
PHYSICAL REVIEW A 89, 022342 (2014)

Graph isomorphism and adiabatic quantum computing

Frank Gaitan1 and Lane Clark2

1Laboratory for Physical Sciences, 8050 Greenmead Dr, College Park, Maryland 20740, USA
2Department of Mathematics, Southern Illinois University, Carbondale, Illinois 62901, USA

(Received 18 April 2013; published 28 February 2014)

In the graph isomorphism (GI) problem two N -vertex graphs G and G′ are given and the task is to determine
whether there exists a permutation of the vertices of G that preserves adjacency and transforms G → G′. If yes,
then G and G′ are said to be isomorphic; otherwise they are nonisomorphic. The GI problem is an important
problem in computer science and is thought to be of comparable difficulty to integer factorization. In this paper
we present a quantum algorithm that solves arbitrary instances of GI and which also provides an approach to
determining all automorphisms of a given graph. We show how the GI problem can be converted to a combinatorial
optimization problem that can be solved using adiabatic quantum evolution. We numerically simulate the
algorithm’s quantum dynamics and show that it correctly (i) distinguishes nonisomorphic graphs; (ii) recognizes
isomorphic graphs and determines the permutation(s) that connect them; and (iii) finds the automorphism group
of a given graph G. We then discuss the GI quantum algorithm’s experimental implementation, and close by
showing how it can be leveraged to give a quantum algorithm that solves arbitrary instances of the NP-complete
subgraph isomorphism problem. The computational complexity of an adiabatic quantum algorithm is largely
determined by the minimum energy gap �(N ) separating the ground and first-excited states in the limit of
large problem size N � 1. Calculating �(N ) in this limit is a fundamental open problem in adiabatic quantum
computing, and so it is not possible to determine the computational complexity of adiabatic quantum algorithms
in general, nor consequently, of the specific adiabatic quantum algorithms presented here. Adiabatic quantum
computing has been shown to be equivalent to the circuit model of quantum computing, and so development of
adiabatic quantum algorithms continues to be of great interest.

DOI: 10.1103/PhysRevA.89.022342 PACS number(s): 03.67.Ac, 02.10.Ox, 89.75.Hc

I. INTRODUCTION

An instance of the graph isomorphism (GI) problem is
specified by two N -vertex graphs G and G′ and the challenge is
to determine whether there exists a permutation of the vertices
of G that preserves adjacency and transforms G → G′. When
such a permutation exists, the graphs are said to be isomorphic;
otherwise they are nonisomorphic. GI has been heavily studied
in computer science [1]. Polynomial classical algorithms exist
for special cases of GI; still it has not been possible to prove
that GI is in P. Although it is known that GI is in NP, it has also
not been possible to prove that it is NP-complete. The situation
is the same for integer factorization (IF)—it belongs to NP, but
is not known to be in P or to be NP-complete. GI and IF are
believed to be of comparable computational difficulty [2].

IF and GI have also been examined from the perspective
of quantum algorithms and both have been connected to
the hidden subgroup problem (HSP) [3]. For IF the hidden
subgroup is contained in an Abelian parent group (Z∗

n = group
of units modulo n), while for GI the parent group is non-
Abelian (Sn = symmetric group on n elements). While Fourier
sampling allows the Abelian HSP to be solved efficiently [4],
strong Fourier sampling does not allow an efficient solution
of the non-Abelian HSP over Sn [5]. At this time an efficient
quantum algorithm for GI is not known.

A number of researchers have considered using the dynam-
ics of physical systems to solve instances of GI. Starting from
physically motivated conjectures, these approaches embed the
structure of the graphs appearing in the GI instance into the
Hamiltonian that drives the system dynamics. In Ref. [6] the
systems considered were classical, while Refs. [7–11] worked
with quantum systems.

(1) Building on Refs. [7] and [8], Refs. [9] and [10]
proposed using multiparticle quantum random walks (QRW)
on graphs as a means for distinguishing pairs of noniso-
morphic graphs. Numerical tests of this approach focused
on GI instances involving strongly regular graphs (SRG).
The adjacency matrix for each SRG was used to define the
Hamiltonian H (G) that drives the QRW on the graph G. The
walkers can only hop between vertices joined by an edge in
G. The propagator U (G) = exp[−iH (G)t] is evaluated at a
fixed time t for each SRG associated with a GI instance. The
two propagators are used to define a comparison function that
is conjectured to vanish for isomorphic pairs of SRGs, and
to be nonzero otherwise. Refs. [9] and [10] examined both
interacting and noninteracting systems of quantum walkers
and found that (i) no noninteracting QRW with a fixed number
of walkers can distinguish all pairs of SRGs; (ii) increasing the
number of walkers increases the distinguishing power of the
approach; and (iii) two interacting bosonic walkers have more
distinguishing power than both one and two noninteracting
walkers. No analysis was provided of the algorithm’s runtime
T (N ) versus problem size N in the limit of large problem
size N � 1, and so the computational complexity of this GI
algorithm is currently unknown. Note that for isomorphic pairs
of graphs, this algorithm cannot determine the permutation(s)
connecting the two graphs, nor the automorphism group
of a given graph. Finally, no discussion of the algorithm’s
experimental implementation is given.

(2) The GI algorithm presented in Ref. [11] is based on
adiabatic quantum evolution: Here the problem Hamiltonian is
an Ising Hamiltonian that identifies the qubits with the vertices
of a graph, and qubits i and j interact antiferromagnetically
only when vertices i and j in the graph are joined by an

1050-2947/2014/89(2)/022342(20) 022342-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.022342


FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

edge. It was conjectured that the instantaneous ground state
encodes enough information about the graph to allow suitably
chosen measurements to distinguish pairs of nonisomorphic
graphs. Physical observables that are invariant under qubit
permutations are measured at intermediate times and the
differences in the dynamics generated by two nonisomorphic
graphs are assumed to allow the measurement outcomes to
recognize the graphs as nonisomorphic. The algorithm was
tested numerically on (mostly) SRGs, and it was found that
combinations of measurements of the (i) spin-glass order
parameter, (ii) x magnetization, and (iii) total average energy
allowed all the nonisomorphic pairs of graphs examined to be
distinguished. Reference [11] did not determine the scaling
relation for the runtime T (N ) versus problem size N for N �
1, and so the computational complexity of this algorithm is
currently unknown. The algorithm is also unable to determine
the permutation(s) that connect a pair of isomorphic graphs,
nor the automorphism group of a given graph. Reference [11]
discussed the experimental implementation of this algorithm
and noted that the measurements available on the D-Wave
hardware do not allow the observables used in the numerical
tests to be measured on the hardware.

In this paper we present a quantum algorithm that solves
arbitrary instances of GI. The algorithm also provides an
approach for determining the automorphism group of a
given graph. The GI quantum algorithm is constructed by
first converting an instance of GI into an instance of a
combinatorial optimization problem whose cost function, by
construction, has a zero minimum value when the pair of
graphs in the GI instance are isomorphic, and is positive
when the pair are nonisomorphic. The specification of the
GI quantum algorithm is completed by showing how the
combinatorial optimization problem can be solved using
adiabatic quantum evolution. To test the effectiveness of this GI
quantum algorithm we numerically simulated its Schrödinger
dynamics. The simulation results show that it can correctly
(i) distinguish pairs of nonisomorphic graphs; (ii) recognize
pairs of isomorphic graphs and determine the permutation(s)
that connect them; and (iii) find the automorphism group of a
given graph. We also discuss the experimental implementation
of the GI algorithm, and show how it can be leveraged to
give a quantum algorithm that solves arbitrary instances of
the (NP-complete) subgraph isomorphism (SGI) problem. As
explained in Sec. IV, calculation of the runtime for an adiabatic
quantum algorithm in the limit of large problem size is a
fundamental open problem in adiabatic quantum computing.
It is thus not presently possible to determine the computational
complexity of adiabatic quantum algorithms in general, nor,
consequently, of the specific adiabatic quantum algorithms
presented here. However, because adiabatic quantum comput-
ing has been shown to be equivalent to the circuit model of
quantum computing [12–14], the development of adiabatic
quantum algorithms continues to be of great interest. Just as
with the GI algorithms of Refs. [8–11], our GI algorithm also
has unknown complexity. However, unlike the algorithms of
Refs. [8–11], the GI algorithm presented here (i) encodes the
GI instance explicitly into the cost function of a combinatorial
optimization problem which is solved using adiabatic quantum
evolution without introducing physical conjectures; and (ii)
determines the permutation(s) connecting two isomorphic

graphs, and the automorphism group of a given graph. As
we shall see, our GI algorithm can be implemented on existing
D-Wave hardware using established embedding procedures
[15]. Such an implementation is in the works and will be
reported elsewhere.

The structure of this paper is as follows. In Sec. II we
give a careful presentation of the GI problem, and show
how an instance of GI can be converted to an instance of a
combinatorial optimization problem whose solution (Sec. III)
can be found using adiabatic quantum evolution. To test
the performance of the GI quantum algorithm introduced in
Sec. III, we numerically simulated its Schrödinger dynamics
and the results of that simulation are presented in Sec. IV. In
Sec. V we describe the experimental implementation of the
GI algorithm, and in Sec. VI we show how it can be used to
give a quantum algorithm that solves arbitrary instances of
the NP-complete problem known as subgraph isomorphism.
Finally, we summarize our results in Sec. VII. Two appendices
are also included. The first briefly summarizes the quantum
adiabatic theorem and its use in adiabatic quantum computing,
and the second reviews the approach to embedding the problem
Hamiltonian for an adiabatic quantum algorithm onto the
D-Wave hardware that was presented in Ref. [15].

II. GRAPH ISOMORPHISM PROBLEM

In this section we introduce the GI problem and show
how an instance of GI can be converted into an instance
of a combinatorial optimization problem (COP) whose cost
function has zero (nonzero) minimum value when the pair of
graphs being studied is isomorphic (nonisomorphic).

A. Graphs and graph isomorphism

A graph G is specified by a set of vertices V and a set of
edges E. We focus on simple graphs in which an edge only
connects distinct vertices, and the edges are undirected. The
order of G is defined to be the number of vertices contained
in V , and two vertices are said to be adjacent if they are
connected by an edge. If x and y are adjacent, we say that
y is a neighbor of x, and vice versa. The degree d(x) of a
vertex x is equal to the number of vertices that are adjacent
to x. The degree sequence of a graph lists the degree of each
vertex in the graph ordered from largest degree to smallest.
A graph G of order N can also be specified by its adjacency
matrix A, which is an N × N matrix whose matrix element
ai,j = 1 (0) if the vertices i and j are (are not) adjacent. For
simple graphs ai,i = 0 and ai,j = aj,i since edges only connect
distinct vertices and are undirected.

Two graphs G and G′ are said to be isomorphic if there is
a one-to-one correspondence π between the vertex sets V and
V ′ such that two vertices x and y are adjacent in G if and only
if their images πx and πy are adjacent in G′. The graphs G and
G′ are nonisomorphic if no such π exists. Since no one-to-one
correspondence π can exist when the number of vertices in
G and G′ is different, graphs with unequal orders are always
nonisomorphic. It can also be shown [16] that if two graphs
are isomorphic, they must have identical degree sequences.

We can also describe graph isomorphism in terms of
the adjacency matrices A and A′ of the graphs G and G′,

022342-2



GRAPH ISOMORPHISM AND ADIABATIC QUANTUM COMPUTING PHYSICAL REVIEW A 89, 022342 (2014)

respectively. The graphs are isomorphic if and only if there
exists a permutation matrix σ of the vertices of G that satisfies

A′ = σAσT , (1)

where σT is the transpose of σ . It is straightforward to show
that if G and G′ are isomorphic, then a permutation matrix σ

exists that satisfies Eq. (1). To prove the “only if” statement,
note that the i-j matrix element of the right-hand side (RHS)
is Aσi,σj

. Equation (1) is thus satisfied when a permutation
matrix σ exists such that A′

i,j = Aσi,σj
. Thus Eq. (1) is simply

the condition that σ preserve adjacency. Since a permutation
is a one-to-one correspondence, the existence of a permutation
matrix σ satisfying Eq. (1) implies G and G′ are isomorphic.
Thus, the existence of a permutation matrix σ satisfying Eq. (1)
is an equivalent way to define graph isomorphism.

The GI problem is to determine whether two given graphs
G and G′ are isomorphic. The problem is only nontrivial when
G and G′ have the same order and so we focus on that case in
this paper.

B. Permutations, binary strings, and linear maps

A permutation π of a finite set S = {0, . . . ,N − 1} is a
one-to-one correspondence from S → S which sends i → πi

such that πi ∈ S, and πi �= πj for i �= j . The permutation π

can be written

π =
(

0 · · · i · · · N − 1
π0 · · · πi · · · πN−1

)
, (2)

where column i indicates that π sends i → πi . Since the top
row on the RHS of Eq. (2) is the same for all permutations, all
the information about π is contained in the bottom row. Thus
we can map a permutation π into an integer string P (π ) =
π0 · · · πN−1, with πi ∈ S and πi �= πj for i �= j .

