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The average-density approximation is used to construct a nonlocal kinetic energy functional for an
inhomogeneous two-dimensional Fermi gas. This functional is then used to formulate a Thomas-Fermi-von
Weizsäcker-like theory for the description of the ground-state properties of the system. The quality of the
kinetic energy functional is tested by performing a fully self-consistent calculation for an ideal, harmonically
confined, two-dimensional system. Good agreement with exact results are found, with the number and kinetic
energy densities exhibiting oscillatory structure associated with the nonlocality of the energy functional.
Most importantly, this functional shows a marked improvement over the two-dimensional Thomas-Fermi von
Weizsäcker theory, particularly in the vicinity of the classically forbidden region.
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I. INTRODUCTION

One of the central ingredients in the density-functional
theory (DFT) description [1] of an interacting many-body
Fermi system is the kinetic energy (KE). In the Kohn-Sham
(KS) scheme [2], the kinetic energy functional is defined to be
that of a system of noninteracting particles having the same
ground-state density as the interacting system. Formally, the
KS energy functional is

E[ρ] = Ts[ρ] + Eint[ρ] +
∫

d3rvext(r)ρ(r), (1)

where Eint[ρ] accounts for interactions (for Coulombic
systems, Eint[ρ] is commonly the Hartree plus exchange-
correlation energy) and vext(r) is some externally imposed
potential. By its definition, the KS kinetic energy functional
Ts[ρ] of N -independent particles is

Ts[ρ] =
N∑

i=1

∫
d3rφ�

i (r)

(
− �

2

2m
∇2

)
φi(r). (2)

The φi(r) are single-particle orbitals, each satisfying a
Schrödinger-like equation arising from the variational mini-
mization of Eq. (1), viz.,

− �
2

2m
∇2φi(r) + veff(r)φi(r) = εiφi(r), i = 1, . . . ,N, (3)

with the effective potential given by

veff(r) ≡ δEint[ρ]

δρ(r)
+ vext(r). (4)

The ground-state density is obtained from

ρ(r) =
N∑

i=1

φ�
i (r)φi(r), (5)

subject to the normalization constraint

N =
∫

d3rρ(r). (6)

The implementation of the KS scheme requires some ap-
proximation to be made for the generally unknown in-
teraction functional, Eint[ρ]. Although the KE is treated
exactly, the KS approach suffers from having to solve N

self-consistent equations, Eq. (3), which can be numerically
expensive.

Rather than determining the KE via the KS approach, an
alternative method is to construct an explicit KE density func-
tional, Ts[ρ], thereby avoiding the additional computational
task of determining the KS orbitals. This is the so-called
orbital-free DFT, and it captures the original spirit of DFT
whereby one focuses exclusively on the density. Since the
noninteracting KE of an arbitrary inhomogeneous system is
not generally known as an explicit functional of the density,
approximations must be made for its construction.

The most primitive functional is that provided by the
local-density approximation (LDA), in which the KE density
is approximated by that of a uniform system [1]. The LDA
is expected to work for systems with slow spatial variations
and can be improved by including gradient corrections
which take spatial inhomogeneities explicitly into account. In
three dimensions (3D), gradient corrections can be obtained
systematically from either a linear response [1,3] or a semi-
classical gradient expansion approach [4–8]. In particular, the
leading order functional series for the 3D noninteracting KE
functional, using either approach, is given by (in what follows,
a spin degeneracy factor of 2 is always assumed)

Ts[ρ] = C3

∫
d3rρ5/3(r) + 1

9

�
2

8m

∫
d3r

|∇ρ(r)|2
ρ(r)

, (7)
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where C3 = 3(3π2)2/3
�

2/10m. The first term represents the
Thomas-Fermi (TF) KE functional for a uniform system
(i.e., the LDA) while the second term is 1/9 the original
von Weizsäcker (vW) functional [9]. Equation (7) is exact
up to O(k2) in linear response (k/2kF � 1, where kF is
the 3D Fermi wave number), but works quite well even
for strongly inhomogeneous systems. Higher-order terms
involving gradients of the density may be added to Eq. (7),
but such terms are not guaranteed to improve the quality of
the KE functional and, in some circumstances, may actually
diverge [1,10].

In applications, the functional

Ts[ρ] = C3

∫
d3rρ5/3(r) + λvW

�
2

8m

∫
d3r

|∇ρ(r)|2
ρ(r)

(8)

is often used, where λvW (the vW coefficient) is an adjustable
parameter. The total energy in this approximation is then given
by the Thomas-Fermi von Weizsäcker (TFvW) functional

E[ρ] = C3

∫
d3rρ5/3(r) + λvW

�
2

8m

∫
d3r

|∇ρ(r)|2
ρ(r)

+Eint[ρ] +
∫

d3rvext(r)ρ(r). (9)

The parameter λvW can be tuned to obtain the best agreement
with the energy generated by a KS orbital calculation.

The minimization of Eq. (9) with respect to the density, ρ(r),
for a fixed number of particles, leads to a single Schrödinger-
like equation for the vW wave function, ψ(r) ≡ √

ρ(r),

−λvW
�

2

2m
∇2ψ(r) + veff(r)ψ(r) = μψ(r), (10)

where the effective one-body potential is given by

veff(r) = 5

3
C3ρ

2/3(r) + δEint[ρ]

δρ(r)
+ vext(r). (11)

The vW term, −(λvW�
2/2m)∇2ψ(r), is known to provide

a smooth decay of the spatial density into the classically
forbidden region and cures the unphysical, sharp cutoff of
the density at the classical turning point found within the TF
approximation [4]. This approach is easy to implement and
computationally inexpensive [i.e., only a single self-consistent
equation, Eq. (10), needs to be solved]. For 3D Coulombic
systems with local exchange, it is referred to as the Thomas-
Fermi-Dirac-von Weizsäcker (TFDW) theory and has yielded
good results in various applications [11,12].

