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Multichannel quantum defect theory for polar molecules
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Our work is devoted to developing a general approach for nonpenetrating Rydberg states of polar molecules.
We propose a method to estimate the accuracy of calculation of their wave functions and quantum defects. Basing
on this method we estimate the accuracy of Born-Oppenheimer (BO) and inverse Born-Oppenheimer (IBO)
approximations for these states. This estimation enables us to determine the space and energy regions where BO
and IBO approximations are valid. It depends on the interplay between l coupling (due to dipole potential of the
core) and l uncoupling (due to rotation the core). Next we consider the intermediate region where both BO and
IBO are not valid. For this intermediate region we propose a modification of Fano’s multichannel quantum defect
theory to match BO and IBO wave functions and show that it gives more reliable results. They are demonstrated
on the example of SO molecule.
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I. INTRODUCTION

Comprehensive theoretical description of high-excited
atomic and molecular Rydberg states (RSs) is important for
interpretation of spectra of astronomical objects [1–3]. In
laboratory conditions RSs are obtained up to n � 300 [4]. High
sensitivity of RSs to external fields and their extremely long-
range interactions are attractive for potential technological
applications, for example, in quantum computing [5–13]. A
special group of RSs is embodied by high-l nonpenetrating
ones, where behavior of Rydberg electron can be described by
an effective one-electron Hamiltonian. High-l Rydberg spectra
are of particular interest because their interpretation allows
one to extract properties of the core (atomic or molecular)
with high precision [14,15]. Recent identification of many new
high-l series [16–20] in atomic spectra allows one to expect
appearing precise spectroscopic data on high-l Rydberg series
in molecules as well, which makes a challenge for theory.

The motion of electron in a nonpenetrating RS is governed
by long-range interactions with the core. The present work is
dedicated to developing a general approach to the problem of
electron motion in the field of Coulomb potential combined
with the field of a freely rotating point dipole. This problem
was previously approached from two opposite sides. First,
it was considered for the ordinary Born-Oppenheimer (BO)
case, when the rotation of the dipole is slow in comparison
with the motion of the electron. It was shown to allow
an explicit solution due to separation of radial and angular
variables [21,22]. Second, the opposite case was considered,
referred to as the inverse Born-Oppenheimer (IBO) one, when
the dipole rotates much faster than the electron. It became
possible to separate radial and angular variables and to get
an explicit solution in this case also [23]. Two obtained
solutions were used in our previous work [24] for classification
and calculation of quantum defects and wave functions for
nonpenetrating RSs in polar molecules.
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In the present work we suggest a technique applicable to
both the above-mentioned limiting cases as well as to the inter-
mediate case, when the rotation of the dipole and the motion
of the electron take place at the same time scale. We base it on
the multichannel quantum defect theory [25,26] first applied by
Fano [27] to a similar problem of RSs in nonpolar molecules.
We generalize it by including long-range dipole potential and
thus make it applicable to polar molecules as well.

The effect of the core dipole moment on the Rydberg
spectrum of real polar molecules was extensively investigated
both theoretically and experimentally by the groups of Jungen
and Field and other researchers [14,15,28–35]. In particular,
in the work [14] the Rydberg spectra of CaF and BaF
were calculated for 5 � n � 12 and 0 � l � 6. However,
this calculation was performed entirely in the frame of BO
approximation; the effect of the core rotation was not taken
into account there. The core rotation was included in the
picture in the works [15,28,36], but on the other hand the
effect of long-range core dipole potential in IBO region was
not consistently accounted for.

In Sec. II of the present work we outline the main formalism.
In Sec. II A the effective one-electron Hamiltonian is pre-
sented, in Secs. II B and II C the BO and IBO approximations
are considered, respectively, in Sec. II D the multichannel
quantum defect theory (MQDT) technique is described for
matching BO and IBO solutions, and Sec. II E presents an
example of choosing proper matching radius and estimating
accuracy of the obtained matched wave function. In Sec. III
we discuss the results obtained for the model SO molecule. In
the Appendix the mathematics of radial Coulomb functions is
briefly summarized.

Atomic units are used throughout this work.