For reasons that will become clear in Sec. II C, we want
to convert the integer string P (π ) = π0 · · ·πN−1 into a binary
string pπ . This can be done by replacing each πi in P (π ) by the
unique binary string formed from the coefficients appearing in
its binary decomposition

πi =
U−1∑
j=0

πi,j (2)j . (3)

Here U ≡ 	log2 N
. Thus the integer string P (π ) is trans-
formed to the binary string

pπ = (π0,0 · · ·π0,U−1) · · · (πN−1,0 · · ·πN−1,U−1), (4)

where πi,j ∈ {0,1}. The binary string pπ has length NU , where

N � 2U ≡ M + 1. (5)

Thus we can identify a permutation π with the binary string
pπ in Eq. (4).

Let H be the Hamming space of binary strings of length
NU . This space contains 2NU strings, and we have just seen
that N ! of these strings pπ encode permutations π . Our
last task is to define a mapping from H to the space of
N × N matrices σ with binary matrix elements σi,j = 0,1.
The mapping is constructed as follows:

(1) Let sb = s0 · · · sNU−1 be a binary string in H. We parse
sb into N substrings of length U as follows:

sb = (s0 · · · sU−1)(sU · · · s2U−1) · · · (s(N−1)U · · · sNU−1). (6)

(2) For each substring siU · · · s(i+1)U−1, construct the integer

si =
U−1∑
j=0

siU+j (2)j � 2U − 1 = M. (7)

(3) Finally, introduce the integer string s = s0 · · · sN−1, and
define the N × N matrix σ (s) to have matrix elements

σi,j (s) =
{

0, if sj > N − 1

δi,sj
, if 0 � sj � N − 1,

(8)

where i,j ∈ S, and δx,y is the Kronecker delta. Note that when
the binary string sb corresponds to a permutation, the matrix
σ (s) is a permutation matrix since the si formed in step (2) will
obey 0 � si � N − 1 and si �= sj for i �= j . In this case, if A

is the adjacency matrix for a graph G, then A′ = σ (s)AσT (s)
will be the adjacency matrix for a graph G′ isomorphic to G.
On the other hand, if sb does not correspond to a permutation,
then the adjacency matrix A′ = σ (s)AσT (s) must correspond
to a graph G′ which is not isomorphic to G.

The result of our development so far is the establishment of
a map from binary strings of length NU to N × N matrices
(viz., linear maps) with binary matrix elements. When the
string is (is not) a permutation, the matrix produced is (is not) a
permutation matrix. Finally, recall from Stirling’s formula that
log2 N ! ∼ N log2 N − N , which is the number of bits needed
to represent N !. Our encoding of permutations uses N	log2 N

bits and so approaches asymptotically what is required by
Stirling’s formula.

C. Graph isomorphism and combinatorial optimization

As seen above, an instance of GI is specified by a pair
of graphs G and G′ (or equivalently, by a pair of adjacency
matrices A and A′). Here we show how a GI instance can be
transformed into an instance of a COP whose cost function
has a minimum value of zero if and only if G and G′ are
isomorphic.

The search space for the COP is the Hamming space H of
binary strings sb of length NU which are associated with the
integer strings s and matrices σ (s) introduced in Sec. II B. The
COP cost function C(s) contains three contributions:

C(s) = C1(s) + C2(s) + C3(s). (9)

The first two terms on the RHS penalize integer strings s =
s0 · · · sN−1 whose associated matrix σ (s) is not a permutation
matrix,

C1(s) =
N−1∑
i=0

M∑
α=N

δsi ,α, (10)

C2(s) =
N−2∑
i=0

N−1∑
j=i+1

δsi ,sj
, (11)

where δx,y is the Kronecker delta. We see that C1(s) > 0
when si > N − 1 for some i, and C2(s) > 0 when si = sj

for some i �= j . Thus C1(s) + C2(s) = 0 if and only if σ (s)

022342-3



FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

is a permutation matrix. The third term C3(s) adds a penalty
when σ (s)AσT (s) �= A′:

C3(s) = ‖σ (s)AσT (s) − A′‖i . (12)

Here ‖M‖i is the Li norm of M . In the numerical simulations
discussed in Sec. IV, the L1 norm is used, though any Li norm
would be acceptable. Thus, when G and G′ are isomorphic,
C3(s) = 0, and σ (s) is the permutation of vertices of G that
maps G → G′. Putting all these remarks together, we see that
if C(s) = 0 for some integer string s, then G and G′ are
isomorphic and σ (s) is the permutation that connects them.
On the other hand, if C(s) > 0 for all strings s, then G and G′
are nonisomorphic.

We have thus converted an instance of GI into an instance
of the following COP:

Graph isomorphism COP. Given the N -vertex graphs G

and G′ and the associated cost function C(s) defined above,
find an integer string s∗ that minimizes C(s).

By construction (i) C(s∗) = 0 if and only if G and G′
are isomorphic and σ (s∗) is the permutation matrix mapping
G → G′; and (ii) C(s∗) > 0 if and only if G and G′ are
nonisomorphic.

Before moving on, notice that if G = G′, then C(s∗) = 0
since G is certainly isomorphic to itself. In this case σ (s∗)
is an automorphism of G. We shall see that the GI quantum
algorithm to be introduced in Sec. III provides an approach for
finding the automorphism group of a graph.

III. ADIABATIC QUANTUM ALGORITHM FOR
GRAPH ISOMORPHISM

A quantum algorithm is an algorithm that can be run on a
realistic model of quantum computation [17]. One such model
is adiabatic quantum computation [18] which is based on
adiabatic quantum evolution [19,20]. The adiabatic quantum
optimization (AQO) algorithm [21] is an example of adiabatic
quantum computation that exploits the adiabatic dynamics of
a quantum system to solve a COP (see Appendix A for a
brief overview). The AQO algorithm uses the optimization
problem cost function to define a problem Hamiltonian HP

whose ground-state subspace encodes all problem solutions.
The algorithm evolves the state of an L-qubit register from the
ground state of an initial Hamiltonian Hi to the ground state of
HP with probability approaching 1 in the adiabatic limit. An
appropriate measurement at the end of the adiabatic evolution
yields a solution of the optimization problem almost certainly.
The time-dependent Hamiltonian H (t) for global AQO is

H (t) =
(

1 − t

T

)
Hi +

(
t

T

)
HP , (13)

where T is the algorithm runtime, and adiabatic dynamics
corresponds to T → ∞.

To map the GI COP onto an adiabatic quantum com-
putation, we begin by promoting the binary strings sb to
computational basis states (CBS) |sb〉. Thus each bit in sb

is promoted to a qubit so that the quantum register contains
L = NU = N	log2 N
 qubits. The CBS are defined to be the
2L eigenstates of σ 0

z ⊗ · · · ⊗ σL−1
z . The problem Hamiltonian

HP is defined to be diagonal in the CBS with eigenvalue C(s),

where s is the integer string associated with sb:

HP |sb〉 = C(s)|sb〉. (14)

Note that (see Sec. II C) the ground-state energy of HP will
be zero if and only if the graphs G and G′ are isomorphic. We
will discuss the experimental realization of HP in Sec. V. The
initial Hamiltonian Hi is chosen to be

Hi =
L−1∑
l=0

1

2

(
I l − σ l

x

)
, (15)

where I l and σ l
x are the identity and x-Pauli operator for qubit

l, respectively. The ground state of Hi is the easily constructed
uniform superposition of CBS.

The quantum algorithm for GI begins by preparing the
L-qubit register in the ground state of Hi and then driving the
qubit register dynamics using the time-dependent Hamiltonian
H (t). At the end of the evolution the qubits are measured in
the computational basis. The outcome is the bit string s∗

b so
that the final state of the register is |s∗

b 〉 and its energy is C(s∗),
where s∗ is the integer string derived from s∗

b . In the adiabatic
limit, C(s∗) will be the ground-state energy, and if C(s∗) =
0 (>0) the algorithm decides G and G′ are isomorphic
(nonisomorphic). Note that any real application of AQO will
only be approximately adiabatic. Thus the probability that
the final energy C(s∗) will be the ground-state energy will
be 1 − ε. In this case the GI quantum algorithm must be
run k ∼ O( ln(1 − δ)/ ln ε) times so that, with probability
δ > 1 − ε, at least one of the measurements will return the
ground-state energy. We can make δ arbitrarily close to 1 by
choosing k sufficiently large.

IV. NUMERICAL SIMULATION OF ADIABATIC
QUANTUM ALGORITHM

In this section we present the results of a numerical
simulation of the dynamics of the GI adiabatic quantum
algorithm (AQA). Because the GI AQA uses N	log2 N

qubits, and these simulations were carried out using a classical
digital computer, we were limited to GI instances involving
graphs with order N � 7. Although we would like to have
examined larger graphs, this simply was not practical. Note
that the N = 7 simulations use 21 qubits. These simulations
are at the upper limit of 20–22 qubits at which simulation of
the full adiabatic Schrödinger dynamics is feasible [22–24].
To simulate a GI instance with graphs of order N = 8 requires
a 24-qubit simulation which is well beyond what can be done
practically. The protocol for the simulations presented here
follows Refs. [22–25].

As explained in Appendix A, the runtime for an adiabatic
quantum algorithm is related to the minimum energy gap
arising during the course of the adiabatic quantum evolution.
Thus, determining the runtime scaling relation T (N ) versus
problem size N in the asymptotic limit (N � 1), reduces
to determining the minimum gap scaling relation �(N ) for
large N . This, however, is a well-known, fundamental open
problem in adiabatic quantum computing, and so it was not
possible to determine the asymptotic runtime scaling relation
for our GI AQA. Although our numerical simulations could
be used to compute a runtime for each of the GI instances

022342-4



GRAPH ISOMORPHISM AND ADIABATIC QUANTUM COMPUTING PHYSICAL REVIEW A 89, 022342 (2014)

considered below, we did not do so for two reasons. First,
as noted above, the GI instances that can be simulated using
a digital computer are limited to graphs with no more than
seven vertices. These instances are thus far from the large
problem-size limit N � 1, and so the associated runtimes
tell us nothing about the asymptotic performance of the GI
AQA. Second, it is well known that the minimum energy gap
encountered during adiabatic quantum evolution (and which
largely determines the runtime) is sensitive to the particular
Hamiltonian path followed by the adiabatic quantum evolution
[26,27]. Determining the optimal Hamiltonian path which
yields the largest minimum gap, and thus the shortest possible
runtime, is another fundamental open problem in adiabatic
quantum computing. As a result, the Hamiltonian path used
in the numerical simulations [i.e., the linear interpolating
Hamiltonian H (t) in Eq. (13)] will almost certainly be
nonoptimal, and so the runtime it produces will also, almost
certainly, be nonoptimal, and thus a poor indicator of GI AQA
performance.

In Sec. IV A we present simulation results for simple
examples of isomorphic and nonisomorphic graphs. These
examples allow us to illustrate the analysis of the simula-
tion results in a simple setting. Section IV B then presents
our simulation results for nonisomorphic instances of (i)
isospectral graphs; and (ii) strongly regular graphs. Finally,
Sec. IV C considers GI instances where G′ = G. Clearly, all
such instances correspond to isomorphic graphs since the
identity permutation will always map G → G and preserve
adjacency. The situation is more interesting when G has
symmetries which allow nontrivial permutations as graph
isomorphisms. These self-isomorphisms are referred to as
graph automorphisms, and they form a group known as the
automorphism group Aut(G) of G. In this final section we
use the GI AQA to find Aut(G) for a number of graphs.
In all GI instances considered in this section, the GI AQA
correctly (i) distinguished nonisomorphic pairs of graphs; (ii)
recognized isomorphic pairs of graphs; and (iii) determined
the automorphism group of a given graph.

A. Illustrative examples

Here we present the results of a numerical simulation of the
GI AQA applied to two simple GI instances. In Sec. IV A 1
(Sec. IV A 2) we examine an instance of two nonisomorphic
(isomorphic) graphs. For the isomorphic instance we also
present the permutations found by the GI AQA that transforms
G into G′ while preserving adjacency.

1. Nonisomorphic graphs

Here we use the GI AQA to examine a GI instance in which
the two graphs G and G′ are nonisomorphic. The two graphs
are shown in Fig. 1. Each graph contains four vertices and four
edges, however, they are nonisomorphic. Examining Fig. 1 we
see that the degree sequence for G is {2,2,2,2}, while that for
G′ is {3,2,2,1}. Since these degree sequences are different we
know that G and G′ are nonisomorphic. Finally, the adjacency

0

3

1

2

G

0

3

1

2

G

FIG. 1. Two nonisomorphic four-vertex graphs G and G′.

matrices A and A′ for G and G′, respectively, are

A =

⎛
⎜⎜⎜⎝

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎞
⎟⎟⎟⎠ ; A′ =

⎛
⎜⎜⎜⎝

0 0 1 1

0 0 0 1

1 0 0 1

1 1 1 0

⎞
⎟⎟⎟⎠ .