For the inhomogeneous two-dimensional (2D) Fermi gas,
it is natural to try to follow the same formulation as the 3D
TFvW theory outlined above. Unfortunately, in 2D, it is known
that neither the linear response [3] nor semiclassical methods
[13–19] yield any gradient corrections whatsoever. This is
troublesome, since we know that the LDA cannot be exact for
an inhomogenous system. Nevertheless, gradient corrections
introduced in an ad hoc fashion do provide a more realistic
description of 2D density distributions. Specifically, the 2D
analog of Eq. (8) reads

Ts[ρ] = C2

∫
d2rρ2(r) + λvW

�
2

8m

∫
d2r

|∇ρ(r)|2
ρ(r)

, (12)

where C2 = π�
2/2m. Equation (12) has been used to construct

the 2D version of the TFDW theory for an inhomogeneous two-
dimensional electron gas (2DEG) [11,17] and more recently,
to describe the equilibrium properties of a 2D harmonically
trapped, spin-polarized dipolar Fermi gas [20]. Although
the vW term cannot be justified on the basis of a gradient
expansion, the 2D TFDW theory was nonetheless successful
in various applications to 2DEGs [21–25].

In this paper, we make use of the average-density approx-
imation (ADA) to define a nonlocal KE functional, which
allows us to systematically treat a spatially inhomogeneous
2D Fermi gas without the use of any ad hoc, e.g., vW, gradient
corrections. This functional is then utilized to formulate a
self-consistent TFvW-like theory for the 2D inhomogeneous
Fermi gas. The efficacy of the theory is tested in Sec. III by
comparing our self-consistent calculations for the ground-state
properties of an ideal, harmonically trapped Fermi gas, with
exact results, and with the results of the 2D TFvW theory using
an optimal vW coefficient [i.e., the value of λvW for which
Eq. (12) yields the exact KE for the TFvW self-consistent
density] [20]. In Sec. IV, we present our closing remarks.

II. THE AVERAGE-DENSITY APPROXIMATION

The ADA was first proposed in the late 1970s by Alonso
et al. [26] and Gunnarsson et al. [27], as a way to go beyond
the LDA for calculations of the exchange and correlation
energies of nonuniform electron systems. These same ideas
were later applied in the construction of nonlocal kinetic
energy functionals in 1D [28–30] and 3D [31–36] systems.
It is within the latter context that we wish to briefly review the
essential ideas behind the ADA. In this section of the paper,
we will use atomic units (� = m = 1).

At the heart of the ADA is the specification of the nonlocal
KE functional in terms of an average density (analogous
expressions hold for 1D and 2D), viz.,

Tnl[ρ(r)] =
∫

d3rρ(r)t(ρ̄(r)), (13)

where t(x) is the kinetic energy per particle of the uniform
system, and the average density, ρ̄(r), is defined as

ρ̄(r) =
∫

d3r ′ρ(r′)w(r − r′; ρ(r)). (14)

The nonlocal character of the inhomogeneous system is then
captured by the weight function w(r; ρ), which is normalized
according to ∫

d3xw(x; ρ) = 1. (15)

The normalization ensures that Eq. (13) reproduces the exact
kinetic energy of a uniform system. The weight function itself
is fully specified by also demanding that the second functional
derivative of Eq. (13), when evaluated for a uniform system of
density, ρ0, leads to the exact static linear response function
[3], viz.,

F
[

δ2Tnl[ρ]

δρ(r)δρ(r′)

]
ρ(r)=ρ0

= − 1

χ0(k)
, (16)
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where F denotes a Fourier transform (FT) from r − r′ to
k. Performing the functional derivatives is straightforward,
and after taking the FT, we obtain the following general
result [31]:

F
[

δ2Tnl[ρ]

δρ(r)δρ(r′)

]
ρ(r)=ρ0

= 2t ′(ρ0)w(k; ρ0) + ρ0t
′′(ρ0)w(k; ρ0)2

+ 2ρ0t
′(ρ0)

dw(k; ρ0)

dρ0
, (17)

where w(k; ρ0) is the FT of w(|r − r′|; ρ0). In principle, once
the weight function is known, Eq. (13) defines a nonlocal
KE functional, which will exactly reproduce the KE of
the uniform gas, and whose second functional derivative is
exact in the uniform limit [37]. Whether this prescription for
the KE functional also provides a good description for an
inhomogeneous system must be established separately.

In practice, however, the right-hand side of Eq. (16) is
divergent in the k → ∞ limit, and this divergence occurs
regardless of dimensionality. This is an undesirable feature,
as the weight function will also inherit the divergence. One
way to avoid this issue is to remove the offending terms
from the right-hand side of Eq. (16) and then solve for a
new weight function with no divergent behavior. The details
of this procedure require an explicit analytical form for χ0(k),
and for this reason, we restrict ourselves to the 2D case in the
following.