II. MAIN FORMALISM

A. Effective Hamiltonian

We take the Hamiltonian of a polar diatomic Rydberg
molecule in the following form:

H = H+ + p2

2
− 1

r
+ dr

r3
, (1)
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where H+ relates to the centrifugal energy of the nuclei:

H+ = BN̂2. (2)

N̂ is the orbital angular momentum of nuclei,

N̂ = Ĵ − L̂+ − Ŝ+ − l̂, (3)

B is the rotational constant, Ĵ is the total momentum of the
molecule (except the spin of the Rydberg electron), L̂+ and
Ŝ+ are the orbital angular momentum and the spin of core
electrons, respectively, and l̂ is the orbital angular momentum
of the Rydberg electron. The Hund’s case (a) for the core is
assumed; hence the projection of L̂+ + Ŝ+ onto the molecular
axes is taken to be a good quantum number ω. The electronic
state of the core is assumed to be not perturbed by the Rydberg
electron, and the constant energy of the core electrons is
omitted from the total energy of the molecule throughout
the present paper. Vectors r and p are the position and the
translational momentum of the Rydberg electron, respectively.
Spin of the Rydberg electron and vibration of the core are not
taken into account.

B. Pure Born-Oppenheimer wave function

If the Rydberg electron spends the most time near the core
where the ordinary Born-Oppenheimer approximation is valid,
the projection m of l on the core axis is a good quantum
number and the molecular wave function can be taken in the
form

�BO
lm = RBO

lm (E,r)ZBO
lm (θ,ϕ,�). (4)

The radial function R can be expressed via the Coulomb
functions regular at origin and infinity (see the Appendix).
The angular function for a nonpenetrating RS of a nonpolar
molecule (d = 0) can be decomposed as

ZBO
lm (θ,ϕ,�) = �J

M,�(�)Ylm(θ,ϕ), (5)

where � are the Euler angles that specify the spatial orientation
of the molecule, Y are ordinary spherical harmonics, θ and
ϕ are the spherical angles of the Rydberg electron in the
molecule frame, and M and � = ω + m are the projections
of J on the laboratory axis and the molecular one, respec-
tively. The component � is related to the rotation of the
whole molecule and can be represented in terms of Wigner
D functions

�J
M,�(�) =

√
2J + 1

8π2
DJ∗

M,�(�). (6)

For a polar molecule (d �= 0) the spherical harmonics Y in
(5) should be modified:

ZBO
lm (θ,ϕ,�) = �J

M,�(�)Ỹlm(θ,ϕ), (7)

where Ỹ are dipole-spherical functions:

−
θ,ϕỸ + 2d cos(θ )Ỹ = l̃(l̃ + 1)Ỹ , (8)

which can be expanded over ordinary spherical harmonics:

Ỹlm(θ,ϕ) =
∞∑

�=|m|
a

(lm)
� Y�m(θ,ϕ). (9)

The modified eigenvalues l̃ in Eq. (8) and the expansion
coefficients a

(lm)
� in Eq. (9) can be readily found by a simple

matrix diagonalization procedure [21]. It must be noted that
the index l in Eqs. (7) and (9) ceases to be an eigenvalue
of the Rydberg electron momentum l. Here, it is only an
enumerator of a modified function Ỹ . The rotational energy
of the core in BO approximation is given by the averaging
[37]:

E+
rot = 〈

�BO
lm

∣∣H+∣∣�BO
lm

〉 = B(Ĵ − L̂+ − Ŝ+ − l̂)2

= B(J (J + 1) − 2m�+ l̃(l̃ + 1) − 2ω2 + (L̂+ + Ŝ+)2).

(10)

The last two terms in this expression are constant ones
for a given core electronic state; therefore, they will be
omitted below. Then the total energy of the molecule in this
approximation is given by

E = 〈
�BO

lm

∣∣H ∣∣�BO
lm

〉
= B(J (J + 1) − 2�m + l̃(l̃ + 1)) − 1

2ν2
, (11)

ν = n − μBO, μBO = l − l̃,

where n is principal quantum number of the Rydberg
electron.