(16)

The GI AQA finds a nonzero final ground-state energy
Egs = 4, and so correctly identifies these two graphs as non-
isomorphic. It also finds that the final ground-state subspace
has a degeneracy of 16. The linear maps associated with the 16
CBS that span this subspace give rise to the lowest cost linear
maps of G relative to G′. As these graphs are not isomorphic,
these lowest cost maps have little inherent interest and so we
do not list them.

2. Isomorphic graphs

Here we examine the case of two isomorphic graphs G

and G′ which are shown in Fig. 2. Each graph contains four
vertices and five edges, and both graphs have degree sequence
{3,3,2,2}. By inspection of Fig. 2, the associated adjacency
matrices are, respectively,

A =

⎛
⎜⎜⎜⎝

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

⎞
⎟⎟⎟⎠ ; A′ =

⎛
⎜⎜⎜⎝

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

⎞
⎟⎟⎟⎠ .

(17)

For these two graphs, the GI AQA finds a vanishing final
ground-state energy Egs = 0 and so recognizes G and G′ as
isomorphic. It also finds that the final ground-state subspace
has a degeneracy of 4. The four CBS that span this subspace
give four binary strings sb. These four binary strings in turn
generate four integer strings s which are, respectively, the

0

3

1

2

G

0

3

1

2

G

FIG. 2. Two isomorphic four-vertex graphs G and G′.

022342-5



FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

0

3

1

2

G

−→

0

1

2

3

π1(G)

FIG. 3. Transformation of G produced by the permutation π1.

bottom row of four permutations [see Eq. (2)]. Thus, not only
does the GI AQA recognize G and G′ as isomorphic, but it also
returns the four graph isomorphisms π1, . . . ,π4 that transform
G → G′ while preserving adjacency:

π1 =
(

0 1 2 3

0 2 3 1

)
; π2 =

(
0 1 2 3

3 2 0 1

)
;

(18)

π3 =
(

0 1 2 3

3 1 0 2

)
; π4 =

(
0 1 2 3

0 1 3 2

)
.

We will next explicitly show that π1 is a graph isomorphism;
the reader can easily check that the remaining three permuta-
tions are also graph isomorphisms.

The permutation matrix σ1 associated with π1 is

σ1 =

⎛
⎜⎜⎜⎝

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0

⎞
⎟⎟⎟⎠ . (19)

Under π1, G is transformed to π1(G), which is shown in Fig. 3.
It is clear from Fig. 3 that vertices x and y are adjacent in
G if and only if π1,x and π1,y are adjacent in π1(G). The
adjacency matrix for π1(G) is σ1AσT

1 , which is easily shown
to be

σ1AσT
1 =

⎛
⎜⎜⎜⎝

0 1 1 1

1 0 0 1

1 0 0 1

1 1 1 0

⎞
⎟⎟⎟⎠ . (20)

This agrees with the adjacency shown in π1(G) in Fig. 3.
Comparison with Eq. (17) shows that σ1AσT

1 = A′. Thus the
permutation π1 does map G into G′ and preserve adjacency
and so establishes that G and G′ are isomorphic.

Finally, note that G and G′ are connected by exactly four
graph isomorphisms. Examination of Fig. 2 shows that the
degree-3 vertices in G are vertices 0 and 2, while in G′ they
are vertices 0 and 3. Since the degree of a vertex is preserved
by a graph isomorphism [16], vertex 0 in G must be mapped
to vertex 0 or 3 in G′. Then vertex 2 (in G) must be mapped
to vertex 3 or 0 (in G′), respectively. This then forces vertex 1
to map to vertex 1 or 2, and vertex 3 to map to vertex 2 or 1,
respectively. Thus only four graph isomorphisms are possible
and these are exactly the four graph isomorphisms found by
the GI AQA which appear in Eq. (18).

0

3

1

2

4

G

0

1234

G

FIG. 4. Two nonisomorphic five-vertex isospectral graphs G and
G′.

B. Nonisomorphic graphs

In this section we present GI instances involving pairs
of nonisomorphic graphs. In Sec. IV B 1 we examine two
instances of isospectral graphs, and in Sec. IV B 2 we look
at three instances of strongly regular graphs. We shall see
that the GI AQA correctly distinguishes all graph pairs as
nonisomorphic.

1. Isospectral graphs

The spectrum of a graph is the set containing all the
eigenvalues of its adjacency matrix. Two graphs are isospectral
if they have identical spectra. Nonisomorphic isospectral
graphs are believed to be difficult to distinguish [8,9]. Here we
test the GI AQA on pairs of nonisomorphic isospectral graphs.
The nonisomorphic pairs of isospectral graphs examined here
appear in Ref. [28].

N = 5. It is known that no pair of graphs with less than five
vertices is isospectral [28]. Figure 4 shows a pair of graphs
G and G′ with five vertices which are isospectral and yet
are nonisomorphic. Although both have five vertices and four
edges, the degree sequence of G is {2,2,2,2,0}, while that of
G′ is {4,1,1,1,1}. Since they have different degree sequences,
it follows that G and G′ are nonisomorphic. The adjacency
matrices A and A′ for G and G′, respectively, are

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

1 0 1 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ;

(21)

A′ =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

It is straightforward to show that A and A′ have the same
characteristic polynomial P (λ) = λ5 − 4λ3 and so G and G′
are isospectral. Numerical simulation of the dynamics of the
GI AQA finds a nonzero final ground-state energy Egs = 5,
and so the GI AQA correctly distinguishes G and G′ as
nonisomorphic graphs.

N = 6. The pair of graphs G and G′ in Fig. 5 are isospectral
and nonisomorphic. To see this, note that although both graphs

022342-6



GRAPH ISOMORPHISM AND ADIABATIC QUANTUM COMPUTING PHYSICAL REVIEW A 89, 022342 (2014)

0

1

2

4

3

5

G

0 1

2

3

4 5

G

FIG. 5. Two nonisomorphic six-vertex isospectral graphs G and
G′.

have six vertices and seven edges, the degree sequence of G

is {5,2,2,2,2,1}, while that of G′ is {3,3,3,3,1,1}. Since their
degree sequences are different, G and G′ are nonisomorphic.
The adjacency matrices A and A′ of G and G′, respectively,
are

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1

1 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 1 1

0 0 0 1 0 1

1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

(22)

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

1 0 1 1 0 0

0 1 0 1 1 0

0 1 1 0 1 0

0 0 1 1 0 1

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Both A and A′ have the same characteristic polynomial P (λ) =
λ6 − 7λ4 − 4λ3 + 7λ2 + 4λ − 1, which establishes that G and
G′ are isospectral. Numerical simulation of the dynamics of
the GI AQA finds a nonzero final ground-state energy Egs =
7, and so the GI AQA correctly distinguishes G and G′ as
nonisomorphic graphs.

2. Strongly regular graphs

As we saw in Sec. II A, the degree d(x) of a vertex x is equal
to the number of vertices that are adjacent to x. A graph G is
said to be k regular if, for all vertices x, the degree d(x) = k. A
graph is said to be regular if it is k regular for some value of k.
Finally, a strongly regular graph is a graph with ν vertices that
is k regular, and for which (i) any two adjacent vertices have
λ common neighbors; and (ii) any two nonadjacent vertices
have μ common neighbors. The set of all strongly regular
graphs is divided up into families, and each family is composed
of strongly regular graphs having the same parameter values
(ν,k,λ,μ). In this section we apply the GI AQA to pairs of
nonisomorphic strongly regular graphs. An excellent test for
this algorithm would be two nonisomorphic strongly regular
graphs belonging to the same family as such graphs would then
have the same order and degree sequence. Unfortunately, to
find a family containing at least two nonisomorphic strongly

0

3 1

2

G

0

3 1

2

G

FIG. 6. Two four-vertex nonisomorphic strongly regular graphs
G and G′.

regular graphs requires going to a family containing 16-vertex
graphs. For example, the family (16,9,4,6) contains two
nonisomorphic strongly regular graphs. Since the GI AQA
uses ν	log2 ν
 qubits, simulation of its quantum dynamics on
16-vertex graphs requires 64 qubits. This is hopelessly beyond
the 20–22 qubit limit for such simulations discussed in the
introduction to Sec. IV. As noted there, this hard limit restricts
our simulations to graphs with no more than seven vertices.
Now the number of connected strongly regular graphs with
ν = 4,5,6,7 is 3,2,5,1, respectively. For each of the values
ν = 4,5,6, the strongly regular graphs are nonisomorphic as
desired, however, each graph belongs to a different family. In
light of the above remarks, the simulations reported in this
section are restricted to pairs of connected nonisomorphic
strongly regular graphs with ν = 4,5,6. Ideally we would have
simulated the GI AQA on the above pair of 16-vertex strongly
regular graphs, however, the realities of simulating quantum
systems on a classical computer made this test well beyond
reach.

N = 4. In Fig. 6 we show two strongly regular four-vertex
graphs G and G′. The parameters for G are ν = 4, k = 2,
λ = 0, and μ = 2; while for G′ they are ν = 4, k = 3, λ = 2,
and μ = 0. It is clear that G and G′ are nonisomorphic since
they contain an unequal number of edges and different degree
sequences. The adjacency matrices A and A′ for G and G′ are,
respectively,

A =

⎛
⎜⎜⎜⎝

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎞
⎟⎟⎟⎠ ; A′ =

⎛
⎜⎜⎜⎝

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

⎞
⎟⎟⎟⎠ .

(23)

Numerical simulation of the GI AQA dynamics finds a nonzero
final ground-state energy Egs = 4 and so the GI AQA correctly
distinguishes G and G′ as nonisomorphic.

N = 5. In Fig. 7 we show two strongly regular five-vertex
graphs G and G′. The parameters for G are ν = 5, k = 2,
λ = 0, and μ = 1; while for G′ they are ν = 5, k = 4, λ = 3,
and μ = 0. It is clear that G and G′ are nonisomorphic since
they contain an unequal number of edges and different degree
sequences. The adjacency matrices A and A′ for G and G′ are,

022342-7



FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

0

3

1

2

4

G

0

1

23

4

G

FIG. 7. Two five-vertex nonisomorphic strongly regular graphs
G and G′.

respectively,

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ ;

(24)

A′ =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎠ .

Numerical simulation of the GI AQA dynamics finds a
nonzero final ground-state energy Egs = 10 and so the GI
AQA correctly distinguishes G and G′ as nonisomorphic.

N = 6. In Fig. 8 we show two strongly regular six-vertex
graphs G and G′. The parameters for G are ν = 6, k = 3,
λ = 0, and μ = 3; while for G′ they are ν = 6, k = 4, λ = 2,
and μ = 4. It is clear that G and G′ are nonisomorphic since
they contain an unequal number of edges and different degree
sequences. The adjacency matrices A and A′ for G and G′ are,
respectively,

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 0 1

1 0 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

(25)

A′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 1 0

1 0 1 0 1 1

1 1 0 1 0 1

1 0 1 0 1 1

1 1 0 1 0 1

0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Numerical simulation of the GI AQA dynamics finds a nonzero
final ground-state energy Egs = 10 and so the GI AQA
correctly distinguishes G and G′ as nonisomorphic.

0

4

1

3

25

G

3

4
1

5

0

2

G

FIG. 8. Two 6-vertex non-isomorphic strongly regular graphs G

and G′.

C. Graph automorphisms

As noted in the introduction of Sec. IV, we can find the
automorphism group Aut(G) of a graph G using the GI
AQA by considering a GI instance with G′ = G. Here the
self-isomorphisms are permutations of the vertices of G that
map G → G while preserving adjacency. Since G is always
isomorphic to itself, the final ground-state energy will vanish:
Egs = 0. The set of CBS |sb〉 that span the final ground-state
subspace give rise to a set of binary strings sb that determine
the integer strings s = s0 · · · sN−1 (see Sec. II B) that then
determine the permutations π (s),

π (s) =
(

0 · · · i · · · N − 1

s0 · · · si · · · sN−1

)
, (26)

which are all the elements of Aut(G). By construction, the
order of Aut(G) is equal to the degeneracy of the final
ground-state subspace. In this section we apply the GI AQA
to the (i) cycle graphs C4, . . . ,C7; (ii) grid graph G2,3; and
(iii) wheel graph W7, and show that it correctly determines the
automorphism group for all of these graphs.