A. Two-dimensional nonlocal kinetic energy functional

The exact static response function, χ0(k), for a uniform 2D
Fermi gas of density ρ0 is given by [38]

χ0(η) =
{− 1

π
, η < 1

− 1
π

(
1 −

√
1 − 1

η2

)
, η � 1

, (18)

with η ≡ k/(2kF ) and kF = √
2πρ0. This expression is the 2D

analog of the 3D Lindhard function [39].
It is useful to write Eq. (18) as

− 1

χ0(η)
= πF (η), (19)

where

F (η) =
{

1, η < 1,
1

1−
√

1− 1
η2

, η � 1. (20)

Note that F (η) has a pole at η → ∞ and is piecewise
continuous at η = 1. Equation (16) then amounts to

2t ′(ρ0)w(k; ρ0) + ρ0t
′′(ρ0)w(k; ρ0)2 + 2ρ0t

′(ρ0)
dw(k; ρ0)

dρ0

= πF (η). (21)

The kinetic energy per particle for the uniform 2D gas is given
by

t(ρ0) = π

2
ρ0, (22)

and we see that Eq. (21) reduces to a first-order ordinary
differential equation (ODE). In view of the dependence of
the response function on the scaled wave vector η, we will

assume that the weight function has a similar dependence,
namely w(k; ρ0) ≡ w(k/2kF ) = w(η). As a result,

ρ0
dw(k; ρ0)

dρ0
= −η

2
w′(η), (23)

and the ODE for the weight function then reads

w(η) − η

2
w′(η) = F (η). (24)

The normalization condition, Eq. (15), in real space implies
that w(η = 0) = 1, which is automatically satisfied by the
solution of Eq. (24). Once the solution to Eq. (24) is obtained,
the nonlocal KE functional is given by

Tnl[ρ] = π

2

∫
d2r

∫
d2r ′ρ(r′)w(r − r′; ρ(r))ρ(r). (25)

It is straightforward to show that w(η) is given by

w(η) = −2η2
∫

F (η)

η3
dη + cη2, (26)

where cη2 is the solution of the homogeneous equation. For
η < 1, F (η) = 1, and we obtain

w(η) = 1 + c1η
2, (27)

where c1 is fixed by demanding continuity of w(η) at η = 1.
For η � 1, we have

w(η) = −2η2
∫ η

1

1

t3

1

1 −
√

1 − 1/t2
dt + c2η

2

= −4η2 ln η + 2η
√

η2 − 1 − 2η2 ln

[
1 +

√
1 − 1

η2

]

+ c2η
2. (28)

In the η → ∞ limit, Eq. (28) has the following behavior:

w(η) ∼ −4η2 ln η + 2η2 − ln 4η2 + c2η
2 − 1

2 · · · . (29)

The η2 divergence in Eq. (29) can be eliminated by choosing
c2 = ln 4 − 2, but, as discussed above, w(η) still has a rather
nasty divergence −4η2 ln η for η → ∞. The origin of this
divergence can be traced back to the η → ∞ behavior of F (η),
namely

F (η) ∼ 2η2. (30)

Therefore, deleting the η → ∞ terms from F (η) will yield a
new weight function with no divergent behavior, viz.,

w0(η) − η

2
w′

0(η) = F (η) − 2η2. (31)

Note that here, w0(0) = 1, so the normalization of the weight
function is preserved. The solution to Eq. (31) is given by

w0(η) = [4η2 ln η + 1 + (ln 4 − 3) η2]�(1 − η)

+
[

2η
√

η2 − 1 + η2(ln 4 − 2)

− 2η2 ln

(
1 +

√
1 − 1

η2

)]
�(η − 1), (32)

which no longer exhibits any divergences.
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In order to satisfy Eq. (21), however, we must now write
the nonlocal KE functional as

Tnl[ρ] = π

2

∫
d2r

∫
d2r ′ρ(r′)w0(r − r′; ρ(r))ρ(r) + TvW[ρ],

(33)

where

TvW[ρ] = 1

8

∫
d2r

|∇ρ(r)|2
ρ(r)

(34)

is the vW functional satisfying

F
[

δ2TvW[ρ]

δρ(r)δρ(r′)

]
ρ(r)=ρ0

= 2πη2. (35)

The addition of the vW functional in Eq. (33) ensures that
Eq. (21) holds with a weight function which is the solution of
Eq. (31).

The fact that w0(η) has the limiting value of −1/2 for
η → ∞ implies that the weight function has a δ(r) contribution
in real space. One can remove the Dirac δ contribution by
simply defining yet another weight function,

w 1
2
(η) ≡ w0(η) + 1

2 . (36)

In terms of this weight function, the nonlocal KE functional in
Eq. (33) is given by

Tnl[ρ] = π

2

∫
d2r

∫
d2r ′ρ(r′)w 1

2
(r − r′; ρ(r))ρ(r)

− 1

2
TTF[ρ] + TvW[ρ], (37)

where

TTF[ρ] = π

2

∫
d2rρ2(r) (38)

and

F
[

δ2TTF[ρ]

δρ(r)δρ(r′)

]
ρ(r)=ρ0

= π. (39)

Since this new weight function has the limiting value w 1
2
(0) =

3/2, Eq. (37) can be written alternatively as

Tnl[ρ] = 3π

4

∫
d2r

∫
d2r ′ρ(r′)w̃ 1

2
(r − r′; ρ(r))ρ(r)

− 1

2
TTF[ρ] + TvW[ρ]

≡ 3

2
TADA

[
ρ; w̃ 1

2

] − 1

2
TTF[ρ] + TvW[ρ], (40)

where w̃ 1
2
(η) ≡ 2

3w 1
2
(η) now satisfies the normalization con-

dition w̃ 1
2
(0) = 1. In Fig. 1, we plot the weight function, w̃ 1

2
,

in both real space (main figure) and in Fourier space (figure
inset). It is interesting to note that the 2D real-space weight
function is qualitatively similar to the one found in 3D [32],
although in 3D, an analytical solution for the weight function
is not possible.

Before proceeding any further a few comments on Eq. (40)
are in order. First, we note that the second term in Eq. (40)
has exactly the same form as the TF KE functional but with
a negative coefficient. Moreover, the last term in Eq. (40) is
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FIG. 1. The main figure presents the 2D real-space weight
function, while the figure inset displays its Fourier transform. Note
that we have dropped the subscript on w̃, as discussed in Sec. II B of
the text. Here x ≡ 2kF r is the dimensionless spatial coordinate.

exactly the vW functional, which has naturally arisen in our
formulation due to the requirement that the second functional
derivative of Tnl[ρ] agree with the homogeneous response
function for all wave vectors. In view of the forms of the second
and third terms in Eq. (40), we adopt the term TFvW-like to
describe our DFT for the inhomogenous 2D Fermi gas.