C. Pure inverse Born-Oppenheimer wave function

Oppositely, if the Rydberg electron spends the most
time far from the core, then the inverse Born-Oppenheimer
approximation is valid [23]. In such a case, the total core
momentum j = J − l becomes a good quantum number, and
the wave function can be taken in the form

�IBO
lj = RIBO

lj (E,r)ZIBO
lj (θ ′,ϕ′,�), (12)

where θ ′ and ϕ′ are the spherical angles of the Rydberg electron
in the laboratory frame. The angular function for a nonpolar
molecule is

ZIBO
lj =

∑
lz,jz

CJM
jjzllz

�
j

jz,ω
(�)Yllz (θ

′,ϕ′) (13)

and for polar molecule

ZIBO
lj =

∑
�

a
(lj )
�

∑
�z,jz

CJM
jjz��z

�
j

jz,ω
(�)Y��z

(θ ′,ϕ′)

=
∑

�

a
(lj )
�

∑
m′

√
2j + 1

2J + 1
CJ�

jω�m′Y�m′(θ,ϕ)�J
M,�(�),

(14)

where again the coefficients a
(lj )
� and the corresponding mod-

ified eigenvalues l̃ can be found by a proper diagonalization
procedure [Eq. (6) in Ref. [23]]. The rotational energy of the
core in IBO approximation is given by

E+
rot = 〈

�IBO
lj

∣∣H+∣∣�IBO
lj

〉 = B(ĵ − L̂+ − Ŝ+)2

= B(j (j + 1) − 2ω2 + (L̂+ + Ŝ+)2). (15)

The last two terms in this expression are again constant ones
for a given core electronic state and they will be omitted below.
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TABLE I. MND transformation matrix (25) for d = 1.

(l′,m)

(l,j ) (0,0) (1,−1) (1,0) (2,−2) (2,−1) (2,0) (3,−2) (3,−1) (3,0)

(0,1) 0.898429 0 0.436488 0 0 0.0479734 0 0 0.00166483
(1,1) −0.306603 0.690755 0.611348 0 0.150859 0.179158 0 0.00992159 0.0122795
(1,2) 0.306603 0.690755 −0.611348 0 0.150859 −0.179158 0 0.00992159 −0.0122795
(2,1) 0.0218707 −0.116589 −0.0782991 0.768579 0.528161 0.300986 0.0962628 0.0862089 0.0528203
(2,2) −0.0489044 0.0869004 0.175082 0.572865 −0.393668 −0.673026 0.0717501 −0.0642563 −0.11811
(2,3) 0.0437414 0.155452 −0.156598 0.256193 −0.704215 0.601972 0.0320876 −0.114945 0.105641
(3,2) 0.00211958 −0.012386 −0.00983008 0.0856875 0.0966375 0.0626003 −0.680619 −0.604862 −0.36959
(3,3) −0.00396538 0.00579302 0.0183904 0.0801533 −0.0451981 −0.117114 −0.63666 0.282898 0.69144
(3,4) 0.00335136 0.014688 −0.0155427 0.0406452 −0.114598 0.0989797 −0.322846 0.717278 −0.584374

Hence the total energy of the molecule in the IBO case can be
recast as

E = 〈
�IBO

lj

∣∣H ∣∣�IBO
lj

〉 = Bj (j + 1) − 1

2ν2
,

(16)
ν = n − μIBO, μIBO = l − l̃.

D. Matched wave function

If the electron spends a part of time near the core and a
comparable part of time far from the core, one can construct
the wave function following a modified MQDT approach [27].
In the frame of this approach one chooses a certain matching
radius rM dividing the space onto two zones, the near one
(r < rM ) and the far one (r > rM ). In the near zone the BO
approximation is supposed to be valid; hence the wave function
can be sought as a superposition of functions (4):

�BO =
∑
l,m

Clm�BO
lm . (17)

Oppositely, in the far zone

�IBO =
∑
l,j

Clj�
IBO
lj . (18)

Thus the whole wave function is given by

� =
{
�BO, r < rM,

�IBO, r > rM,
(19)

with the matching conditions at r = rM :

�BO = �IBO,
∂

∂r
�BO = ∂

∂r
�IBO. (20)

Substituting (17) and (18) into (20) leads to the following
system of equations for the coefficients Clj ,Clm:

ClmRBO
lm (E,rc) =

∑
l′j

Cl′jR
IBO
l′j (E,rc)〈l′j | lm〉, (21)

Clm

d

dr
RBO

lm (E,rM ) =
∑
l′j

Cl′j
d

dr
RIBO

l′j (E,rM )〈l′j | lm〉, (22)

where

max{−ω − J, − l} � m � min{−ω + J,l},
max{|J − l|,ω} � j � J + l, (23)

and 〈lj | l′m〉 is the transformation matrix for angular func-
tions of BO and IBO. If a molecule is a nonpolar one [27], or
if its dipole moment is small and its effect is negligible in both
the near zone and the far one, then the transformation matrix
can be readily obtained using Eqs. (5) and (13):

〈lj | l′m〉 =
√

2j + 1

2J + 1
CJ�

jωlmδll′ . (24)

If the effect of the dipole moment is significant only in
the near zone, then the transformation matrix is produced by

TABLE II. MFD transformation matrix (26) for d = 1.

(l′,m)

(l,j ) (0,0) (1,−1) (1,0) (2,−2) (2,−1) (2,0) (3,−2) (3,−1) (3,0)

(0,1) 0.844439 0.101535 0.521256 −0.0148261 0.0114954 0.0674114 −0.00185693 −0.000236907 0.0023933
(1,1) −0.419464 0.681478 0.532803 −0.263339 −0.0408562 0.0564701 −0.0329827 −0.0203233 −0.00692924
(1,2) 0.304695 0.693392 −0.604814 0.0200359 0.136857 −0.202734 0.00313573 0.00820734 −0.016084
(2,1) −0.112386 0.12655 0.121702 0.721904 0.547642 0.34243 0.090417 0.0843642 0.0537569
(2,2) −0.0596699 0.0632201 0.1967 0.565825 −0.404114 −0.668953 0.115273 −0.0255827 −0.0936238
(2,3) 0.0436833 0.155517 −0.156333 0.257261 −0.704767 0.600319 0.0234112 −0.111067 0.115066
(3,2) −0.0014399 −0.00771325 0.00226048 0.1223 0.0709523 0.0194909 −0.674605 −0.607753 −0.376396
(3,3) −0.00456297 0.00368602 0.0205328 0.0765303 −0.0357297 −0.12539 −0.635432 0.286015 0.690852
(3,4) 0.00334998 0.0146893 −0.0155354 0.0406787 −0.114612 0.0989208 −0.323323 0.717442 −0.583772
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(a) (b)

FIG. 1. (Color online) Discrepancy (27) vs matching radius for MFD wave functions. There is a pronounced minimum, corresponding to
optimal value of matching radius. For n = 10 it is rM � 120 a.u. and for n = 14 it is rM � 180 a.u.

Eqs. (7) and (13):

〈lj | l′m〉 =
√

2j + 1

2J + 1
a

(l′m)
l CJ�

jωlm. (25)

The matching done with the transformation matrix (25) will be
referred to below as “matching with near dipole” (MND). As
an illustration, the matrix elements (25) for the dipole moment
d = 1 are presented in Table I.

Finally, if the effect of the dipole moment is significant in
both the near zone and the far one, then Eqs. (7) and (14) must
be used, which yield

〈lj | l′m〉 =
√

2j + 1

2J + 1

∑
�

a
(lj )
� a

(l′m)
� CJ�

jω�m, (26)

and the corresponding matching will be referred to as “match-
ing with far dipole” (MFD). The matrix elements (26) for the
dipole moment d = 1 are presented in Table II. Comparing
results and accuracies of MND and MFD can show significance
of core dipole potential in the far zone.

The system (21) and (22) represents a homogeneous
linear system on Clj ,Clm. It has nontrivial solution when
its determinant is equal to zero. This criterion provides
eigenvalues of the total energy of the molecule E. Solving the
system (21) and (22) for a certain E provides values of Clj ,Clm.