1. Cycle graphs

A walk W in a graph is an alternating sequence of vertices
and edges x0,e1,x1,e2, . . . ,el,xl , where the edge ei connects
xi−1 and xi for 0 < i � l. A walk W is denoted by the sequence
of vertices it traverses W = x0x1 · · · xl . Finally, a walk W =
x0x1 · · · xl is a cycle if l � 3, x0 = xl , and the vertices xi with
0 < i < l are distinct from each other and x0. A cycle with n

vertices is denoted Cn.
The automorphism group of the cycle graph Cn is the

dihedral group Dn [16]. The order of Dn is 2n, and it is
generated by the two elements α and β that satisfy the
following relations:

αn = e; β2 = e; αβ = βαn−1, (27)

where e is the identity element. Because α and β are generators
of Dn, each element g of Dn can be written as a product of
appropriate powers of α and β:

g = αiβj (0 � i � n − 1; 0 � j � 1). (28)

We now use the GI AQA to find the automorphism group
of the cycle graphs Cn for 4 � n � 7. We will see that the
GI AQA correctly determines Aut(Cn) = Dn for these graphs.
We will work out C4 in detail, and then give more abbreviated
presentations for the remaining cycle graphs as their analysis
is identical.

022342-8



GRAPH ISOMORPHISM AND ADIABATIC QUANTUM COMPUTING PHYSICAL REVIEW A 89, 022342 (2014)

0

3

1

2

C4

FIG. 9. Cycle graph C4.

N = 4. The cycle graph C4 appears in Fig. 9. It contains
four vertices and four edges, has degree sequence {2,2,2,2},
and adjacency matrix

A =

⎛
⎜⎜⎜⎝

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎞
⎟⎟⎟⎠ . (29)

Numerical simulation of the GI AQA applied to the GI
instance with G = C4 and G′ = G found a vanishing final
ground-state energy Egs = 0. The GI AQA thus correctly
identifies C4 as being isomorphic to itself. The simulation
also found that the final ground-state subspace is eightfold
degenerate. Table I lists the integer strings s = s0s1s2s3 that
result from the eight CBS |sb〉 that span the final ground-
state subspace (see Secs. II B and III). Each integer string
s determines the bottom row of a permutation π (s) [see
Eq. (26)]. We explicitly show that π (s), for the integer string
s = 3210, is an automorphism of C4. The reader can repeat
this analysis to show that the seven remaining integer strings
in Table I also give rise to automorphisms of C4. Note that the
CBS that span the final ground-state subspace determine all
the graph automorphisms of C4. This follows from the manner
in which the GI AQA is constructed since each automorphism
of C4 must give rise to a CBS with vanishing energy, and
each CBS in the final ground-state subspace gives rise to
an automorphism of C4. These automorphisms form a group
Aut(C4) and the GI AQA has found that the order of Aut(C4)
is 8 which is the same as the order of the dihedral group D4.

TABLE I. Automorphism group Aut(C4) of the cycle graph C4

as found by the GI AQA. The first row lists the integer strings s =
s0s1s2s3 determined by the labels of the eight CBS |sb〉 that span
the final ground-state subspace (see text). Each string s determines
a graph automorphism π (s) via Eq. (26). The second row associates
each integer string s in the first row with a graph automorphism π (s).
It identifies the two strings that give rise to the graph automorphisms
α and β that generate Aut(C4), and writes each graph automorphism
π (s) as a product of an appropriate power of α and β. Note that e

is the identity automorphism, and the product notation assumes the
rightmost factor acts first.

s = s0s1s2s3 3012 2301 1230 0123 0321 3210 2103 1032

π (s) α α2 α3 α4 = e β αβ α2β α3β

0

3

1

2

C4

−→

3

0

2

1

π∗(C4)

FIG. 10. Transformation of C4 produced by the permutation π∗.

The permutation π∗ ≡ π (s = 3210) is

π (3210) =
(

0 1 2 3

3 2 1 0

)
, (30)

and the associated permutation matrix σ∗ ≡ σ (3210) is

σ (3210) =

⎛
⎜⎜⎜⎝

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞
⎟⎟⎟⎠ . (31)

Under π∗, C4 is transformed to π∗(C4), which is shown in
Fig. 10. It is clear from Fig. 10 that x and y are adjacent in
C4 if and only if π∗,x and π∗,y are adjacent in π∗(C4). Thus π∗
is a permutation of the vertices of C4 that preserves adjacency
and so is a graph automorphism of C4. We can also show this
by demonstrating that σ∗AσT

∗ = A. Using Eqs. (29) and (31)
it is easy to show that

σ∗AσT
∗ =

⎛
⎜⎜⎜⎝

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

⎞
⎟⎟⎟⎠ . (32)

This agrees with the adjacency of edges in π∗(C4) appearing in
Fig. 10, and comparison with Eq. (29) shows that σ∗AσT

∗ = A,
confirming that π∗ is an automorphism of C4.

We now show that Aut(C4) is isomorphic to the dihedral
group D4 by showing that the automorphisms π (3012) ≡ α

and π (0321) ≡ β generate Aut(C4), and satisfy the generator
relations [Eqs. (27)] for D4. The second row of Table I
establishes that α and β are the generators of Aut(C4) as
it shows that each element of Aut(C4) is a product of an
appropriate power of α and β, and all possible products of
powers of α and β appear in that row. Now notice that

α =
(

0 1 2 3

3 0 1 2

)
(33)

corresponds to a clockwise rotation of C4 by 90◦ (see Fig. 11).
Thus four applications of α corresponds to a 360◦ rotation of
C4 which leaves it invariant. Thus α4 = e. This can also be
checked by composing α with itself four times using Eq. (33).
This establishes the first of the generator relations in Eqs. (27).
Similarly,

β =
(

0 1 2 3

0 3 2 1

)
(34)

022342-9



FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

0

3

1

2

C4

−→

3

2

0

1

α(C4)

FIG. 11. Transformation of C4 produced by the automorphism α.

corresponds to reflection of C4 about the diagonal passing
through vertices 0 and 2 (see Fig. 12). Thus two applications
of β leaves C4 invariant, and so β2 = e. This establishes the
second of the generator relations in Eqs. (27). Finally, to show
the third generator relation αβ = βα3, we simply evaluate both
sides of this relation and compare results. Using Table I we
find that

αβ =
(

0 1 2 3

3 0 1 2

)(
0 1 2 3

0 3 2 1

)

=
(

0 1 2 3

3 2 1 0

)
, (35)

βα3 =
(

0 1 2 3

0 3 2 1

) (
0 1 2 3

1 2 3 0

)

=
(

0 1 2 3

3 2 1 0

)
. (36)

It is clear that αβ does equal βα3. Thus we have shown that
α and β (i) generate Aut(C4) and (ii) satisfy the generator
relations [Eqs. (27)] for the dihedral group D4, and so generate
a group isomorphic to D4. In summary, we have shown that the
GI AQA found all eight graph automorphisms of C4, and that
the group formed from these automorphisms is isomorphic
to the dihedral group D4, which is the correct automorphism
group for C4.

N = 5. The cycle graph C5 appears in Fig. 13. It has
five vertices and five edges, degree sequence {2,2,2,2,2}, and
adjacency matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎠ . (37)

0

3

1

2

C4

−→

0

1

3

2

β(C4)

FIG. 12. Transformation of C4 produced by the automorphism β.

0

3

1

2

4

C5

FIG. 13. Cycle graph C5.

Numerical simulation of the GI AQA applied to the GI
instance with G = C5 and G′ = G found a vanishing final
ground-state energy Egs = 0. The GI AQA thus correctly
identifies C5 as being isomorphic to itself. The simulation
also found that the final ground-state subspace is tenfold
degenerate. Table II lists the integer strings s = s0 · · · s4 that
result from the ten CBS |sb〉 that span the final ground-state
subspace (see Secs. II B and III). Each integer string s fixes
the bottom row of a permutation π (s) [see Eq. (26)], which
is a graph automorphism of C5. The demonstration of this is
identical to the demonstration given for C4 and so will not be
repeated here. Just as for Aut(C4), the graph automorphisms
in Table II are all the elements of Aut(C5), which is seen to
have order 10. Note that this is the same as the order of the
dihedral group D5.

We now show that Aut(C5) is isomorphic to the dihedral
group D5 by showing that the graph automorphisms α =
π (40123) and β = π (04321) generate Aut(C5), and satisfy
the generator relations [Eqs. (27)] for D5. The second row of
Table II establishes that α and β are the generators of Aut(C5)
as it shows that each element of Aut(C5) is a product of an
appropriate power of α and β, and that all possible products of
powers of α and β appear in that row. Following the discussion
for C4, it is a simple matter to show that α corresponds to a 72◦
clockwise rotation of C5. Thus five applications of α rotates
C5 by 360◦, which leaves it invariant. Thus α5 = e, which
is the first of the generator relations in Eqs. (27). Similarly,
β can be shown to correspond to a reflection of C5 about a
vertical axis passing through vertex 0 in Fig. 13. Thus two
applications of β leave C5 invariant. Thus β2 = e, which

TABLE II. Automorphism group Aut(C5) of the cycle graph
C5 as found by the GI AQA. The odd rows list the integer strings
s = s0 · · · s4 determined by the labels of the ten CBS |sb〉 that span
the final ground-state subspace (see text). Each string s determines a
graph automorphism π (s) via Eq. (26). Each even row associates
each integer string s in the odd row preceding it with a graph
automorphism π (s). It identifies the two strings that give rise to
the graph automorphisms α and β that generate Aut(C5), and writes
each graph automorphism π (s) as a product of an appropriate power
of α and β. Note that e is the identity automorphism, and the product
notation assumes the rightmost factor acts first.

s = s0 · · · s4 40123 34012 23401 12340 01234
π (s) α α2 α3 α4 α5 = e

s = s0 · · · s4 04321 10432 21043 32104 43210
π (s) β αβ α2β α3β α4β

022342-10



GRAPH ISOMORPHISM AND ADIABATIC QUANTUM COMPUTING PHYSICAL REVIEW A 89, 022342 (2014)

0

4

1

3

25

C6

FIG. 14. Cycle graph C6.

is the second generator relation in Eqs. (27). Finally, using
Table II, direct calculation as in Eqs. (35) and (36) shows that
αβ = βα4, which establishes the final generator relation in
Eqs. (27). We see that α and β generate Aut(C5) and satisfy
the generator relations for D5 and so generate a ten element
group isomorphic to D5. In summary, we have shown that the
GI AQA found all ten graph automorphisms of C5, and that the
group formed from these automorphisms is isomorphic to the
dihedral group D5, which is the correct automorphism group
for C5.

N = 6. The cycle graph C6 appears in Fig. 14. It has six
vertices and six edges, degree sequence {2,2,2,2,2,2}, and
adjacency matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 0

0 0 0 1 0 1

1 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

Numerical simulation of the GI AQA applied to the GI
instance with G = C6 and G′ = G found a vanishing final
ground-state energy Egs = 0. The GI AQA thus correctly
identifies C6 as being isomorphic to itself. The simulation
also found that the final ground-state subspace is 12-fold
degenerate. Table III lists the integer strings s = s0 · · · s5 that
result from the 12 CBS |sb〉 that span the final ground-state
subspace (see Secs. II B and III). Each integer string s fixes
the bottom row of a permutation π (s) [see Eq. (26)], which

TABLE III. Automorphism group Aut(C6) of the cycle graph C6

as found by the GI AQA. The first and third rows list the integer strings
s = s0 · · · s5 determined by the labels of the 12 CBS |sb〉 that span
the final ground-state subspace (see text). Each string s determines a
graph automorphism π (s) via Eq. (26). The second and fourth rows
associate each integer string s in the first and third rows with a graph
automorphism π (s). They also identify the two strings that give rise
to the graph automorphisms α and β that generate Aut(C6), and write
each graph automorphism π (s) as a product of an appropriate power
of α and β. Note that e is the identity automorphism, and the product
notation assumes the rightmost factor acts first.

s = s0 · · · s5 501234 450123 345012 234501 123450 012345
π (s) α α2 α3 α4 α5 α6 = e

s = s0 · · · s5 105432 210543 321054 432105 543210 054321
π (s) β αβ α2β α3β α4β α5β

0

5

1

2

6

4 3

C7

FIG. 15. Cycle graph C7.

is a graph automorphism of C6. The demonstration of this is
identical to the demonstration given for C4 and so will not be
repeated here. Just as for Aut(C4), the graph automorphisms
in Table III are all the elements of Aut(C6), which is seen to
have order 12. Note that this is the same as the order of the
dihedral group D6.

We now show that Aut(C6) is isomorphic to the dihedral
group D6 by showing that the graph automorphisms α =
π (501234) and β = π (105432) generate Aut(C6), and satisfy
the generator relations [Eqs. (27)] for D6. The second and
fourth rows of Table III establish that α and β are the generators
of Aut(C6) as they show that each element of Aut(C6) is
a product of an appropriate power of α and β, and that all
possible products of powers of α and β appear in these two
rows. Following the discussion for C4, it is a simple matter
to show that α corresponds to a 60◦ clockwise rotation of C6.
Thus six applications of α rotates C6 by 360◦, which leaves
it invariant. Thus α6 = e, which is the first of the generator
relations in Eqs. (27). Similarly, β can be shown to correspond
to a reflection of C6 about a vertical axis that bisects C6. Thus
two applications of β leave C6 invariant. Thus β2 = e, which
is the second generator relation in Eqs. (27). Finally, using
Table III, direct calculation as in Eqs. (35) and (36) shows
that αβ = βα5, which establishes the final generator relation
in Eqs. (27). We see that α and β generate Aut(C6) and satisfy
the generator relations for D6 and so generate a 12 element
group isomorphic to D6. In summary, we have shown that the
GI AQA found all 12 graph automorphisms of C6, and that the
group formed from these automorphisms is isomorphic to the
dihedral group D6, which is the correct automorphism group
for C6.