It should be noted that the vW KE density is only defined
up to the addition of a function which integrates to zero over
all space. In particular, using the definition ψ(r) = √

ρ(r), it
can easily be shown that

1

8

|∇ρ(r)|2
ρ(r)

= 1

2
|∇ψ(r)|2

= 1

4
∇2ρ(r) − 1

2

√
ρ(r)∇2

√
ρ(r). (41)

The term ∇2ρ(r)/4 in Eq. (41) is the divergence of a vector
field which vanishes at infinity; by the divergence theorem, it
will not contribute to the kinetic energy and therefore can be
dropped. It follows that the vW KE density may be expressed
alternatively as

τvW(r) = 1

8

|∇ρ(r)|2
ρ(r)

(42)

or

τ
(1)
vW(r) = − 1

2

√
ρ(r)∇2

√
ρ(r), (43)

both of which integrate to the same vW kinetic energy. As
a result, one may consider various forms for the nonlocal KE
density without changing the physical properties of the system,
as they all lead to the same nonlocal KE functional.

While Eq. (40) is exact for a uniform system, and exactly
reproduces the homogeneous gas linear response function, it
does not yield the exact KE for a localized single-particle state
which is captured by the vW functional itself. It would be ideal
if the nonlocal functional could also produce this limit, thereby
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acting as a “bridge” between the uniform and vW limits. One
can try to achieve this objective by considering a generalized
functional of the form [31]

Tnl[ρ] = (1 + α)TADA[ρ; w̃α] − αTTF[ρ] + TvW[ρ]. (44)

Here α is ostensibly a free adjustable parameter which is to be
chosen such that Eq. (44) is exact in both the uniform and vW
limits. Clearly, putting α = 1/2 recovers Eq. (40). Following
exactly the same analysis as above, we have

w̃α(η) = w0(η)

1 + α
+ α

1 + α
. (45)

Inserting Eq. (45) into Eq. (44) immediately leads to Eq. (40).
Therefore, in 2D, α is not a free parameter, since any value
of α leads to the same nonlocal KE functional, viz., Eq. (40)
[or, equivalently, Eq. (33)]. This means that it is not possible
to have the ADA nonlocal KE functional yield the exact KE in
the vW limit. This is in stark contrast to the 3D case where α is
a tuneable parameter [31]. Specifically, in 3D, a special value
of α3D 
 2/9 ensures that the nonlocal KE functional is exact
in the uniform and vW limits. The 1D geometry is similar to
the 3D situation, in that the KE functional depends on the the
value chosen for α [29]. The fundamental difference between
2D and 1D/3D is that the ODE for the weight function is linear
in the former, but nonlinear in the latter. It is the linearity of
the weight function ODE which ultimately accounts for the α

independence in two dimensions.
For an inhomogeneous system, we continue to use the form

of the weight function obtained from the uniform system but
now with the wave vector scaled by the local Fermi wave vector
kF (r) = √

2πρ(r). This of course is an approximation whose
validity must be verified separately (see Sec. III below). It is
noteworthy that the 2D geometry has allowed for an exact,
analytical expression for the weight function. In contrast,
the 1D and 3D cases require a numerical evaluation of a
nonlinear first-order ODE for the weight function, which
adds an additional layer of complexity to the computational
implementation of the ADA KE functional.

B. TFvW-like theory in two dimensions

We are now in a position to present the TFvW-like theory
based on the ADA for the nonlocal KE functional, Eq. (40),
which is given by

E[ρ] = 3

2

∫
d2r

∫
d2r ′ π

2
ρ(r′)w̃(r − r′; ρ(r))ρ(r)

− 1

2

∫
d2r

π

2
ρ(r)2 + 1

8

∫
d2r

|∇ρ(r)|2
ρ(r)

+Eint[ρ(r)] +
∫

d2rvext(r)ρ(r). (46)

Henceforth, we drop for convenience the 1/2 subscript on
w̃(η). The variational minimization of Eq. (46) for a fixed
number of particles yields the defining equations for the
TFvW-like theory, viz.,

− 1
2∇2ψ(r) + veff(r)ψ(r) = μψ(r), (47)

where

veff(r) = −π

2
ψ(r)2 + φ(r) + vext(r) + δEint

δρ(r)
, (48)

φ(r) = 3π

4

∫
d2k

(2π )2

∫
d2r1e

ik·(r−r1)

×
[
�

(
k

2kF (r)

)
+ w̃

(
k

2kF (r1)

)]
ρ(r1), (49)

� (η) ≡ 2

3

(
F (η) + 1

2
− 2η2

)
. (50)

and

N (μ) =
∫

d2r|ψ(r)|2. (51)

Note that Eqs. (47)–(51) do not actually require the evaluation
of w̃(r; ρ) in real space, which allows us to fully exploit the
analytical expression for the weight function. We observe that
the first term in the square braces of Eq. (49) depends locally
on the density, whereas the second term, involving w̃, has a
nonlocal dependence.

We have clearly reached our objective of preserving the
simple mathematical framework of the TFvW theory, without
having to introduce any ad hoc gradient terms to the KE
functional. It should also be noted that as in any orbital-
free DFT scheme, e.g., the TFvW theory, the computational
expense of the TFvW-like theory does not scale with the
number of particles. In Sec. III B we will investigate the
self-consistent solutions to the TFvW-like theory in detail.