E. Estimation of accuracy

Generally, the overall accuracy of a solution for the
stationary Schrödinger equation with the Hamiltonian (1) is
given by the value of a proper objective functional on this
solution. Simplifying a bit, it can be treated as a weighted
mean square error over the whole space. The proper choice
of objective functional (or, in other words, of the weighting
function) cannot be universal, for it is problem-specific one.
For example, tunnel ionization calculations are sensitive to the
wave-function accuracy in the far zone, hence more weight
must be given to errors in the far zone, etc. As an example of
an objective functional we take in this work the norm of the

discrepancy function:

χ = (H − E)�, ‖χ‖2 = 〈χ |χ〉 =
∫

χ2dV. (27)

For the pure Born-Oppenheimer wave functions (4) one
gets

‖χ‖2 = B2[j (j + 1) − J (J + 1)]2.

Oppositely, for pure inverse Born-Oppenheimer wave
functions (12):

‖χ‖2 = 2d2

ν5 l̃(2l̃ + 1)(2l̃ + 2)

∑
��′

a
(lj )
� a

(lj )
�′

×
∑

�′′,j ′′ �=j

√
(2� + 1)(2�′ + 1)C�′′0

�010C
�′′0
�′010

×W (j1J�′′; j ′′�)W (j1J�′′; j ′′�′)
(
C

jω

j ′′ω10

)2
.

For matched wave function (19), the discrepancy (27) must be
found numerically.

FIG. 2. Optimal matching radius rM as the function of n.
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(a)

(c)

(b)

FIG. 3. (Color online) Discrepancies for states “1” (a), “7” (b),
and “8” (c) as the functions of n. Blue squares: BO. Green circles:
IBO. Yellow triangles: MND. Red triangles: MFD. It can be seen that
best results are provided by MFD.

III. RESULTS AND DISCUSSION

For the matched wave function (19), the discrepancy (27)
depends on the value of the matching radius rM . Below we
discuss this dependence. The results are presented for a sample
molecule with the dipole moment d = 1 a.u. and the rotational

FIG. 4. (Color online) Effective quantum defects μ [see (28)]
as the functions of n. Blue dashed lines: BO. Green dotted lines:
IBO. Joined red points: MFD. The states from “1” to “8” are
presented. The state “9” is not shown because it has constant
μBO = −2/3 corresponding to a pure BO case with (l = 0, m = 0)
for all considered n. It can be seen that for n = 6, 7, 8 the pure BO
approximation is valid for all states (state “1”: l = 1, m = −1; state
“2”: l = 2, m = −2; etc.), but for n ≥ 9 a pronounced l uncoupling
takes place for most of the states, except the states “1”, “2”, and
“9”. For the states “3”, “4”, “5”, and “6” the dominating contribution
at n ≥ 9 is given by the channels (l = 2, j = 2), (l = 3, j = 2),
(l = 2, j = 3), and (l = 3, j = 3), respectively. The most interesting
behavior is demonstrated by the states “7” and “8”, which undergo
anticrossing near n = 12 related to crossing of BO l = 1, m = 0 and
IBO l = 3, j = 4 curves.

constant B = 3.271 × 10−6 a.u., which corresponds to the
molecule SO [38,39].

We consider a manifold of states corresponding to ω = 1,
J = 1, and l � 3. According to (23), this manifold contains
nine states for each n. In the BO limit they can be labeled by
l and m. Similarly, in the IBO limit they can be labeled by
l and j . However, in intermediate case both these labelings
become inadequate because both m and j cease to be good
numbers. Therefore, we shall simply enumerate them in order
of increasing energy, from state “1” to state “9”. Lest the
figures below be overloaded, we present there not all these
nine states but only several of them demonstrating typical
behavior.

Figure 1 presents the discrepancies as the functions of rM

for the states “1”, “7”, and “8” for n = 10 (a) and n = 14 (b).
It can be seen that the discrepancy can be significantly reduced
by a proper choice of rM . For n = 10 it is rM � 120 a.u. and
for n = 14 it is rM � 180 a.u.
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FIG. 5. (Color online) Quantum defects and partial channel contributions for the states “1” and “6”. States “1” and “6” demonstrate weak
and strong l uncoupling, respectively (see comments in Results and Discussion).