N = 7. The cycle graph C7 appears in Fig. 15. It has seven
vertices and seven edges, degree sequence {2,2,2,2,2,2,2},
and adjacency matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0 1

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

1 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (39)

Numerical simulation of the GI AQA applied to the GI
instance with G = C7 and G′ = G found a vanishing final

022342-11



FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

TABLE IV. Automorphism group Aut(C7) of the cycle graph
C7 as found by the GI AQA. The odd rows list the integer strings
s = s0 · · · s6 determined by the labels of the 14 CBS |sb〉 that span
the final ground-state subspace (see text). Each string s determines a
graph automorphism π (s) via Eq. (26). Each even row associates each
integer string s in the odd row preceding it with a graph automorphism
π (s). They also identify the two strings that give rise to the graph
automorphisms α and β that generate Aut(C7), and write each graph
automorphism π (s) as a product of an appropriate power of α and
β. Note that e is the identity automorphism, and the product notation
assumes the rightmost factor acts first.

s = s0 · · · s6 6012345 5601234 4560123 3456012
π (s) α α2 α3 α4

s = s0 · · · s6 2345601 1234560 0123456
π (s) α5 α6 α7 = e

s = s0 · · · s6 0654321 1065432 2106543 3210654
π (s) β αβ α2β α3β

s = s0 · · · s6 4321065 5432106 6543210
π (s) α4β α5β α6β

ground-state energy Egs = 0. The GI AQA thus correctly
identifies C7 as being isomorphic to itself. The simulation
also found that the final ground-state subspace is 14-fold
degenerate. Table IV lists the integer strings s = s0 · · · s6 that
result from the 14 CBS |sb〉 that span the final ground-state
subspace (see Secs. II B and III). Each integer string s fixes
the bottom row of a permutation π (s) [see Eq. (26)], which
is a graph automorphism of C7. The demonstration of this is
identical to the demonstration given for C4 and so will not be
repeated here. Just as for Aut(C4), the graph automorphisms
in Table IV are all the elements of Aut(C7), which is seen to
have order 14. Note that this is the same as the order of the
dihedral group D7.

We now show that Aut(C7) is isomorphic to the dihe-
dral group D7 by showing that the graph automorphisms
α = π (6012345) and β = π (0654321) generate Aut(C7), and
satisfy the generator relations [Eqs. (27)] for D7. The second
and fourth rows of Table IV establish that α and β are the
generators of Aut(C7) as they show that each element of
Aut(C7) is a product of an appropriate power of α and β,
and that all possible products of powers of α and β appear
in these two rows. Following the discussion for C4, it is a
simple matter to show that α corresponds to a 2π/7 radian
clockwise rotation of C7. Thus seven applications of α rotates
C7 by 360◦, which leaves it invariant. Thus α7 = e, which
is the first of the generator relations in Eqs. (27). Similarly,
β can be shown to correspond to a reflection of C7 about
a vertical axis that passes through vertex 0 in Fig. 15. Thus
two applications of β leave C7 invariant. Thus β2 = e, which
is the second generator relation in Eqs. (27). Finally, using
Table IV, direct calculation as in Eqs. (35) and (36) shows
that αβ = βα6, which establishes the final generator relation
in Eqs. (27). We see that α and β generate Aut(C7) and satisfy
the generator relations for D7 and so generate a 14 element
group isomorphic to D7. In summary, we have shown that the
GI AQA found all 14 graph automorphisms of C7, and that the
group formed from these automorphisms is isomorphic to the

4

0

5

1

2 3

G2,3

FIG. 16. Grid graph G2,3.

dihedral group D7, which is the correct automorphism group
for C7.

2. Grid graph G2,3

The grid graph G2,3 appears in Fig. 16. It has six vertices and
seven edges, degree sequence {3,3,2,2,2,2}, and adjacency
matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0

1 0 0 1 0 0

1 0 0 1 1 0

0 1 1 0 0 1

0 0 1 0 0 1

0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (40)

G2,3 has two reflection symmetries. The first is reflection
about the horizontal line passing through vertices 2 and 3,
and the second is reflection about a vertical line that bisects
G2,3. Let α and β denote the permutation of vertices that
these reflections produce. It follows from their definition that
α = π (452301) and β = π (103254). They are the generators
of the automorphism group of G2,3: Aut(G2,3) = 〈α,β〉. As
reflections, they satisfy α2 = β2 = e. Applying these reflec-
tions successively gives αβ = π (543210), which is a fourth
symmetry of G2,3. Applying these reflections in the reverse
order, it is easy to verify that αβ = βα. Thus Aut(G2,3) is
a four element Abelian group generated by the reflections α

and β. Let us now compare this with the results found by the
GI AQA.

Numerical simulation of the GI AQA applied to the GI
instance with G = G2,3 and G′ = G found a vanishing final
ground-state energy Egs = 0. The GI AQA thus correctly
identifies G2,3 as being isomorphic to itself. The simulation
also found that the final ground-state subspace is fourfold
degenerate. Table V lists the integer strings s = s0 · · · s5 that
result from the four CBS |sb〉 that span the final ground-state
subspace (see Secs. II B and III). Each integer string s fixes
the bottom row of a permutation π (s) [see Eq. (26)], which
is a graph automorphism of G2,3. The demonstration of this
is identical to the demonstration given for C4 and so will not
be repeated here. Notice that the GI AQA found the graph
automorphisms π (452301) and π (103254) which implement
the reflection symmetries of G2,3 described above. As they
implement reflections, it follows that α2 = β2 = e. The GI
AQA also found the graph automorphism π (543210), which
is the composite symmetry αβ described above. Using Table V,

022342-12



GRAPH ISOMORPHISM AND ADIABATIC QUANTUM COMPUTING PHYSICAL REVIEW A 89, 022342 (2014)

TABLE V. Automorphism group Aut(G2,3) of the grid graph G2,3

as found by the GI AQA. The first row lists the integer strings s =
s0 · · · s5 determined by the labels of the four CBS |sb〉 that span the
final ground-state subspace (see text). Each string s determines a
graph automorphism π (s) via Eq. (26). The second row associates
each integer string s in the first row with a graph automorphism
π (s). They also identify the two strings that give rise to the graph
automorphisms α and β that generate Aut(G2,3), and write each graph
automorphism π (s) as a product of an appropriate power of α and
β. Note that e is the identity automorphism, and the product notation
assumes the rightmost factor acts first.

s = s0 · · · s5 452301 103254 012345 543210
π (s) α β α2 = β2 = e αβ

direct calculation as in Eqs. (35) and (36) shows that αβ = βα.
Thus the GI AQA correctly found the two generators α and β of
Aut(G2,3), correctly determined all four elements of Aut(G2,3),
and correctly determined that Aut(G2,3) is an Abelian group. In
summary, the GI AQA correctly determined the automorphism
group of G2,3.

3. Wheel graph W7

The wheel graph W7 appears in Fig. 17. It has seven vertices
and 12 edges, degree sequence {6,3,3,3,3,3,3}, and adjacency
matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 1 1

1 0 1 0 0 0 1

0 1 0 1 0 0 1

0 0 1 0 1 0 1

0 0 0 1 0 1 1

1 0 0 0 1 0 1

1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41)

The automorphism group Aut(W7) is isomorphic to the
dihedral group D6 which, as we have seen, has 12 elements
and is generated by two graph automorphisms α and β that
satisfy the generator relations in Eqs. (27) with n = 6 and
respectively, rotate W7 clockwise about vertex 6 by 60◦, and
reflect W7 about a vertical axis through vertex 6. The graph
automorphisms of W7 thus fix vertex 6. Let us now compare
this with the results found by the GI AQA.

Numerical simulation of the GI AQA applied to the GI
instance with G = W7 and G′ = G found a vanishing final

0

4

1

3

5 26

W7

FIG. 17. Wheel graph W7.

TABLE VI. Automorphism group Aut(W7) of the wheel graph
W7 as found by the GI AQA. The odd rows list the integer strings
s = s0 · · · s6 determined by the labels of the 12 CBS |sb〉 that span
the final ground-state subspace (see text). Each string s determines a
graph automorphism π (s) via Eq. (26). Each even row associates each
integer string s in the odd row preceding it with a graph automorphism
π (s). They also identify the two strings that give rise to the graph
automorphisms α and β that generate Aut(W7), and write each graph
automorphism π (s) as a product of an appropriate power of α and
β. Note that e is the identity automorphism, and the product notation
assumes the rightmost factor acts first.

s = s0 · · · s6 5012346 4501236 3450126
π (s) α α2 α3

s = s0 · · · s6 2345016 1234506 0123456
π (s) α4 α5 α6 = e

s = s0 · · · s6 1054326 2105436 3210546
π (s) β αβ α2β

s = s0 · · · s6 4321056 5432106 0543216
π (s) α3β α4β α5β

ground-state energy Egs = 0. The GI AQA thus correctly
identifies W7 as being isomorphic to itself. The simulation
also found that the final ground-state subspace is 12-fold
degenerate. Table VI lists the integer strings s = s0 · · · s6 that
result from the 12 CBS |sb〉 that span the final ground-state
subspace (see Secs. II B and III). Each integer string s fixes
the bottom row of a permutation π (s) [see Eq. (26)], which
is a graph automorphism of W7. The demonstration of this is
identical to the demonstration given for C4 and so will not be
repeated here. Just as for Aut(C4), the graph automorphisms
in Table VI are all the elements of Aut(W7), which is seen to
have order 12. Note that this is the same as the order of the
dihedral group D6.

We now show that Aut(W7) is isomorphic to the dihedral
group D6 by showing that the graph automorphisms α =
π (5012346) and β = π (1054326) generate Aut(W7), and
satisfy the generator relations [Eqs. (27)] for D6. The second
and fourth rows of Table VI establish that α and β are the
generators of Aut(W7) as they show that each element of
Aut(W7) is a product of an appropriate power of α and β,
and that all possible products of powers of α and β appear in
these two rows. Following the discussion for C4, it is a simple
matter to show that α corresponds to a 60◦ clockwise rotation
about vertex 6 of W7. Thus six applications of α rotates W7

by 360◦, which leaves it invariant. Thus α6 = e, which is the
first of the generator relations in Eqs. (27). Similarly, β can
be shown to correspond to a reflection of W7 about a vertical
axis passing through vertex 6 of W7. Thus two applications
of β leave W7 invariant. Thus β2 = e, which is the second
generator relation in Eqs. (27). Finally, using Table VI, direct
calculation as in Eqs. (35) and (36) shows that αβ = βα5,
which establishes the final generator relation in Eqs. (27). We
see that α and β generate Aut(W7) and satisfy the generator
relations for D6 and so generate a 12 element group isomorphic
to D6. In summary, we have shown that the GI AQA found
all 12 graph automorphisms of W7, and that the group formed
from these automorphisms is isomorphic to the dihedral group
D6, which is the correct automorphism group for W7.

022342-13



FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

V. EXPERIMENTAL IMPLEMENTATION

In this section we express the GI problem Hamiltonian HP

in a form more suitable for experimental implementation. We
saw in Sec. II C that the eigenvalues of HP are given by the
cost function C(s), which is reproduced here for convenience:

C(s) = C1(s) + C2(s) + C3(s), (42)

with

C1(s) =
N−1∑
i=0

M∑
α=N

δsi ,α, (43)

C2(s) =
N−2∑
i=0

N−1∑
j=i+1

δsi ,sj
, (44)

C3(s) = ‖σ (s)AσT (s) − A′‖i . (45)

Here s = s0 · · · sN−1 is the integer string derived from
the binary string sb = (s0 · · · sU−1) · · · (s(N−1)U · · · sNU−1) via
Eqs. (6) and (7) with U = 	log2 N
. The matrix σ (s) was
defined in Eq. (8) as

σi,j (s) =
{

0, if sj > N − 1

δi,sj
, if 0 � sj � N − 1.

(46)

Note that σi,j (s) can be written more compactly as

σi,j (s) = δi,sj

M∏
α=N

(1 − δsj ,α). (47)

We see from Eqs. (42)–(45) and (47) that the s dependence
of C(s) enters through the Kronecker deltas. This type of s

dependence is not well suited for experimental implementation
and so our task is to find a more convenient form for the
Kronecker delta.