III. APPLICATION: HARMONICALLY TRAPPED
FERMI GAS

A. Tests using exact densities

As a first step in determining the quality of our nonlocal
KE functional, we will utilize exact results available for an
ideal Fermi gas in a 2D isotropic harmonic oscillator (HO)
potential,

vext(r) = 1
2mω2r2. (52)

Henceforth, all lengths are scaled by the HO oscillator length,
�osc = √

�/mω, and energies by the HO energy, �ω.
For an arbitrary number of closed shells, the exact 2D spatial

density, and its FT, are given respectively by [40,41]

ρex(r) = 2

π

M∑
n=0

(−1)n(M − n + 1)Ln(2r2)e−r2
(53)

and

ρex(k) = 2L2
M (k2/2)e−k2/4. (54)

In the above, the shell index M defines the number of filled
shells, M + 1, and L

β
n (x) is an associated Laguerre polynomial

[42]. The total particle number, N , is given in terms of M by

N (M) = (M + 1)(M + 2). (55)
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The exact KE density for the 2D HO is also known and may
be written in three different forms as follows [40,41]:

τex(r) =
∑

εk�εF

|∇φk(r)|2

= 1

π

M∑
n=0

(−1)n(M − n+ 1)(M − 3n+ r2)Ln(2r2)e−r2
,

(56)

τ (1)
ex (r) = −

∑
εk�εF

φk(r)∇2φk(r)

= 1

π

M∑
n=0

(−1)n(M − n+ 1)(M + n+ 2 − r2)

×Ln(2r2)e−r2
, (57)

and

τ (2)
ex (r) = τex(r) + τ (1)

ex (r)

2

= 1

π

M∑
n=0

(−1)n(M − n + 1)2Ln(2r2)e−r2
. (58)

In the above, φk(r) are the orthonormal HO eigenstates and
εF = M + 1. Recall that we have included a spin factor of
two in the KE densities defined in Eqs. (56) and (57). When
integrated over space, all three KE densities give the same
exact KE,

Tex = N

6

√
1 + 4N. (59)

Although τex(r) � 0 and τ (2)
ex (r) � 0 for all r , τ (1)

ex (r) takes
on small, negative values in the tail region (see Fig. 2) [40].
This behavior can be understood by noting that the KE energy
densities behave as [43]

τex(r) ∼ 1

8

|∇ρex(r)|2
ρex(r)

� 0 (60)

and

τ (1)
ex (r) ∼ 1

2

√
ρex(r)(−∇2)

√
ρex(r) � 0, (61)

in the classically forbidden region r � RTF, where RTF =√
2N1/4 is the TF radius. We thus see that τex(r) asymptotically

approaches the form of the vW KE density in Eq. (42) while
τ (1)

ex (r) approaches the form in Eq. (43). In addition, τex(r) and
τ (1)

ex (r) have oscillations associated with shell structure. These
oscillations are exactly out of phase (see Fig. 2) and result in
τ (2)

ex (r) in Eq. (58) being a smooth function [44].
One way of investigating the quality of the KE functional

in Eq. (40) is to see what it yields for the KE when the
exact density is inserted, i.e., using Eq. (53) in (40) and
integrating over all space. In view of the circular symmetry
of the harmonically confined system being considered, the
nonlocal KE functional can be written as

Tnl[ρ] ≡ 2π

∫ ∞

0
drrτnl(r), (62)

FIG. 2. The kinetic energy densities, τex(r) (dotted curves), τ (1)
ex (r)

(dashed curves), and τnl(r) = τnl(ρex(r)) (solid curves) for (a) N =
90, (b) N = 132, (c) N = 182, and (d) N = 420 particles. The inset
to panel (a) shows τ (1)

ex (r) (dashed curve) and τTF(ρex(r)) (dot-dashed
curve) near the tail region. The axes of the figure inset are scaled as
in the main figure.

where the kinetic energy density is given by

τnl(r) = 3

8
ρ(r)

∫ ∞

0
dkkJ0(kr)w̃(k/2kF (ρ(r)))ρ(k)

− π

4
ρ2(r) + 1

8ρ(r)

∣∣∣∣dρ(r)

dr

∣∣∣∣
2

. (63)

Here, we have used the vW kinetic energy density of Eq. (42).
If instead we use the form in Eq. (43), we obtain the kinetic
energy density τ

(1)
nl (r). Both forms of the KE density yield the

same kinetic energy as well as the same set of self-consistent
equations for the spatial density, viz., Eqs. (47)–(51).

In Table I, the values of the exact KE, Eq. (59), along with
the results obtained from Eq. (62) using the exact densities
as input are presented. The table illustrates that the nonlocal
functional gives quite good results even for relatively low

TABLE I. Comparison of the exact kinetic energies, Tex, obtained
from Eq. (59) and those obtained from Eq. (62), Tnl[ρex], with
the exact density used as input. The last column gives the relative
percentage error (RPE) of the nonlocal functional result. Energies are
measured in units of �ω.

N Tex Tnl[ρex] RPE

30 55 53.61 2.5
90 285 281.24 1.3
132 506 500.88 1.2
182 819 812.43 0.80
420 2870 2857.8 0.42
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particle numbers, and by N = 420, the relative percentage
error (RPE) is already below 0.5%.

It would appear that the KE functional in Eq. (62) is per-
forming quite well, especially given the rather inhomogeneous
nature of the harmonically confined density. However, the
smallness of the RPEs in Table I is not a sufficiently stringent
criterion for judging the accuracy of the functional. This is
brought home by the fact that the TF (i.e., LDA) KE functional,

TTF[ρ] =
∫

d2r
π

2
ρ2(r) ≡

∫
d2rτTF(r), (64)

yields the exact KE when the exact density is used as input;
that is, TTF[ρex] = Tex for any number of closed shells [40].
This surprising result is a special property of the harmonically
confined system in two dimensions. Of course, TTF[ρ] is also
exact in the uniform gas limit. Thus, as far as the KE is
concerned, the absolutely crudest approximation for the KE
functional for the 2D HO system outperforms our nonlocal
functional. The message to be taken from this observation
is that to test the quality of any proposed KE functional,
one must go beyond simply investigating the global value
it returns when available exact densities are used as input.
Indeed, notwithstanding the results obtained using the TF
functional for the 2D HO potential, the LDA KE functional is
certainly not exact.