Optimal rM for other n are presented in Fig. 2.
In Fig. 3 the discrepancies are presented for states “1” (a),

“7” (b), and “8” (c) as the functions of n. They are given
for pure �BO

lm and pure �IBO
lj wave functions and for the

matched wave functions with the proper choice of rM (both
MND and MFD). It can be seen that best results are provided
by MFD.

The matched wave function (19) is a combination of several
channel quantum defect functions; therefore, strictly speaking,
it cannot be described by a single quantum defect value. On
the other hand, it is convenient to keep a single quantum defect
value for the purpose of graphic presentation of total molecule
energy and its dependence on principal quantum number. We
introduce here such an ad hoc effective quantum defect by the
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FIG. 6. (Color online) Quantum defects and partial channel contributions for the states “7” and “8”. Top: quantum defects. Bottom: partial
contributions for BO (Slm) and IBO (Slj ) channels. Left: state “7”. Right: state “8”. Anticrossing behavior takes place near n � 12 (see
comments in Results and Discussion).

relation [it is similar to (16) with j = 1]

E = 2B − 1

2ν2
, ν = n − μ. (28)

Here, the energy E is provided by the matching procedure;
hence the corresponding ν and μ can be extracted.

Figure 4 presents effective quantum defects for the states
from “1” to “8” as the functions of n. Here, blue dashed lines
present BO calculation [total energy E is calculated in BO
approximation and effective quantum defect is extracted using
(28)]; similarly, green dotted lines present IBO calculation,
and joined red points present MFD calculation. The state “9” is
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not presented there because it demonstrates pure BO behavior
with l = 0, m = 0, and μBO = −2/3. It can be seen that for
n = 6, 7, 8 the pure BO approximation is valid for all states
(state “1”: l = 1, m = −1; state “2”: l = 2, m = −2; etc.).
For n ≥ 9 pronounced l uncoupling takes place for most of
the states, except the states “1”, “2”, and “9”. For the states
“3”, “4”, “5”, and “6” the dominating contribution at n ≥ 9 is
given by the channels (l = 2, j = 2), (l = 3, j = 2), (l = 2,
j = 3), and (l = 3, j = 3), respectively. The most interesting
behavior (presented in more detail in Fig. 6) is demonstrated
by the states “7” and “8”, which undergo anticrossing near
n = 12 related to crossing of BO l = 1, m = 0 and IBO l = 3,
j = 4 curves.

To evaluate relative contributions of (l,m) channels into
wave function (17) and (l,j ) channels into (18) we introduce
weighted coefficients:

Slm = C2
lm

∫ rM

0

[
RBO

lm (E,r)
]2

dr∑
l′m′ C

2
l′m′

∫ rM

0

[
RBO

l′m′(E,r)
]2

dr
, (29)

Slj = C2
lj

∫ ∞
rM

[
RIBO

lj (E,r)
]2

dr∑
l′j ′ C

2
l′j ′

∫ ∞
rM

[
RIBO

l′j ′ (E,r)
]2

dr
. (30)

If BO (IBO) approximation is valid then one of coefficients
Slm (Slj ) is near to 1 and other coefficients are close to zero.

Figure 5 presents separately effective quantum defects
and partial contributions for the states “1” (left) and “6”
(right). State “1” demonstrates relatively large quantum defect
μBO � 0.06 in the BO limit. Correspondingly, l coupling is
dominating, and l uncoupling is relatively weak. Therefore,
the quantum defect of the state “1” remains nearly constant.
This interpretation is confirmed by the graphs of partial contri-
butions for BO and IBO channels (Slm and Slj , respectively):
one BO channel, namely the channel (l = 1, m = −1), gives
the main contribution into the wave function. Oppositely,
the state “6” demonstrates small quantum defect μIBO �
0.009 in the IBO limit; hence there is strong l uncoupling
starting from n = 9. Correspondingly, one IBO channel (l = 3,
j = 3) rapidly becomes dominating, and the quantum defect
approaches the IBO curve defined by relation (28) with
j = 3 and very small μIBO � −0.0002, which gives μ �
−n3B[j (j + 1) − 2] = −10n3B.