We begin with δa,b in the case where a,b ∈ {0,1}. Here we
write

δa,b = (a + b − 1)2 =
{

0 (a �= b)

1 (a = b),
(48)

which can be checked by inserting values for a and b. Now
consider δs,k when s and k are U -bit integers. The binary
decompositions of s and k are

s =
U−1∑
i=0

si (2)i , (49)

k =
U−1∑
i=0

ki (2)i . (50)

For s and k to be equal, all their corresponding bits must be
equal. Thus we can write

δs,k =
U−1∏
i=0

δsi ,ki

=
U−1∏
i=0

(si + ki − 1)2 =
{

1 (all si = ki)

0 (some si �= ki).
(51)

Equation (51) allows each Kronecker delta appearing in
C(s) to be converted to a polynomial in the components of the
integer string s. From Eqs. (43) and (44) we see that C1(s) and
C2(s) are each 2U local. For C3(s) we must write σ (s)AσT (s)
in a form that makes the Kronecker deltas explicit. Using
Eq. (47), we have

σ (s)AσT (s) =
N−1∑
i,j=0

σli(s)Aijσmj (s)

=
N−1∑
i,j=0

{
δl,si

M∏
α=N

(1 − δsi ,α)

}
Aij

×
⎧⎨
⎩δm,sj

M∏
β=N

(1 − δsj ,β)

⎫⎬
⎭ . (52)

Inserting Eq. (51) into Eq. (52), we see that σ (s)AσT (s) − A′
is 4U (M − N + 1) local. If we use the L1 norm (L2 norm)
in Eq. (45), then we see that C3(s) is 4U (M − N + 1) local
[8U (M − N + 1) local].

The number of terms in C(s), and thus in HP , follows
straightforwardly from Eqs. (43)–(45). Starting with C1(s),
there is a term for each value of i and α that appears in
the sum. There are thus T1 = N (M − N + 1) terms in C1(s).
From Eq. (5), M = 2U − 1, where U = 	log2 N
 and N is the
number of vertices in each graph appearing in the GI instance.
It follows from the definition of U that M < 2N and so
T1 < N (N + 1). Recall from Sec. III that the number of qubits
LN needed for an N -vertex GI instance is LN = N	log2 N
.
Thus T1 < (LN/	log2 N
)(LN/	log2 N
 + 1) < CL2

N , where
C is an appropriate constant. Thus T1(LN ) = O(L2

N ). A
similar analysis shows that the number of terms in C2(s) is
T2(LN ) = O(L2

N ). Finally, C3(s) is the Li norm of an N × N

matrix. For the L1 norm used in our simulations, the number
of terms in C3(s) is T3 = N2. Following the above analysis,
this gives T3(LN ) = O(L2

N ). Putting everything together gives
that the total number of terms associated with C(s), and so also
HP , is T (LN ) = T1(LN ) + T2(LN ) + T3(LN ) = O(L2

N ). The
initial Hamiltonian Hi contains one term for each qubit [see
Eq. (15)] and so the number of terms in Hi is LN . Thus the
total number of terms in the full time-dependent Hamiltonian
H (t) is O(L2

N ) and so scales quadratically with the number of
qubits LN .

Clearly, the degree of difficulty associated with experimen-
tally implementing a quantum algorithm depends strongly
on the architecture of the hardware on which it is to be
run. The simplest situation would be an architecture which
allows an arbitrary number of qubits to be simultaneously
coupled, independently of where they were located on the
processor. Unfortunately, such a hardware architecture does
not presently exist. For hardware platforms designed to
run adiabatic quantum optimization algorithms, the D-Wave
hardware is furthest along [29]. Each qubit on the D-Wave
processor couples to at most six neighboring qubits, and only
two-qubit Ising coupling interactions are possible. The initial
Hamiltonian Hi [see Eq. (15)] is easily programed onto the
hardware. However, a problem Hamiltonian HP which is not
of Ising form is more challenging, requiring an embedding
procedure that (i) reduces all k-local interactions with k � 3

022342-14



GRAPH ISOMORPHISM AND ADIABATIC QUANTUM COMPUTING PHYSICAL REVIEW A 89, 022342 (2014)

to 2-local form; and (ii) two-qubit coupling interactions that
match the hardware’s Chimera coupling graph. A procedure
for carrying out this reduction based on Ref. [15] is described
in Appendix B. Alternative approaches appear in Refs. [30]
and [31].

VI. SUBGRAPH ISOMORPHISM PROBLEM

An instance of the SGI problem consists of an N -vertex
graph G and an n-vertex graph H with n � N . The question
to be answered is whether G contains an n-vertex subgraph
that is isomorphic to H . The SGI problem is known to be
NP-complete [32] and is believed to be more difficult to solve
than the GI problem. Here we show how an instance of SGI can
be converted into an instance of a COP whose cost function has
a minimum value that vanishes when G contains a subgraph
isomorphic to H , and is greater than zero otherwise. The SGI
cost function will be seen to be a natural generalization of the
GI cost function given in Eqs. (9)–(12). The SGI COP can then
be solved using adiabatic quantum evolution as was done for
the GI problem.

As with the GI problem, we would like to determine whether
there exists an isomorphism π of G that produces a new graph
π (G) that contains H as a subgraph. Just as with the GI
problem, we consider linear maps σ (s) [see Eqs. (6)–(8)] that
transform the adjacency matrix A of G to Ã(s) = σ (s)AσT (s).
We then search π (G) to determine whether there is a subset of
n vertices that yields a subgraph that is equal to H .

To begin the process of converting an SGI instance into an
instance of a COP, let (i) α label all the ( N

n
) ways of choosing

n vertices from the N vertices in π (G); and (ii) |i〉 (|αi〉)
be an n-component (N -component) vector whose ith (αi th)
component is 1, and all other components are 0. Thus α labels
the choice (α0, . . . ,αn−1) of n vertices out of the N vertices
of π (G). We now show that an n × N matrix Pα can be used
to form an n × n matrix Aα(s) whose matrix elements are
the matrix elements of Ã(s) associated with the n vertices
appearing in α. To that purpose, define

Pα =
n−1∑
i=0

|i〉〈αi |, (53)

Aα(s) = PαÃ(s)P T
α , (54)

where

Ã(s) =
N−1∑
l,m=0

Ãl,m(s)|l〉〈m|. (55)

It follows from these definitions that

Aα(s) =
n−1∑
i,=0

|i〉〈αi |
N−1∑
l,m=0

Ãl,m(s)|l〉〈m|
n−1∑
j=0

|αj 〉〈j |

=
n−1∑
i,j=0

Ãαi ,αj
(s)|i〉〈j |. (56)

Thus the matrix elements (Aα)i,j (s) are precisely the matrix
elements Ãαi ,αj

(s) associated with all possible pairs of vertices
drawn from (α0, . . . ,αn−1). The matrix Aα(s) is thus the
adjacency matrix for the subgraph gα composed of the vertices

appearing in α, along with all the edges in π (G) that join them.
With Aα(s), we can, as in the GI problem, test whether gα is
equal to H by checking whether ||Aα(s) − A′||i vanishes or
not. Here A′ is the adjacency matrix of the graph H , and ||O||i
is the Li norm of O.

We can now define a cost function whose minimum value
vanishes if and only if G contains a subgraph g that is
isomorphic to H . Because the transformation σ (s) must be
a permutation matrix when g is isomorphic to H , we again
introduce the penalty functions C1(s) and C2(s) used in the
GI COP to penalize those integer strings s that produce a σ (s)
that is not a permutation matrix:

C1(s) =
N−1∑
i=0

M∑
α=N

δsi ,α, (57)

C2(s) =
N−2∑
i=0

N−1∑
j=i+1

δsi ,sj
. (58)

The final penalty function C3(s) for the SGI problem general-
izes the one used in the GI problem. It is defined to be

C3(s) =
(N

n)∏
α=1

||Aα(s) − A′||i , (59)

where the product is over all (N

n
) ways of choosing n vertices

out of N vertices. Note that C3(s) vanishes if and only if G

contains an n-vertex subgraph isomorphic to H . This follows
since, if G contains an n-vertex subgraph g isomorphic to
H , there exists a permutation π (s) of G that has an n-vertex
subgraph that is equal to H . Thus, for this s, there is a choice α

of n vertices that gives a subgraph for which Aα(s) − A′ = 0.
It follows from Eq. (59) that C3(s) = 0. On the other hand, if
C3(s) = 0, it follows that at least one of the factors on the RHS
of Eq. (59) vanishes. Thus there is a choice α of n vertices for
which ||Aα(s) − A′||i = 0. Thus Aα(s) = A′, and so G has a
subgraph isomorphic to H .

The cost function for the SGI problem is now defined to be

C(s) = C1(s) + C2(s) + C3(s), (60)

where C1(s), C2(s), and C3(s) are defined in Eqs. (57)–(59).
This gives rise to the following COP:

Subgraph isomorphism COP. Given an N -vertex graph G

and an n-vertex graph H with n � N , and the associated cost
function C(s) defined in Eq. (60), find an integer string s∗ that
minimizes C(s).

By construction (i) C(s∗) = 0 if and only if G contains a
subgraph isomorphic to H , and σ (s∗) is the permutation matrix
that transforms G into a graph π (G) that has H as a subgraph;
and (ii) C(s∗) > 0 otherwise.

As with the GI COP, the SGI COP can be solved using
adiabatic quantum evolution. The quantum algorithm for SGI
begins by preparing the L = N	log2 N
 qubit register in
the ground state of Hi [see Eq. (15)] and then driving the
qubit register dynamics using the time-dependent Hamiltonian
H (t) = (1 − t/T )Hi + (t/T )HP . Here the problem Hamilto-
nian HP is defined to be diagonal in the computational basis
|sb〉 and to have associated eigenvalues C(s), where s is found
from sb according to Eqs. (6) and (7). At the end of the

022342-15



FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

evolution the qubits are measured in the computational basis.
The outcome is the bit string s∗

b so that the final state of the
register is |s∗

b 〉 and its energy is C(s∗), where s∗ is the integer
string derived from s∗

b . In the adiabatic limit, C(s∗) will be
the ground-state energy, and if C(s∗) = 0 (>0) the algorithm
concludes that G contains (does not contain) a subgraph
isomorphic to H . In the case where G does contain a subgraph
isomorphic to H , the algorithm also returns the permutation
π∗ = π (s∗) that converts G to the graph π∗(G) that contains
H as a subgraph. Note that any real application of AQO will
only be approximately adiabatic. Thus the probability that
the final energy C(s∗) will be the ground-state energy will
be 1 − ε. In this case the SGI quantum algorithm must be
run k ∼ O( ln(1 − δ)/ ln ε) times so that, with probability
δ > 1 − ε, at least one of the measurements will return the
ground-state energy. We can make δ arbitrarily close to 1 by
choosing k sufficiently large.

VII. SUMMARY

In this paper we have presented a quantum algorithm that
solves arbitrary instances of the graph isomorphism problem
and which provides an approach for finding the automorphism
group of a graph. We numerically simulated the algorithm’s
quantum dynamics and showed that it correctly (i) distin-
guished nonisomorphic graphs, (ii) recognized isomorphic
graphs, and (iii) determined the automorphism group of a
given graph. We also discussed the quantum algorithm’s
experimental implementation, and showed how it can be
generalized to give a quantum algorithm that solves arbitrary
instances of the NP-complete subgraph isomorphism problem.
As explained in Appendix A, the minimum energy gap
for an adiabatic quantum algorithm largely determines the
algorithm’s computational complexity. Determining this gap
in the limit of large problem size is currently an important open
problem in adiabatic quantum computing (see Sec. IV). It is
thus not possible to determine the computational complexity
of adiabatic quantum algorithms in general, nor, consequently,
of the specific adiabatic quantum algorithms presented in this
paper. Adiabatic quantum computing has been shown to be
equivalent to the circuit model of quantum computing [12–14],
and so development of adiabatic quantum algorithms continues
to be of great interest.

ACKNOWLEDGMENTS

We thank W. G. Macready and D. Dahl for many interesting
discussions, and F. G. thanks T. Howell III for continued
support.

APPENDIX A: QUANTUM ADIABATIC THEOREM

The question of how the state of a physical system
changes when the system’s environment undergoes a slow
variation is an old one. For quantum systems, the answer
is contained in the quantum adiabatic theorem which was
proved by Born and Fock not long after the birth of quantum
mechanics [33]. Subsequent work relaxed a number of the
assumptions underlying the original proof [34–43], thereby
widening the theorem’s range of validity. As the physical

setting for the quantum adiabatic theorem occurs often, it forms
the foundation for many important applications in atomic,
molecular, and chemical physics. Recently, it has been used
as the basis for a novel alternative approach to quantum
computing known as adiabatic quantum computing [21,22].
In this appendix we provide a brief review of the quantum
adiabatic theorem (Appendix A 1) and then describe how it is
used in adiabatic quantum computing (Appendix A 2).