One might imagine that a better validation of the quality
of Tnl[ρ] is provided by a point-wise comparison of τnl(r)
with the exact KE density. In Figs. 2 and 3, we present a
comparison of the KE densities τnl and τ

(1)
nl with ρex(r) used as

input (solid curves) with Eq. (56) (dotted curves) and Eq. (57)
(dashed curves), respectively, for a variety of particle numbers.
Focusing first on Fig. 2, we note that the shell oscillations
in τnl(ρex(r)) are reduced in amplitude when compared to the
exact KE densities and tend to be in phase with the oscillations

FIG. 3. As in Fig. 2 but now the solid curves correspond to
τ

(1)
nl (r) = τ

(1)
nl (ρex(r)).

of τ (1)
ex (r) in the bulk. However, for large-r , τnl(ρex(r)) begins to

follow τex(r) as it falls to zero from above for r → ∞, which is
expected in view of Eq. (60). Figure 3 provides a comparison
of τ

(1)
nl (ρex(r)) with the exact KE densities. The feature which

stands out most dramatically is the enhanced shell oscillations
in τ

(1)
nl (ρex(r)). Although τ

(1)
nl (ρex(r)) closely matches the peaks

of τ (1)
ex (r) in the bulk, it overshoots the valleys by a large

margin [see, e.g., Fig. 3(a)]. Moreover, in the low-density tail
region, τ

(1)
nl (ρex(r)) continues to follow τ (1)

ex (r) as it dips below
zero and then rises to zero from below as r → ∞ [again,
this is expected given the negative vW contribution which
dominates τ

(1)
nl (ρex(r)) as r → ∞]. We also observe that the

shell oscillations in all of the KE densities in Figs. 2 and
3 become less pronounced as the particle number increases.
This behavior may be understood by noting that [45]

lim
N→∞

τex(r) = lim
N→∞

τ (1)
ex (r)

= lim
N→∞

τ (2)
ex (r) = 1

2π

(
M + 3

2
− 1

2
r2

)2

, (65)

and

lim
N→∞

ρex(r) = 1

π

(
M + 3

2
− 1

2
r2

)
, (66)

which are the TF forms for the KE and spatial densities,
respectively, with no shell structure present. Moreover, it can
also be shown that

lim
N→∞

τnl(r) = lim
N→∞

τ
(1)
nl (r) = 1

2π

(
M + 3

2
− 1

2
r2

)2

. (67)

Although there is reasonable agreement between τnl and
τ

(1)
nl and the exact KE densities, the TF approximation is

once again far superior in this regard. The TF KE density,
τTF(r) = πρ2(r)/2, with the exact density as input, almost
perfectly reproduces the shell oscillations of the exact KE
density [40], τ (1)

ex (r), (for an arbitrary number of closed
shells), except near the tail region (see the inset to Fig. 1).
Therefore, not only does the TF KE functional yield the
exact KE for the exact density, it also provides an outstanding
representation of the exact KE density. By comparision, the
ADA KE densities perform rather poorly.

However, a true measure of the quality of a functional is
the accuracy of the density it yields on minimization. Here the
TF functional has serious shortcomings in that the minimizing
density is nonanalytic at the edge where the density goes to zero
[4]. With this density, the TF KE deviates significantly from the
exact value. We now turn to a test of the nonlocal KE functional
using densities determined self-consistently and examine how
the resulting energy, and density profiles, compare with the
exact results.

B. Tests using self-consistent densities

In this subsection, we will limit our self-consistent calcu-
lations to the noninteracting case (i.e., Eint[ρ] = 0), so we
can make comparisons with the available exact results. The
inclusion of interactions will not alter the general conclusions
drawn in this paper. It can be seen from Eqs. (47)–(51) that even
with Eint[ρ] = 0, the TFvW-like theory needs to be solved

022503-7
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TABLE II. Comparison of the exact kinetic energy Tex in Eq. (59)
with the kinetic energy obtained from the nonlocal functional Tnl[ρsc]
in Eq. (62), evaluated using the self-consistent density ρsc(r). The
last column gives the relative percentage error (RPE) between Tex

and Tnl[ρsc]. Energies are measured in units of �ω.

N Tex Tnl[ρsc] RPE

30 55 54.28 1.3
90 285 283.16 0.64
132 506 503.60 0.47
182 819 816.11 0.35
420 2870 2866.48 0.12

self-consistently in order to obtain the ground-state density,
along with any other associated equilibrium properties.

For the circular symmetry of the HO potential, the closed
set of equations, Eqs. (47)–(51), depend only on the radial
variable, viz.,

−1

2

(
d2

dr2
+ 1

r

d

dr

)
ψ(r) + veff(r)ψ(r) = μψ(r), (68)

with

veff(r) = −π

2
ψ2(r) + φ(r) + 1

2
r2 ≡ vθ (r) + 1

2
r2, (69)

where we have introduced the so-called Pauli potential [46],
vθ (r), defined as the functional derivative of the difference
between the noninteracting kinetic energy, Tnl[ρ] in our case,
and the von-Weizsäcker kinetic energy in Eq. (34). It is
known that the Pauli potential for the exact noninteracting KE
functional must satisfy vθ (r) � 0 ∀r [47,48]. It is therefore of
interest to check whether our self-consistent Pauli potential,
defined in Eq. (69), satisfies this important property.

