l,m

1

rr ′ gl(ξ ; r,r ′)Y lm(r̂)Y ∗
lm(r̂ ′),

(A16)

gl(ξ ; r,r ′) = 1

λ

∞∑
n=0

n + l + 1

λ(n + l + 1) − Z
Snl(r)Snl(r

′),

Snl(r) =
√

λ n!

(n + l + 1) (n + 2l + 1)!
xl+1e−x/2L(2l+1)

n (x),

(A17)
λ =

√
−2ξ, x = 2λr, x ′ = 2λr ′.

These radial Sturmian functions Snl(r) are normalized in
such a way that [91]

∫ ∞

0
dr Sn′l(r)Snl(r) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, n′ = n

− 1
2

√
n(n+2l+1)

(n+l)(n+l+1) , n′ = n − 1

− 1
2

√
(n+1)(n+2l+2)

(n+l+1)(n+l+2) , n′ = n + 1

0, otherwise,

and ∫ ∞

0
dr Snl(r)

1

r
Sn′l(r) = λ

n + l + 1
δnn′ .

It should be noted that they are exact solutions of the
Schrödinger equation for bound states of hydrogenic ions [82]

when λ ≡ λn = Z/(n + l + 1), that is,

ψnlm(r) = 1

r
Pnl(r)Y lm(r̂), Pnl(r) = Snl(2λnr), (A18)

λn =
√

−2ξn, ξn = − Z2

2(n + l + 1)2
, n = 0,1,2, . . . .

(A19)

APPENDIX B: REDUCTION TO RADIAL INTEGRALS
OF MATRIX ELEMENTS

Let us introduce the following notations: T (1)
LM = A(1)∗

LM ,
T (0)

LM = A(0)∗
LM, TLM = 	∗

LM for emission, and T (1)
LM = A(1)

LM ,
T (0)

LM = A(0)
LM , TLM = 	LM for absorption. These multipole

field irreducible tensor operators of order L are given by
Eqs. (8)–(11). Following the works of Grant [85] and Arm-
strong et al. [92] and making use of the Wigner-Eckart
theorem, we get, in the general form,

〈σ |α · T (1)
LM |τ 〉 = iL

√
4π a b(Fστ − GLHστ ), (B1)

〈σ |α · T (0)
LM |τ 〉 = iL+1a bTστ , (B2)

〈σ |TLM |τ 〉 = ±iLa bLστ . (B3)

In Eq. (B3), the upper and lower signs refer to emission and
absorption, respectively. On the other hand,

b = [jσ ,jτ ]1/2

(
jσ L jτ

1/2 0 −1/2

)
� (jσ ,jτ ,L) , (B4)

a =

⎧⎪⎪⎨
⎪⎪⎩

(−1)jσ +jτ +mτ +1/2

(
jσ L jτ

mσ M −mτ

)
for emission,

(−1)mσ −1/2

(
jσ L jτ

−mσ M mτ

)
for absorption.

(B5)

The parity selection rules follow from the calculation of the re-
duced matrix elements. For electric multipoles, � (jσ ,jτ ,L) =
1 for κσ κτ > 0, jσ + jτ + L odd or κσ κτ < 0, jσ + jτ + L

even, and � (jσ ,jτ ,L) = 0 otherwise. For magnetic multi-
poles, � (jσ ,jτ ,L) = 1 for κσ κτ > 0, jσ + jτ + L even or
κσ κτ < 0, jσ + jτ + L odd, and � (jσ ,jτ ,L) = 0 otherwise.

Fστ , Hστ , Lστ , and Tστ are radial integrals. In the notation
used by Rosner and Bhalla [93], they read

Ff,n = [L]−1/2

{√
L

L + 1
[(κf − κ)Ǐ+

L+1 + (L + 1)Ǐ−
L+1]

−
√

L + 1

L
[(κf − κ)Ǐ+

L−1 − LǏ−
L−1]

}
, (B6)

Fn,i = [L]−1/2

{√
L

L + 1
[(κ − κi)Î

+
L+1 + (L + 1)Î−

L+1]

−
√

L + 1

L
[(κ − κi)Î

+
L−1 − LÎ−

L−1]

}
, (B7)

Hf,n = [L]−1/2{(κf − κ)[Ǐ+
L+1 + Ǐ+

L−1]

+ (L + 1)Ǐ−
L+1 − LǏ−

L−1}, (B8)
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Hn,i = [L]−1/2{(κ − κi)[Î
+
L+1 + Î+

L−1]

+ (L + 1)Î−
L+1 − LÎ−

L−1}, (B9)

Lf,n = [L]1/2J̌L, Ln,i = [L]1/2ĴL, (B10)

Tf,n =
√

2L + 1

L(L + 1)
(κf + κ)Ǐ+

L ,

(B11)

Tn,i =
√

2L + 1

L(L + 1)
(κ + κi)Î

+
L ,

where

Ǐ±
L =

∫ ∞

0
dr jL(ωr)

[
Pnf κf

(r)Tnκ (2λr)

±Qnf κf
(r)Snκ (2λr)

]
, (B12)

Î±
L =

∫ ∞

0
dr jL(ωr)

[
θ̃nκQniκi

(r)Snκ (2λr)

±α̃nκPniκi
(r)Tnκ (2λr)

]
, (B13)

J̌L =
∫ ∞

0
dr jL(ωr)

[
Pnf κf

(r)Snκ (2λr)

+Qnf κf
(r)Tnκ (2λr)

]
, (B14)

ĴL =
∫ ∞

0
dr jL(ωr)

[
θ̃nκPniκi

(r)Snκ (2λr)

+ α̃nκQniκi
(r)Tnκ (2λr)

]
. (B15)

jL(x) is the well-known spherical Bessel function of the first
kind.
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[15] T. W. Hänsch, Rev. Mod. Phys. 78, 1297 (2006).
[16] E. G. Drukarev and A. N. Moskalev, Zh. Eksp. Teor. Fiz. 73,

2060 (1977).
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