1. Quantum adiabatic theorem

Consider a quantum system coupled to an environment that
changes slowly over a time T . The dynamical evolution of its
state |ψ(t)〉 is determined by the Schrödinger equation, which
will be driven by a slowly varying Hamiltonian H (t). The
system’s Hilbert space is assumed to be finite dimensional
with dimension d. Thus at each instant t there will be d

instantaneous energy eigenstates |Ek(t)〉 satisfying

H (t)|Ek(t)〉 = Ek(t)|Ek(t)〉, (A1)

with E0(t) � E1(t) � · · · � Ed−1(t).
Now suppose that we initially prepare the quantum system

in the instantaneous energy eigenstate |Ek(0)〉 of the initial
Hamiltonian H (0). The quantum adiabatic theorem states that,
in the limit T → ∞, the final state |ψ(T )〉 will be (to within
a phase factor) the instantaneous energy eigenstate |Ek(T )〉 of
the final Hamiltonian H (T ). Note that in our discussions of
adiabatic quantum computing, the initial state will always be
the ground state of H (0): |ψ(0)〉 = |E0(0)〉.

For reasons that will become clear below, the energy gap
�(t) = E1(t) − E0(t) separating the two lowest instantaneous
energy levels proves to be extremely important in adiabatic
quantum computing. Although it is possible to prove the
quantum adiabatic theorem for systems with a vanishing
energy gap [41], the rate of convergence to the adiabatic
limit can be arbitrarily slow. On the other hand, when the
gap �(t) is nonvanishing for 0 � t � T , it is possible to
estimate how large T must be for the dynamics to be effectively
adiabatic. Starting from the observation that for adiabatic
dynamics there will be negligible probability to find the
quantum system at t = T in an energy level other than the
ground state, a straightforward analysis [19,20] leads to the
following adiabaticity constraint:

T � �M

�2
, (A2)

where

M = max
0�s�1

∣∣∣∣〈E1(s)|dH̃ (s)

ds
|E0(s)〉

∣∣∣∣ , (A3)

� = min
0�s�1

[E1(s) − E0(s)], (A4)

s = t/T , and H̃ (s) = H (sT ). The quantity � is the minimum
energy gap arising during the adiabatic evolution.

The quantum adiabatic theorem provides a mechanism for
traversing a path |ψ(t)〉 through Hilbert space that begins at a
given state |ψi〉 and ends at a desired final state |ψf 〉. To see
this, let Hi and Hf be local Hermitian operators whose ground
states are |ψi〉 and |ψf 〉, respectively. An Hermitian operator

022342-16



GRAPH ISOMORPHISM AND ADIABATIC QUANTUM COMPUTING PHYSICAL REVIEW A 89, 022342 (2014)

is local if it couples at most k particles, with k finite. Suppose
that we can apply a time-dependent Hamiltonian H (t) over a
time interval 0 � t � T , with H (0) = Hi , and H (T ) = Hf .
Suppose further that we prepare our quantum system in the
ground state |ψi〉 of Hi , and then apply H (t) to it. In the limit
T → ∞, the quantum adiabatic theorem guarantees that the
system at time T will be in the desired state |ψf 〉. The outcome
is thus a continuous path from |ψi〉 to |ψf 〉.

2. Adiabatic quantum computing

To connect this discussion to quantum computing, imagine
that there is a computational problem we would like to solve,
and that we are able to construct a local Hamiltonian Hf

whose ground state |ψf 〉 encodes the solution to our problem.
Often, the computational basis states can be chosen to be the
eigenstates of HP . Our GI problem Hamiltonian HP is an
example of such a Hamiltonian (see Sec. III). Let Hi be a
local Hamiltonian operator whose ground state |ψi〉 is easy to
prepare [e.g., see Eq. (15)]. In adiabatic quantum computing,
the procedure presented in the preceding paragraph is applied
with |ψ(0)〉 = |ψi〉 and H (t) tracing out a path from Hi to
Hf (in the space of Hermitian operators). Originally, Ref. [21]
chose H (t) to linearly interpolate from Hi to Hf :

H (t) = (1 − t/T ) Hi + (t/T ) Hf . (A5)

Writing s = t/T and H̃ (s) = H (sT ) gives

H̃ (s) = (1 − s) Hi + sHf . (A6)

More general interpolation schemes are possible: H (t) =
A(t)Hi + B(t)Hf , where we require A(0) = 1 [B(0) = 0] and
A(T ) = 0 [B(T ) = 1]. See, for example, Refs. [15,25,27]. By
choosing T sufficiently large, the final state |ψ(T )〉 can be
brought arbitrarily close to |ψf 〉. An appropriate measurement
then yields |ψf 〉 with probability close to 1, and thus yields
the desired solution to our computational problem. Adiabatic
quantum computing thus finds the solution to a computational
problem by homing in on the ground state |ψf 〉 of Hf which
encodes the solution. The homing mechanism is provided
by the quantum adiabatic theorem. It has been shown that
adiabatic quantum computing has the same computational
power as the circuit model for quantum computing [12–14].
It thus provides an important alternative approach to quantum
computing that is especially well suited to problems that reduce
to quantum state generation.

We are now in a position to state the protocol for the
adiabatic quantum evolution (AQE) algorithm [21]:

(1) Prepare an n-qubit quantum register in the ground state
|ψi〉 of Hi .

(2) At t = 0, apply H (t) to the quantum register for a
time T .

(3) At time t = T , measure the qubits in the computational
basis.

Because the computational basis states are typically the
eigenstates of Hf , the final measurement leaves the qubits
in an eigenstate of Hf . In the adiabatic limit T → ∞, the
final measurement leaves the qubits in the ground state of
Hf (which encodes the solution we are trying to find) with
probability Psuccess → 1.

Now for large, but finite T , the Schrödinger dynamics is
approximately adiabatic. Thus, with probability 1 − ε, the
measurement returns the problem solution. In this case the
AQE algorithm must be run more than once. Suppose we run it
κ times. The probability that we do not get the problem solution
in any of the κ runs is εκ . We can make this probability take
an arbitrarily small value ε̃ by choosing κ ∼ O( log(1/ε̃)).
Thus with probability arbitrarily close to 1, one of the κ

measurement results will yield the problem solution.
The adiabaticity constraint [see Eq. (A2)] specifies a lower

bound which the runtime T must exceed if the Schrödinger
dynamics is to be effectively adiabatic. In all applications
of interest to date, the matrix element M appearing in
this constraint scales polynomially with problem size N .
So long as this is true, Eq. (A2) indicates that the scaling
behavior of the runtime T (N ) is determined by the scaling
behavior of the minimum gap �(N ). Now, if at t = 0 the
quantum register is prepared in the ground state of the initial
Hamiltonian H (0), and its dynamics is effectively adiabatic,
its state at later times will be effectively restricted to the
subspace spanned by the instantaneous ground and first
excited states. Standard arguments [44] indicate that, in the
absence of symmetry, these two energy levels will typically
not cross. Thus the minimum gap �(N ) will typically not
vanish, and Eq. (A2) indicates that an effectively adiabatic
dynamics can be obtained with finite T (N ). An algorithm,
classical or quantum, is said to efficiently (inefficiently) solve
a computational problem if its runtime scales polynomially
(superpolynomially) with problem size. Thus, if �(N ) scales
inverse polynomially (superpolynomially) with N , then T (N )
will scale polynomially (superpolynomially) with N , and the
AQE algorithm will be an efficient (inefficient) algorithm. We
see that the scaling behavior of the minimum gap �(N ) largely
controls the computational complexity of the AQE algorithm.

APPENDIX B: EMBEDDING PROCEDURE FOR
D-WAVE HARDWARE

This appendix briefly describes the embedding procedure used
in Ref. [15] to program a non-Ising problem Hamiltonian HP

onto a D-Wave One processor. The processor architecture is
shown in Fig. 18. This procedure also applies to a D-Wave
Two processor.

As discussed in Sec. III, the GI algorithm presented in this
paper constructs HP to (i) be diagonal in the computational
basis {|a0 · · · aL−1〉 : ai = 0,1}; and (ii) have eigenvalues C(a),
where a = a0 · · · aL−1, L is the number of qubits, and C(a)
is given by Eqs. (42)–(45) with s → a. The cost function
C(a) is not yet ready for experimental implementation for
two reasons. First, there are k-qubit interactions with k > 2
which cannot be implemented as the processor can only
couple pairs of qubits; and second, two-qubit couplings may
not correspond to available couplings on the processor (see
Fig. 18). Procedures for removing each of these obstacles
are presented, respectively, in Appendices B 1 and B 2. We
summarize these procedures in Appendix B 3. To keep the
discussion concrete, we examine a single k-qubit coupling
term A = a1 · · · ak with ai = 0,1. The resulting procedure
must then be applied to each term in C(a).

022342-17



FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

FIG. 18. Layout of qubits and couplers for a D-Wave One
processor. The processor architecture is a 4 × 4 array of unit cells,
with each unit cell containing eight qubits. Within a unit cell, each of
the four qubits in the left-hand partition (LHP) connects to all four
qubits in the right-hand partition (RHP), and vice versa. A qubit in
the LHP (RHP) of a unit cell also connects to the corresponding qubit
in the LHP (RHP) in the unit cells above and below (to the left and
right of) it. Most qubits couple to six neighbors. Qubits are labeled
from 1 to 128, and edges between qubits indicate couplers which may
take programmable values. Gray qubits indicate usable qubits, while
white qubits indicate qubits which, due to fabrication defects, could
not be calibrated to operating tolerances and were not used.

1. Reduction to pairwise coupling

Here we describe how to reduce a k-qubit coupling term A =
a1 · · · ak with ai = 0,1 to a sum of two-qubit (viz., pairwise)
coupling terms. We first show how to reduce a three-qubit
coupling term to pairwise coupling terms (Appendix B 1 a),

and then use lessons learned to reduce the k-qubit term A to
pairwise coupling (Appendix B 1 b).

a. Three-qubit case

We begin by showing how to reduce a three-qubit coupling
term a1a2a3 to pairwise coupling by introducing (i) an ancillary
variable b which takes only two values {0,1}, and (ii) the
penalty function

P (a1,a2; b) = a1a2 − 2(a1 + a2)b + 3b. (B1)

Notice that P (a1,a2; b) = 0 (>0) when the input values for
a1, a2, and b satisfy b = a1a2 (b �= a1a2). Now consider the
quadratic cost function

h(b) = ba3 + μP (a1,a2; b)

for given values of μ, a1, and a2. For μ sufficiently large,
h(b) is minimized when the value of b satisfies the equality
constraint b∗ = a1a2. As noted above, for this optimal value of
b, the penalty function P (a1,a2; b∗) = 0, and so the optimum
cost h(b∗) is

h(b∗) = b∗a3 + P (a1,a2; b∗)

= a1a2a3,

where b∗ = a1a2 has been used in going from the first to
the second line. Thus, for values of b satisfying the equality
constraint b = a1a2, the cost function h(b), which is a sum of
two-qubit coupling terms, reproduces the three-qubit coupling
term a1a2a3. By choosing μ sufficiently large, values of b that
do not satisfy the equality constraint can be pushed to large
cost (viz., energy), making such b values inaccessible during
adiabatic quantum evolution.

b. k-qubit case

To reduce the k-qubit coupling term A = a1 · · · ak to
pairwise coupling we (i) introduce ancillary bit variables
b2, . . . ,bk−1, and (ii) impose the constraints bk−1 = ak−1ak and
bj = ajbj+1 (j = 2, . . . ,k − 2) through the penalty function

P (a; b) = P (ak−1,ak; bk−1) +
k−2∑
j=2

P (aj ,bj+1; bj ),

where a = (a1, . . . ,ak), b = (b2, . . . ,bk−1), and P (a,b; c) is
defined in Eq. (B1). The quadratic cost function CA(a,b) is
defined to be

CA(a,b) = a1b2 + μP (a; b).

We require that the optimal values (a∗,b∗) satisfy the k − 1
imposed constraints so that P (a∗,b∗) = 0. For optimal values,
the cost function evaluates to

CA(a∗,b∗) = a∗
1b

∗
2 + μP (a∗,b∗)

= a∗
1a

∗
2b∗

3

= ...

= a∗
1 · · · a∗

k−2b
∗
k−1

= a∗
1a

∗
k ,

022342-18



GRAPH ISOMORPHISM AND ADIABATIC QUANTUM COMPUTING PHYSICAL REVIEW A 89, 022342 (2014)

where (in the interest of clarity) we have introduced the
constraints one at a time in going from one line to the next.
Here μ is a penalty weight whose value is chosen large enough
to freeze-out nonoptimal values of a and b during adiabatic
quantum evolution. Thus, for values of a and b satisfying the
k − 1 equality constraints, and for μ sufficiently large, the cost
function CA(a,b), which is a sum of two-qubit coupling terms,
reproduces the k-qubit coupling term A = a1 · · · ak as desired.