The φ(r) potential is given by

φ(r) = 3π

4

∫ ∞

0
dk

∫ ∞

0
dr1

[
�

(
k

2kF (r)

)

+ w̃

(
k

2kF (r1)

)]
kr1J0(kr)J0(kr1)ρ(r1), (70)

where �(η) is defined in Eq. (50), and we recall that
kF (r) = √

2πρ(r) with ψ(r) = √
ρ(r). The normalization of

the density now reads

N (μ) = 2π

∫ ∞

0
drr|ψ(r)|2. (71)

Self-consistent solutions to the above equations have been
obtained using the discrete Hankel transform method outlined
in Refs. [49,50].

Following the analysis of the last subsection, we present
in Table II the results for the kinetic energies obtained from
Eq. (62) [or, equivalently, Eq. (40)], but now with the self-
consistent density, ρsc(r), used as input. Table II illustrates that
the agreement between the exact KE, and the one generated
from Tnl[ρsc] is excellent. In fact, the KE is significantly better
than the values obtained from Tnl[ρex] in Table I. This is
somewhat unexpected since one typically finds Tnl[ρsc] to be
considerably worse than Tnl[ρex] (see, e.g., Refs. [29,31]).

Figure 4 displays two panels. On the left, the self-consistent
KE densities τnl(r) obtained from Eq. (63) (solid curves) are
compared to the exact KE densities. The right panel shows a
similar comparison for τ

(1)
nl (r). Let us first focus on the left

panel in Fig. 4. We see that τnl(r) = τnl(ρsc(r)) exhibits a weak
oscillatory structure which we will refer to as “shell-like.” This
structure is a consequence of the nonlocal nature of the KE
functional but should not be associated with the shell structure
arising from the occupancy of multiple orbitals. In addition,
τnl(r) appears to be close to τ (2)

ex (r), the average of τex(r) and
τ (1)

ex (r). The figure inset to the left panel shows, however, that
τnl(r) differs significantly from τ (2)

ex (r) (dot-dashed curve in
the inset) when N is small, both within the bulk and in the
low density regions approaching the classical turning point.
In the main figure, we once again observe that τnl(r) closely
follows τex(r) for large r , similar to what was found in Fig. 2.
Overall, aside from the weak oscillations, τnl(r) is a reasonable
representation of the exact KE densities, particularly in the tail
region, where it follows τex(r).

Moving on to the right panel in Fig. 4, we observe that
the primary difference between the self-consistent τnl(r) and

FIG. 4. Left panel: The kinetic energy densities, τex(r) (dotted curve), τ (1)
ex (r) (dashed curve), and τnl(r) = τnl(ρsc(r)) (solid curve), from

lowest to highest curves, for N = 30,90,132,182,420 particles. Right panel: As in the left panel, but now for τ
(1)
nl (r) = τ

(1)
nl (ρsc(r)) (solid

curve). The inset to the left panel shows τnl(r) and τ (2)
ex (r) (dot-dashed curve) for N = 30 particles. The inset to the right panel shows τ

(1)
nl (r) for

N = 30,90 particles, highlighting the oscillatory structure present in the self-consistent KE density, τ
(1)
nl (r). The axes of the figure insets are

scaled as in the main figures.
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FIG. 5. The exact (dot-dashed curves), and TFvW-like self-
consistent spatial densities (solid curves), from lowest to highest
curves, for N = 30,90,132,182,420 particles.

τ
(1)
nl (r) is the presence of enhanced shell-like oscillations in

the latter (akin to what was found in Fig. 3). This structure is
revealed more clearly in the inset to the right panel where we
display the self-consistent τ (1)

nl (r) for N = 30,90 particles. The
other noteworthy difference between the two self-consistent
KE densities in the left and right panels is that in the tail region,
τ

(1)
nl (r) nicely follows τ (1)

ex (r), similarly to what was found in
Fig. 3. Again, the large-r behavior of either self-consistent KE
density can be understood from the form of the vW terms being
used in τnl(r) and τ

(1)
nl (r), which dominate at low densities.

In Fig. 5, we compare the exact (dot-dashed curves) and
self-consistent spatial densities (solid curves) for the particle
numbers in Table II. The self-consistent spatial densities also
display oscillatory structure, but these do not match up with
the oscillations in the exact spatial densities, which emphasizes
the fact that the oscillations have different origins.

More importantly, it is very encouraging to see that the
self-consistent spatial densities accurately reproduce the shape
of the exact densities as one moves out to the edge of the
cloud. For example, the lowest curve in Fig. 5, corresponding
to N = 30 particles, shows excellent agreement with the exact
density for r � 2.5. The fact that the TFvW-like self-consistent
densities yield the correct behavior near the edge of the
distribution is a significant result given that it is obtained with
no adjustable parameters. To further highlight the quality of
the self-consistent TFvW-like theory, we present in Fig. 6 a
comparison of the TFvW and TFvW-like spatial densities for
N = 30,90,132,182,420. It is clear that the optimal TFvW
densities (dashed curves) exhibit too sharp a decay into the
classically forbidden region, as compared to the TFvW-like
self-consistent densities (solid curves). In fact, we have
examined the TFvW spatial densities for a range of values,
0 < λvW � 1, and have found that they cannot provide the
correct density profile of the exact densities near the edge of the
system. In contrast, the nonlocal TFvW-like theory correctly
captures the surface profile of the exact density (see Fig. 5)
with no adjustable parameters.

0 2 4 6 8
0

1

2

3

4

5

6

FIG. 6. The self-consistent spatial densities from the nonlocal
TFvW-like theory (solid curves) and TFvW theory (dashed curves)
for N = 30,90,132,182,420 particles. Note that the TFvW densities
are obtained by using an optimal vW coefficient for each particle
number (λvW = 0.0568, 0.0503, 0.0484, 0.0468, 0.0433 for N =
30,90,132,182,420 particles, respectively).