Figure 6 presents the states “7” and “8”. For n � 8 they both
demonstrate the BO picture: each one is dominated by one BO
channel and quantum defects are close to pure BO values.
The state “7” has lesser quantum defect (μBO � 0.019) in the
BO limit; therefore, it significantly l uncouples at 9 � n � 11,
IBO channel (l = 3, j = 4) becomes dominating, and quantum
defect approaches corresponding IBO value (28), where
μIBO � 1; hence μ � −n3B[j (j + 1) − 2] = −18n3B. The
state “8” has greater quantum defect in the BO limit; therefore,
its l uncoupling is weak, and its quantum defect remains
nearly constant up to n = 11. Further, as noted above, the
states “7” and “8” demonstrate anticrossing near n = 12.
This anticrossing is reflected also in the behavior of channel
contributions. These contributions are presented in the lower
part of Fig. 6, on the left side for the state “7” and on the right
side for the state “8”. One can see that immediately before
anticrossing the main contribution into the state “7” is from

the IBO channel (l = 3, j = 4), and the main contribution
into the state “8” is from the BO channel (l = 1, m = 0),
whereas immediately after the anticrossing the distribution of
dominating channels is reversed: main contribution into “7”
is from BO (l = 1, m = 0) and the one into “8” is from IBO
(l = 3, j = 4). This anticrossing can be interpreted in classical
mechanics’ terms as a resonance between rotation of the core
and the precession of the Rydberg electron’s orbit [36].

IV. CONCLUSION

We have developed a generalized MQDT technique for
calculating spectra and wave functions of nonpenetrating RS in
polar molecules, consistently taking into account l uncoupling
for the Rydberg electron due to the core rotation as well as l

coupling due to nonsphericity of the core dipole potential. The
results are presented for the case of SO molecule. They show
that the effect of the core dipole potential cannot be neglected
even at very far distances from the core (i.e., in IBO zone).

The next steps in developing an outlined approach can
include (i) short-range interactions of the outer electron with
the core (thus extending the approach on penetrating RS also),
(ii) electron-vibrational mixing, (iii) spin effects, involving
both electron and nuclear spins, (iv) perturbation of the core
� doublets due to their interaction with the Rydberg electron
[40], etc. There are also left to be investigated spectra and
wave functions in ionization and dissociation continua. This
can be done mainly along the lines of works [14,15,28] with
the effect of the core dipole potential in the far IBO zone
properly accounted for.

The developed technique can be useful in theoretical
description of any phenomena involving RS of polar molecules
and in calculations of corresponding molecular characteristics.
It seems particularly appropriate in cases where precision of
wave function in the far zone is essential, such as calculations
of oscillator forces and cross sections of tunnel ionization.
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APPENDIX: COULOMB FUNCTIONS

For an electron with energy E = −1/(2ν2) < 0 in
Coulomb-dipole potential the radial Schrödinger equation in
atomic units can be written as(

d2

dr2
− l̃(l̃ + 1)

r2
+ 2

r
− 1

ν2

)
y = 0. (A1)

For noninteger l̃ this equation has two linearly independent
solutions [25]:

f = ν(l̃+1)

�(2l̃ + 2)
Mν,l̃+1/2

(
2r

ν

)
, (A2)

y2 = ν−l̃

�(−2l̃)
Mν,−l̃−1/2

(
2r

ν

)
, (A3)
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where Mν,ρ is the Whittaker function [41]. However, for
integer l̃ these two functions become dependent; hence y2

must be replaced by

y3 = f A(ν,l̃) cos π (2l̃ + 1) − y2

sin π (2l̃ + 1)
, (A4)

where

A(ν,l̃) = �(ν + l̃ + 1)

ν2l̃+1�(ν − l̃)
. (A5)

The functions f and y3 are linearly independent for all l̃, both
integer and noninteger ones. Following Seaton [25] we also

introduce the functions

s =
√

A(ν,l̃)

2
f, c = −

√
1

2A(ν,l̃)
y3, (A6)

which satisfy the simple asymptotic relation

lim
r→∞

s

c
→ tan π (ν − l̃), (A7)

and finally construct the radial functions used in Eqs. (4) and
(12):

RBO = s, RIBO = s − tan π (ν − l̃)c. (A8)
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