2. Matching required couplings to hardware couplings

A cost function with only pairwise coupling such as results
from the procedure described in Appendix B 1 may still not
be experimentally realizable on a D-Wave processor as the
pairwise couplings arising in CA(a,b) may not match the
two-qubit couplings available on the processor. The primal
graph of a quadratic cost function such as CA(a,b) is the
graph whose vertices are the qubit variables, and whose edges
indicate pairwise-coupled qubits. An arbitrary primal graph
can be embedded into a sufficiently large qubit graph having
the structure of Fig. 18. An embedding maps a primal graph
vertex to one or more vertices in the qubit graph, where the
image vertices form a connected subgraph of the qubit graph.
The string of connected qubits are linked together with strong

ferromagnetic couplings so that in the lowest energy state,
these qubits have identical Bloch vectors. For example, to
couple qubits 104 and 75 in Fig. 18 (which are not directly
coupled) with coupling strength J , we ferromagnetically
couple qubits 104, 112, and 107 using strongly negative J104,112

and J107,112 values. Qubits 107 and 75 are directly coupled by
the processor and so the desired coupling J is applied to
the edge (viz., coupler J107,75) connecting qubits 107 and 75:
J107,75 = J . The ferromagnetic chain thus effects the desired
coupling of qubits 104 and 75. This embedding procedure must
be carried out for each pair of primal graph vertices joined by
an edge whose associated qubits are not directly coupled in
the processor architecture.

3. Summary

By combining the procedures described in this appendix it
is possible to transform any cost function C(a) into a quadratic
cost function with pairwise couplings that match the couplings
specified by the processor architecture. The trade-off is the
introduction of ancilla qubits that are needed to reduce the
coupling interactions to pairwise coupling and to match the
two-qubit couplings available on the processor.

[1] J. Köbler, U. Schöning, and J. Torán, The Graph Isomorphism
Problem (Birkhäuser, Boston, 1993).

[2] S. Arora and B. Barak, Computational Complexity (Cambridge
University Press, New York, 2009).

[3] R. Jozsa, Comput. Sci. Eng. 3, 34 (2001).
[4] E. Bernstein and U. Vazarani, in Proceedings of the 25th

Annual ACM Symposium on the Theory of Computing, edited by
R. Kosaraju, D. Johnson, and A. Aggarwal (ACM, San Diego,
1993), p. 11.

[5] C. Moore, A. Russell, and L. J. Schulman, in 46th Annual IEEE
Symposium on Foundations of Computer Science, edited by
E. Tardos (IEEE, Los Alamitos, 2005), p. 479.

[6] V. Gudkov and S. Nussinov, arXiv:cond-mat/0209112v2.
[7] T. Rudolph, arXiv:quant-ph/0206068v1.
[8] S.-Y. Shiau, R. Joynt, and S. N. Coppersmith, Quantum Inf.

Comput. 5, 492 (2005).
[9] J. K. Gamble, M. Friesen, D. Zhou, R. Joynt, and S. N.

Coppersmith, Phys. Rev. A 81, 052313 (2010).
[10] K. Rudinger, J. K. Gamble, M. Wellons, E. Bach, M. Friesen,

R. Joynt, and S. N. Coppersmith, Phys. Rev. A 86, 022334
(2012).

[11] I. Hen and A. P. Young, Phys. Rev. A 86, 042310 (2012).
[12] D. Aharonov, W. Van Dam, J. Kempe, Z. Landau, S. Lloyd, and

O. Regev, SIAM J. Comput. 37, 166 (2007).
[13] J. Kempe, A. Kitaev, and O. Regev, SIAM J. Comput. 35, 1070

(2006).
[14] R. Oliveira and B. M. Terhal, Quantum Inf. Comput. 8, 900

(2008).
[15] Z. Bian, F. Chudak, W. G. Macready, L. Clark, and F. Gaitan,

Phys. Rev. Lett. 111, 130505 (2013).
[16] G. Chartrand and P. Zhang, A First Course in Graph Theory

(Dover, Mineola, 2012).

[17] M. Mosca, in Encyclopedia of Complexity and System Science,
edited by Robert A. Meyers (Springer, New York, 2009),
p. 7088.

[18] D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and
O. Regev, in 45th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’04), edited by E. Upfal (IEEE, Los
Alamitos, 2004), p. 42.

[19] A. Messiah, Quantum Mechanics (Wiley, New York, 1962),
Vol. II, p. 750.

[20] L. I. Schiff, Quantum Mechanics, 3rd ed. (McGraw-Hill, New
York, 1968).

[21] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, J. Phys. A
34, 643 (2001).

[22] E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, and
D. Preda, Science 292, 472 (2001).

[23] F. Gaitan, Int. J. Quantum Inf. 04, 843 (2006).
[24] F. Gaitan, Complexity 14, 21 (2009).
[25] F. Gaitan and L. Clark, Phys. Rev. Lett. 108, 010501 (2012).
[26] E. Farhi, J. Goldstone, and S. Gutmann, arXiv:quant-

ph/0208135v1.
[27] J. Roland and N. J. Cerf, Phys. Rev. A 65, 042308 (2002).
[28] D. M. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs

(Academic, New York, 1980).
[29] M. W. Johnson et al., Nature (London) 473, 194 (2011).
[30] R. Babbush, B. O’Gorman, and A. Aspuru-Guzik, Ann. Phys.

525, 877 (2013).
[31] J. D. Whitfield, M. Faccin, and J. D. Biamonte, Eur. Phys. Lett.

99, 57004 (2012).
[32] M. R. Garey and D. S. Johnson, Computers and Intractability

(W. H. Freeman and Company, New York, 1979).
[33] M. Born and V. Fock, Z. Phys. 51, 165 (1928).
[34] T. Kato, Phys. Soc. Jpn. 5, 435 (1950).

022342-19

http://dx.doi.org/10.1109/5992.909000
http://dx.doi.org/10.1109/5992.909000
http://dx.doi.org/10.1109/5992.909000
http://dx.doi.org/10.1109/5992.909000
http://arxiv.org/abs/arXiv:cond-mat/0209112v2
http://arxiv.org/abs/arXiv:quant-ph/0206068v1
http://dx.doi.org/10.1103/PhysRevA.81.052313
http://dx.doi.org/10.1103/PhysRevA.81.052313
http://dx.doi.org/10.1103/PhysRevA.81.052313
http://dx.doi.org/10.1103/PhysRevA.81.052313
http://dx.doi.org/10.1103/PhysRevA.86.022334
http://dx.doi.org/10.1103/PhysRevA.86.022334
http://dx.doi.org/10.1103/PhysRevA.86.022334
http://dx.doi.org/10.1103/PhysRevA.86.022334
http://dx.doi.org/10.1103/PhysRevA.86.042310
http://dx.doi.org/10.1103/PhysRevA.86.042310
http://dx.doi.org/10.1103/PhysRevA.86.042310
http://dx.doi.org/10.1103/PhysRevA.86.042310
http://dx.doi.org/10.1137/S0097539705447323
http://dx.doi.org/10.1137/S0097539705447323
http://dx.doi.org/10.1137/S0097539705447323
http://dx.doi.org/10.1137/S0097539705447323
http://dx.doi.org/10.1137/S0097539704445226
http://dx.doi.org/10.1137/S0097539704445226
http://dx.doi.org/10.1137/S0097539704445226
http://dx.doi.org/10.1137/S0097539704445226
http://dx.doi.org/10.1103/PhysRevLett.111.130505
http://dx.doi.org/10.1103/PhysRevLett.111.130505
http://dx.doi.org/10.1103/PhysRevLett.111.130505
http://dx.doi.org/10.1103/PhysRevLett.111.130505
http://dx.doi.org/10.1088/0305-4470/34/3/323
http://dx.doi.org/10.1088/0305-4470/34/3/323
http://dx.doi.org/10.1088/0305-4470/34/3/323
http://dx.doi.org/10.1088/0305-4470/34/3/323
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1126/science.1057726
http://dx.doi.org/10.1142/S0219749906002213
http://dx.doi.org/10.1142/S0219749906002213
http://dx.doi.org/10.1142/S0219749906002213
http://dx.doi.org/10.1142/S0219749906002213
http://dx.doi.org/10.1002/cplx.20252
http://dx.doi.org/10.1002/cplx.20252
http://dx.doi.org/10.1002/cplx.20252
http://dx.doi.org/10.1002/cplx.20252
http://dx.doi.org/10.1103/PhysRevLett.108.010501
http://dx.doi.org/10.1103/PhysRevLett.108.010501
http://dx.doi.org/10.1103/PhysRevLett.108.010501
http://dx.doi.org/10.1103/PhysRevLett.108.010501
http://arxiv.org/abs/arXiv:quant-ph/0208135v1
http://dx.doi.org/10.1103/PhysRevA.65.042308
http://dx.doi.org/10.1103/PhysRevA.65.042308
http://dx.doi.org/10.1103/PhysRevA.65.042308
http://dx.doi.org/10.1103/PhysRevA.65.042308
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1038/nature10012
http://dx.doi.org/10.1002/andp.201300120
http://dx.doi.org/10.1002/andp.201300120
http://dx.doi.org/10.1002/andp.201300120
http://dx.doi.org/10.1002/andp.201300120
http://dx.doi.org/10.1209/0295-5075/99/57004
http://dx.doi.org/10.1209/0295-5075/99/57004
http://dx.doi.org/10.1209/0295-5075/99/57004
http://dx.doi.org/10.1209/0295-5075/99/57004
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1007/BF01343193
http://dx.doi.org/10.1143/JPSJ.5.435
http://dx.doi.org/10.1143/JPSJ.5.435
http://dx.doi.org/10.1143/JPSJ.5.435
http://dx.doi.org/10.1143/JPSJ.5.435


FRANK GAITAN AND LANE CLARK PHYSICAL REVIEW A 89, 022342 (2014)

[35] J. E. Avron, R. Seiler, and L. G. Yaffe, Commun. Math. Phys.
110, 33 (1987); ,156, 649 (1993).

[36] G. Nenciu, J. Phys. A 13, L15 (1980).
[37] K. O. Friedrichs, Special Topics in Quantum Theory, Lecture

Notes (Courant Institute of Mathematical Science, New York
University 1955); On the Adiabatic Theorem in Quantum
Theory, Part I (Courant Institute of Mathematical Sciences, New
York University, 1956); , On the Adiabatic Theorem in Quantum
Theory, Part II (Courant Institute of Mathematical Science, New
York University, 1956).

[38] G. Hagedorn, Ann. Phys. 196, 278 (1989).

[39] J. E. Avron, J. S. Howland, and B. Simon, Commun. Math. Phys.
128, 497 (1990).

[40] J. E. Avron and A. Elgart, Phys. Rev. A 58, 4300 (1998).
[41] J. E. Avron, and A. Elgart, Commun. Math. Phys. 203, 445

(1999).
[42] H. Narnhofer, and W. Thirring, Phys. Rev. A 26, 3646

(1982).
[43] A. Martinez and S. Nakamura, C. R. Acd. Sci. Paris 318, 1153

(1994).
[44] L. D. Landau, and E. M. Lifshitz, Quantum Mechanics, 3rd ed.

(Butterworth-Heinemann, New York, 1977).

022342-20

http://dx.doi.org/10.1007/BF01209015
http://dx.doi.org/10.1007/BF01209015
http://dx.doi.org/10.1007/BF01209015
http://dx.doi.org/10.1007/BF01209015
http://dx.doi.org/10.1007/BF02096867
http://dx.doi.org/10.1007/BF02096867
http://dx.doi.org/10.1007/BF02096867
http://dx.doi.org/10.1088/0305-4470/13/2/002
http://dx.doi.org/10.1088/0305-4470/13/2/002
http://dx.doi.org/10.1088/0305-4470/13/2/002
http://dx.doi.org/10.1088/0305-4470/13/2/002
http://dx.doi.org/10.1016/0003-4916(89)90179-6
http://dx.doi.org/10.1016/0003-4916(89)90179-6
http://dx.doi.org/10.1016/0003-4916(89)90179-6
http://dx.doi.org/10.1016/0003-4916(89)90179-6
http://dx.doi.org/10.1007/BF02096869
http://dx.doi.org/10.1007/BF02096869
http://dx.doi.org/10.1007/BF02096869
http://dx.doi.org/10.1007/BF02096869
http://dx.doi.org/10.1103/PhysRevA.58.4300
http://dx.doi.org/10.1103/PhysRevA.58.4300
http://dx.doi.org/10.1103/PhysRevA.58.4300
http://dx.doi.org/10.1103/PhysRevA.58.4300
http://dx.doi.org/10.1007/s002200050620
http://dx.doi.org/10.1007/s002200050620
http://dx.doi.org/10.1007/s002200050620
http://dx.doi.org/10.1007/s002200050620
http://dx.doi.org/10.1103/PhysRevA.26.3646
http://dx.doi.org/10.1103/PhysRevA.26.3646
http://dx.doi.org/10.1103/PhysRevA.26.3646
http://dx.doi.org/10.1103/PhysRevA.26.3646