In order to gain some insight into the differences between
the TFvW and TFvW-like spatial densities, we display in
Fig. 7 the self-consistent effective potentials, veff(r), from
the two theories. Our first observation is that the oscillatory
structure of the TFvW-like veff(r) manifests itself in the
self-consistent TFvW-like spatial density (see, e.g., the lowest
set of curves in Fig. 7, where the TFvW-like spatial densities
have been overlaid as the dashed-curves). This of course is not
surprising, since the effective potential determines the spatial
density profile of the system through Eq. (68). In addition,
both the TFvW and TFvW-like veff(r) are in good agreement

0 2 4 6 8
0

5

10

15

20

25

30

35

FIG. 7. The self-consistent effective potentials for N =
30,182,420 particles corresponding to the TFvW (dotted curves) and
TFvW-like (solid curves). The dashed curves are the self-consistent
TFvW-like densities, which have been overlaid to illustrate the way
in which veff (r) determines the density distribution.
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near the center of the trap, and, with increasing particle
number, the TFvW-like effective potential closely follows
the TFvW curve in the bulk; this agreement explains the
similarities between the TFvW and TFvW-like spatial densities
displayed in Fig. 6 for large particle numbers. However, as
we approach the edge of the system (e.g., for the lowest
curves in Fig. 7, r � 2), the differences in the structure
of the effective potentials in the low-density regime are
quite dramatic. Specifically, the TFvW-like effective potential
develops a local minimum near the edge of the cloud, whereas
for the same coordinate range, the TFvW potentials remain
comparatively flat. In view of the results presented in Fig. 5, it
is clear that the behavior of the TFvW-like effective potential
near the surface of the system is a more accurate representation
of the exact effective potential. The other noteworthy feature in
the TFvW-like effective potential is the “knee” developing in
the very low-density regime, which becomes more prominent
as the number of particles is increased. We have numerically
determined that this kneelike feature is a result of the nonlocal
part of the effective potential, arising specifically from the
w̃ term in φ(r) in Eq. (70). While this knee feature is only
prominent in the low-density regime, its presence appears to
be crucial for providing the correct behavior of the TFvW-like
spatial density in the classically forbidden region, r � RTF. It
would be of interest to examine the exact effective potential
obtained from the 2D HO KE density functional [51], against
the TFvW-like effective potentials shown in Fig. 7 obtained
from the ADA nonlocal KE functional.

Figure 7 also indicates that the self-consistent Pauli poten-
tial, vθ (r) = veff(r) − 1

2 r2, is indeed greater than or equal to
zero at all spatial points. While we have not provided a formal
proof that our nonlocal KE functional will always lead to a
self-consistent Pauli potential satisfying vθ (r) � 0 ∀r under
arbitrary confinement geometries, the numerical results for
the HO potential provides some evidence that it may.

IV. CLOSING REMARKS

We have applied the ADA in the construction of a nonlocal
KE functional and have used it to formulate a TFvW-like
theory for the ground-state properties of a 2D inhomogenous
Fermi gas. One of our central findings is that the 2D ADA
nonlocal KE functional does not admit additional parameters
in its definition, in contrast to the situation in 1D and 3D, where
there is considerable freedom in specifying the form of the
functional. In addition, the ADA naturally leads to a vW term in
2D, which is consistent with what is found in other dimensions.
Although such a gradient correction cannot be justified in
2D on the basis of a systematic gradient expansion, it is
nevertheless an important component of the nonlocal kinetic
energy functional, particularly in the low-density region, where
the decay into the classically forbidden region is smooth.

A commonly used procedure for testing the efficacy of a KE
functional is to investigate its ability to generate accurate ener-

gies when using the exact density for some model situation. We
point out that the results of such a test for a 2D harmonically
confined, ideal Fermi gas can be misleading, to wit, in the
case of 2D HO confinement, even the crudest, local TF kinetic
energy functional, yields superlative results. However, a true
measure of the quality of a functional can only be ascertained
by examining the nature of the density profiles it produces
upon a functional minimization with respect to the density.
In this regard, the TF functional demonstratably fails. On the
other hand, the fully self-consistent DFT calculations we have
performed using the ADA kinetic energy functional yield very
good results for the total energy of the harmonically confined
model system. In addition, based on a comparison with exact
results, we find that the TFvW-like theory provides a surpris-
ingly good description of the density in the low-density regime.

We have also compared our self-consistent calculations
with the results of an earlier 2D TFvW theory in which the
vW coefficient is optimized in order to yield the correct total
energy. This comparison shows that the local nature of the
TFvW KE functional, Eq. (12), is the reason behind the poor
description of the surface density profile. Nevertheless, the
reasonably good agreement with exact results, along with its
simple form and exceedingly easy numerical implementation,
suggest that the 2D TFvW is still a useful tool for the
description of inhomogeneous 2D systems, provided one is
interested in properties that are relatively insensitive to the
local details of the equilibrium spatial density (e.g., total
energies and collective excitations [22–25]).

Finally, we believe that this paper fills a gap in the literature
dealing with the DFT of 2D nonuniform Fermi systems. In
particular, where standard linear response and semiclassical
expansion techniqes in 2D fail to produce gradient corrections
associated with spatial inhomogenieties, the ADA naturally
allows for the inclusion of beyond LDA physics to the
KE functional in a dimensionally independent way. More
importantly, the 2D KE functional developed within the ADA
has no free parameters, so it may be scrutinized in other
systems without the possibility of any “fine tuning.” Our hope
is that the nonlocal functional we have presented will stimulate
further work toward the development of more accurate KE
functionals in low-dimensional Fermi systems. For example,
an interesting extension of this work would be to apply
the generalization of the ADA developed in Ref. [32] to
2D and examine how the resulting functional improves the
determination of the global and local properties (e.g., shell
structure) of the system.
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